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Abstract—In this paper, we propose that active Bayesian per-
ception has a general role for Simultaneous Object Localization
and IDentification (SOLID), or deciding where and what. We
test this claim using a biomimetic fingertip to perceive object
identity via surface shape at uncertain contact locations. Our
method for active Bayesian perception combines decision making
by threshold crossing of the posterior belief with a sensorimotor
loop that actively controls sensor location based on those beliefs.
Our findings include: (i) active perception with a fixation control
strategy gives an order-of-magnitude improvement in acuity over
passive perception without sensorimotor feedback; (ii) perceptual
acuity improves as the active control requires less belief to make
a relocation decision; and (iii) relocation noise further improves
acuity. The best method has aspects that resemble animal
perception, supporting wide applicability of these findings.

I. INTRODUCTION

We do not only see, we look. We not only hear, we listen.
We do not just touch, we feel [1]. Our senses are not merely
passive receivers of information, but actively select and refine
sensations according to our present goals and perceptions [5].
Our bodies are not external from the world, but direct actions
within it to access the information that we need [2, 15].
Thus, sensation, perception and action cannot be considered
simply as a forward process, but instead form a closed ‘active
perception’ loop with a task-dependent motor control strategy.

The main goal of this work is to advance our understanding
of the role of active perception in determining the ‘where’
and ‘what’ properties of objects. In this sense, we interpret the
purpose of finding ‘what’ as finding the action possibilities that
an object class affords. The purpose of finding ‘where’ is to
enable the agent to evaluate and enact the action possibilities
for achieving those affordances. We refer to the computational
task as Simultaneous Object Localization and IDentification
(SOLID), to emphasize a similarity with SLAM of having
two interdependent task aims, in that knowledge of location
aids computation of identity (mapping) and identification
(mapping) aids localization. Another similarity is to use a
recursive Bayesian update for processing imperfect sensory ev-
idence under uncertainty. Algorithmically, however, we use an
approach for SOLID with historical roots in sequential analysis
and optimal decision making (rather than Kalman filtering).
Specifically, we introduce an algorithm called active Bayesian
perception that combines ‘where’ and ‘what’ decision making
with a sensorimotor feedback loop to control sensor location.

To explore these ideas, we examine a simple but illustrative
task of perceiving 2D position (localization) and object cur-

vature (identification) with tapping motions of a biomimetic
fingertip. Although this study does not explicitly utilize the
object affordances, an example of how it could is if shape
were to define the object’s utility for a task (e.g. fitting onto
another object) and position prescribed where to get it.

Our main finding is that active Bayesian perception with a
‘fixation point’ control strategy gives a far more efficient and
accurate way of solving this localization and identification task
than passive Bayesian perception with no sensorimotor loop.
Moreover, not all active perception strategies are equal. We
show that the ‘where’ and ‘what’ perceptual acuities improve
as relocation decisions require less belief and also improve
with some relocation noise. These results demonstrate how
to best apply active perception to a robot touch task, and in
addition we expect that the findings are representative of other
‘where’ and ‘what’ tasks and other sensory modalities.

II. RELATED WORK

In a landmark paper, Bajcsy defined active sensing as [1]:
‘purposefully changing the sensor’s state parameters according
to sensing strategies ... [that] depend on the current state of
the data interpretation and the goal or the task.’ She also
emphasized that feedback should regulate sensor movement
via ongoing decisions of where to move the sensor. While Ba-
jcsy emphasized online optimization of active control, another
possibility is that useful control strategies could be predefined
for specific tasks (or in biological systems selected by learning
or evolution). Thus, when provided with appropriate feedback
signals, they could operate to boost the acquisition of useful
information without the need for complex computation of the
optimal strategy on a moment-by-moment basis [15].

The present work is further motivated by recent progress
in the neuroscience of human and animal perception over
imperfect sensor information. Leading computational accounts
involve the sequential accumulation of evidence to threshold,
consistent with numerous psychological and electrophysiolog-
ical experiments [6]. An important aspect of the accumulation
to threshold mechanism is its formal relation to sequential
analysis methods for optimal decision making, leading to an
optimal tradeoff between costs of delaying decisions and mak-
ing mistakes [18]. Work in computational neuroscience also
indicates these principles may relate to the macro-architecture
of the brain, in particular the basal ganglia and cortex [10].

Sequential analysis methods for optimal decision making
have been applied recently to robot perception, focussing on



Fig. 1: Active and passive Bayesian perception for simultaneous object localization and identification. All algorithms share a
recursive Bayesian update to find the marginal ‘where’ and ‘what’ beliefs, with decision termination at sufficient ‘what’ belief.
They differ in their use of the ‘where’ belief for controlling sensor location: (A) passive perception has no active control;
(B) weakly active perception requires the ‘where’ belief passes a threshold; and (C) active perception always tries to relocate.
Sensor relocations follow a belief-based active control strategy, with the ‘where’ belief component re-aligned upon each move.

robot touch [12]. A strength of the formalism is that it connects
closely with leading work in neuroscience, allowing insights
from animal perception to be transferred to robot perception.
For example, these methods have enabled the first demon-
stration of hyperacuity in robot touch [9], giving perceptual
acuity finer than the sensor resolution, as is common in animal
perception. That study also found that active perception helped
the hyperacuity, although those methods do suffer from being
somewhat ad hoc by not making best use of the ‘where’ and
‘what’ aspects of the problem.

The present work develops a principled approach to active
Bayesian perception of applicability to ‘where’ and ‘what’
perceptual tasks. In this context, two recent studies of ac-
tive touch in robotics bear comparison. One study proposed
a biomimetic whisker control strategy inspired by rodent
behavior (rapid cessation of protraction) that aided percep-
tion [17]. Although that study was neither Bayesian nor
explicitly ‘where’ and ‘what’, we see their biomimetic control
as analogous to the ‘fixation point’ strategy considered here.
The other study used ‘Bayesian exploration’ to select between
motions to best perceive surface texture with a biomimetic
fingertip [4]. Their algorithm for Bayesian exploration has
a similar looped architecture to that used here, but instead
employs a ‘disambiguation’ control strategy to solve a solely
‘what’ task (the locations are known). The ‘fixation point’
strategy considered here solves ‘where’ and ‘what’ tasks, but
we think an extension of their ‘disambiguation’ strategy would
be appropriate when there is no obvious fixation point.

While active vision has been researched intensively for over
20 years [3], active touch has been neglected in comparison.
However, it is becoming apparent that touch is key to solving
some key problems in robotics, e.g. grasping under uncer-
tainty [7]. The aim is for robots to accomplish the everyday
manipulation tasks we take for granted, with radical implica-
tions for automatization in the home and industry [8, 13].

III. ACTIVE BAYESIAN PERCEPTION

Our algorithm for active perception is based on including a
sensorimotor feedback loop in an existing method for passive
Bayesian perception [9, 12]. Both methods assume that the
sensor makes a discrete contact measurement (here a tap)
onto an object, from which the joint likelihoods of object
location and identity are used to update the posterior beliefs
for those perceptual classes. In active Bayesian perception,
a control strategy repositions the sensor before each contact,
taking input from the beliefs and outputting the sensor move.

Because these methods are applicable to any simultaneous
object localization and identification task, this section is pre-
sented in a general ‘where’ and ‘what’ notation. A general
SOLID task has Nloc distinct ‘where’ location classes xl and
Nid distinct ‘what’ identity classes wi, totalling N = NlocNid

joint ‘where-what’ classes cn = (xl, wi). In principle, there
can be multiple location and identity dimensions, but we can
still enumerate each ‘where-what’ class with an (l, i) index.

Each contact against a test object gives a multi-dimensional
time series z = {sk(j) : 1≤ j≤Nsamples, 1≤ k≤Nchannels}
of sensor values, with indices j, k labeling the time samples
and sensor channels. The tth contact in a sequence is denoted
by zt with z1:t−1 = {z1, · · · , zt−1} its contact history.

Measurement model and likelihood estimation: The likeli-
hoods of all perceptual classes are obtained from a measure-
ment model of the contact data, which we find by applying a
histogram method to training examples for each class [11, 12].
First, the sensor values sk are binned into Nbins = 100
intervals, with sampling distribution of each perceptual class
cn given by the normalized histogram for all data in that class

P (b|cn, k) =
h(b, k)∑Nbins

b=1 h(b, k)
, (1)

where h(b, k) is the histogram count for bin b (1 ≤ b ≤ Nbins)



in channel k. Then, given a test tap z, the measurement model
is constructed from the mean log likelihood over all samples

logP (z|cn) =

Nchannels∑
k=1

Nsamples∑
j=1

logP (bk(j)|cn, k)

NsamplesNdims
, (2)

where bk(j) is the bin occupied by sample sk(j). Technically,
this measurement model becomes ill-defined if any histogram
bin is empty, which is easily fixed by regularizing the bin
counts with a small constant (ε� 1), giving h(b, k) + ε.

Bayesian update: Bayes’ rule is used after each contact zt
to update the posterior beliefs with the estimated likelihoods

P (cn|z1:t) =
P (zt|cn)P (cn|z1:t−1)

P (zt|z1:t−1)
, (3)

from background information given by the prior beliefs. In
this recursive update, the marginal probabilities are

P (zt|z1:t−1) =

N∑
n=1

P (zt|cn)P (cn|z1:t−1). (4)

Iterating (3,4), a sequence of contacts z1, · · · , zt results in
a sequence of posteriors P (cn|z1), · · · , P (cn|z1:t) initialized
from uniform priors P (cn) = P (cn|z0) = 1

N .
Marginal ‘where’ and ‘what’ posteriors: For the following

methods, we will need the posterior beliefs for just location or
identity, rather than the joint beliefs considered so far. These
are found by marginalizing the joint beliefs for the classes
cn = (xl, wi) over the location xl or identity wi component

P (xl|z1:t) =

Nid∑
i=1

P (xl, wi|z1:t), (5)

P (wi|z1:t) =

Nloc∑
l=1

P (xl, wi|z1:t), (6)

with the ‘where’ location beliefs given by summing over all
‘what’ identity classes wi and the ‘what’ identity beliefs over
all ‘where’ location classes xl.

Final decision on the ‘what’ posteriors: Here we follow
sequential analysis methods for optimal decision making that
recursively update beliefs until reaching threshold [18], as used
in passive Bayesian perception [12]. The update stops when
the marginal ‘what’ identity belief passes a threshold, giving a
final decision from the maximal a posteriori (MAP) estimate

if any P (wi|z1:t) > θid then wid = arg max
wi

P (wi|z1:t). (7)

This belief threshold θid is a free parameter that adjusts the
balance between decision speed and accuracy. For N = 2, this
speed-accuracy balance can be proved optimal [18]; optimality
conditions are not known for many choices, and so we make
a reasonable assumption of near optimality [12].

Move decision on the ‘where’ posteriors: Analogously to
the stop decision, a sensor move requires a marginal ‘where’
location belief to cross its own decision threshold, with the
MAP estimate giving the ‘where’ location decision

if any P (xl|z1:t) > θloc then xloc = arg max
xl

P (xl|z1:t). (8)

Here we consider three cases (Figs 1A,B,C), termed:
A. passive perception: θloc = 1 (never moves)
B. weakly active perception: 0<θloc<1 (decides to move)
C. active perception: θloc = 0 (always tries to move)

Active control strategy: The sensor movements are deter-
mined by the active control strategy based on the posterior
beliefs. Here we consider variants of a ‘fixation point’ strategy:
the sensor attempts to relocate to a predefined fixation point
xfix relative to the object assuming it is at the location xloc,

xsensor ← xsensor + ∆ (xloc) , ∆(xloc) = xfix − xloc, (9)

where xsensor is the actual (unknown) location of the sensor.
The arrow denotes that the quantity on the left is replaced with
that on the right. We also consider a control strategy ‘fixation
point with noise’ in which Gaussian noise of variance σ2 is
added to the fixation point xfix +N(0, σ) on each move, then
rounded to the nearest ‘where’ class.

Align ‘where’ posteriors: Whatever control strategy, the
‘where’ location beliefs should be kept aligned with the sensor
by shifting the posterior ‘where-what’ beliefs upon each move

P (xl, wi|z1:t)← P (xl −∆(xloc), wi|z1:t), (10)

where we recalculate the beliefs outside the original range by
assuming they are uniform and the shifted beliefs sum to unity.

IV. TACTILE DATA COLLECTION

The aim of our data collection is to set up a ‘virtual environ-
ment’ in which methods for perception can be compared off-
line on identical data. This is achieved by measuring contact

Fig. 2: Experimental setup. (A) Schematic of tactile sensor
tapping against a cylindrical test object: the fingertip taps down
and then back up again to press its pressure-sensitive taxels
(colored) against the test object; each tap is then followed by a
small horizontal move to systematically vary contact location.
(B) Forward view of the experiment showing the fingertip
mounted on the arm of the Cartesian robot. This experimental
setup is ideal for systematic data collection to characterize the
properties of the sensor interacting with its environment.



Fig. 3: Tactile data at fixed vertical position (4 mm test rod).
(A) Horizontal sweep (20 mm; 200 taps) at the lowest vertical
position. (B-D) Individual tap data taken from panel (A).
Taxels are colored according to their layout on the fingerip.

signals against multiple objects (for ‘what’) over an exhaustive
range of contact locations (for ‘where’). Our experimental
situation has a tactile fingertip tap against Nid = 5 smooth
rods over a 2D range of locations (Fig. 2), which we partition
into Nloc =200 location classes (20 horizontal by 10 vertical).

The tactile sensor has a rounded shape that resembles a
human fingertip [16], with dimensions 14.5 mm long by 13 mm
wide. It consists of an inner support wrapped with a flexible
printed circuit board containing 12 conductive patches for the
touch sensor ‘taxels’, about 4 mm apart. This is coated with
non-conductive foam and conductive silicone layers, together
comprising a capacitive touch sensor that detects pressure
via compression. Data were collected at 8-bit resolution and
50 cycles/sec then high-pass filtered and normalized [16].

For measuring contact data over an exhaustive set of loca-
tions, we mounted the fingertip on a Cartesian robot capable
of precise positioning in a horizontal/vertical plane (∼20µm
accuracy). The fingertip was mounted at an orientation ap-
propriate for contacting axially symmetric shapes such as
cylinders aligned along an axis perpendicular to the plane
of movement (Fig. 2), initially contacting at its base and
finishing on its tip. Nid = 5 smooth steel rods with diameters
4,6,8,10,12 mm were used as test objects, mounted with their
centers offset vertically (by 4,3,2,1,0 mm) to align their closest
point of contact with the fingertip in the direction of tapping.

Touch data were collected while the fingertip tapped verti-
cally onto and off each test object, followed by a horizontal
move ∆x = 0.1 mm across its closest face (Fig. 2A). Every
200 taps, the vertical position was increased by ∆y=0.4 mm
and the horizontal position decreased by 20 mm to reset. A
horizontal x-range of 20 mm and vertical y-range of 4 mm
was used, giving 2000 taps for each of the Nid = 5 objects, or
10000 taps in total. From each tap of the fingertip against the
object, a 1 sec time series of pressure readings (Nsamples = 50)
was extracted for all Ntaxels = 12 taxels (Fig. 3). A 4 sec

Fig. 4: Complete tactile data set. Each panel (A-E) is for one
of the Nid =5 test rods (diameters 4,6,8,10,12 mm). Tickmarks
show the limits of each 20 mm horizontal sweep, after which
the vertical position is increased by 0.4 mm to span a 4 mm
range. Taxel colors are the same as Fig. 3.

pause was taken between brief (∼ 0.1 sec) contacts to ensure
transients decayed; no noticeable hysteresis then occurred. All
data were collected twice to give distinct training and test sets.

For analysis, the data were separated into Nloc = 200
distinct location classes xl by collecting groups of 10 taps each
spanning 1 mm×0.4 mm of the 20 mm×4 mm range (Figs 3,4).
In total, there were thus N = NlocNid = 1000 distinct
‘where-what’ perceptual classes (xl, wi). These were used to
set up a ‘virtual environment’ to compare the methods from
Sec. III on identical data. A Monte Carlo validation ensured
good statistics, by averaging perceptual acuities over many test
runs with taps drawn randomly from the classes (5000 runs
per point in the following plots). Perceptual acuities eloc, eid

were quantified using the mean absolute error (MAE) for each
dimension between the actual xtest, wtest and classified values
xloc, wid of object location and identity over the test runs.

Inspecting the data, taps typically took ∼0.1 sec to reach
peak amplitude, followed by rapid decay to baseline (Figs 3B-
D); note that some amplitudes were negative because of out-
wards deformation of the fingertip surface. The most obvious
effect of varying horizontal position was a change in taxel
identity and amplitude (Fig. 3A); changing vertical position
also changed amplitude (Fig. 4). For each contact, the pattern
of taxel pressures depended on both the curvature of the
surface and the 2D position of the fingertip relative to the rod,
permitting simultaneous object localization and identification.



Fig. 5: Passive perception for simultaneous object localization and identification. The plots show the dependence of the ‘where’
and ‘what’ perceptual acuities on horizontal x1 and vertical x2 position: (A) horizontal position acuity eloc,1 (range 0-4 mm);
(B) vertical position acuity eloc,1 (range 0-1 mm); and (C) identity acuity eid (range 0-1 mm). Results are for belief threshold
θid = 0.5. Light colors indicate finest acuities (small errors) and dark colors the poorest acuities in the range (large errors).

V. SIMULTANEOUS OBJECT LOCALIZATION AND
IDENTIFICATION

A. Passive Bayesian perception

This section examines the application of passive Bayesian
perception to simultaneous object localization and identifica-
tion. Bayesian perception updates posterior belief for distinct
‘where’ 2D location (xl,1, xl,2) and ‘what’ identity classes wi,
using successive taps zt against a test object until at least one
identity belief p(wi|z1:t) crosses a belief threshold θid. Passive
perception means that the location class xl does not change
during perception (Fig. 1A). The results are generated using a
Monte Carlo procedure over test data as a virtual environment
(Sec. IV), averaging over 5000 ‘where’ and ‘what’ perceptual
decisions of object location and identity for each considered
belief threshold θid = {0, 0.1, · · · , 0.9, 0.95, 0.99}.

Our first observation is that perceptual acuity depends on
the 2D test location class (Fig. 5). Perceptual acuities for
horizontal eloc,1 and vertical eloc,2 object location and identity
eid deteriorate (increasing error) at the highest vertical test po-
sitions and both extremes of the horizontal range (Figs 5A-C;
numerical ranges in legend). These findings are consistent with
contacts at these extremities being weak with poor signal-to-
noise ratio. For passive perception, there is no control over the
location from where an object is sensed. Hence, we typify the
perceptual acuities for this task as averages ēloc,1, ēloc,2, ēid

over all possible sensing locations (Fig. 6, red plots).
Our next observation is that the mean passive location and

identity perceptual acuities ēloc,1, ēloc,2, ēid improve (decreas-
ing error) with increasing belief threshold θid (Figs 6A-C; red
plots). These variations in acuity are not unexpected, because
higher thresholds require greater certainty, improving accuracy
but also delaying the decision (reaction) time (Fig. 6D). Op-
timal acuities for location and identity reach ēloc,1 ∼ 1.7 mm
and ēloc,1 ∼ 0.13 mm and ēid ∼ 0.7 mm, respectively. The
better perceptual acuity for vertical compared with horizontal
position relates to the touch sensors having fine sensitivity to
changes in pressure, but a relatively large taxel spacing (4 mm).

B. Active Bayesian perception - fixation point strategy

This section considers active Bayesian perception applied
to the same simultaneous object localization and identification
task as passive perception. Active Bayesian perception also
accumulates belief for location (xl,1, xl,2) and identity wi by
successively tapping against an object, while in addition trying
to relocate the sensor according to these beliefs (Figs 1B,C).
The first active perception method considered here adopts
a ‘fixation point’ strategy where a best estimate of current
location is used to calculate a relative move towards a fixed
location on the object. We take a fixation point centered
horizontally and low down the vertical range (xloc,1 = 10 mm,
xloc,2 = 1.0 mm), where the passive perception had good
acuity. Other details remain unchanged, apart from the test
location class now represents only initial sensor position
and an additional ‘where’ belief threshold within a range
θloc = {0, 0.1, · · · , 0.9, 0.95, 0.99} indicates when to move.

Active and passive perception are here considered a con-
tinuum parameterized by the strength of ‘where’ belief θloc

needed to trigger a relocation decision. One extreme is passive
perception where the sensor never relocates (θloc ≥ 1) and the
other extreme is active perception where the sensor always
tries to relocate (θloc ≤ 1/Nloc). We consider the intermediate
range of ‘where’ belief thresholds (1 > θloc > 1/Nloc) to
represent weakly active perception where multiple taps are
necessary to decide when to move. The differences in reloca-
tion behavior for passive and active perception is apparent in
the location trajectories (Fig. 7A,D vs B,E), which for passive
perception remain static whereas for active perception home
in on the fixation point.

Our first observation is that the ‘where’ and ‘what’ mean
perceptual acuities ēloc,1, ēloc,2, ēid improve with decreasing
‘where’ belief threshold θloc (Figs 6A-C): passive perception
has poorest acuity (shown in red), improving slightly when
weakly active (light gray), then steadily improving until reach-
ing the finest acuities for fully active perception (black). In
addition, the three perceptual acuities improve with increasing
‘what’ belief threshold θid, as noted for passive perception but



Fig. 6: Active perception for simultaneous object localization and identification. (A-C) Dependence of the perceptual acuities
on ‘what’ belief threshold θid (abscissa) and ‘where’ belief threshold θloc (grey shade of plot), as measured by the mean
horizontal and vertical location errors (ēloc,1, ēloc,2) and the mean identity error ēid, over all possible locations. Passive
perception (θloc = 1) is shown in red, weakly active perception in gray and fully active perception (θloc = 0) in black. Active
perception with fixation noise is shown in green, darkening in shade with increasing variance. The other panels show (D) the
corresponding mean decision times and (E-G) the same plots of perceptual acuity with mean decision time as abscissa.

now apparent for both active and passive perception (Fig. 6).
Our second observation is that the mean decision (reaction)

time to gather evidence for relocation increases with the
‘what’ belief threshold θid (Fig. 6D). Just just 1 or 2 taps are
required below 0.5 threshold, increasing steeply to ∼10 taps
at θid = 0.9. In contrast, varying the ‘where’ threshold θloc

does not appreciably affect decision time. Overall, perceptual
acuity improves steeply with mean decision time up to around
4 taps then more gradually thereafter (Figs 6E-G).

Comparing fully active perception with passive perception
(θloc = 0 or 1), the ‘where’ and ‘what’ perceptual acuities (for
5 taps) improve from ēloc,1 = 1.7 mm to 0.4 mm for horizontal
location (cf. 20 mm range), from ēloc,2 = 0.13 mm to 0.07 mm
for vertical location (cf. 4 mm range) and from ēid = 0.7 mm
to 0.4 mm for object identity (cf. 8 mm diameter range).
Evidently, the finest perceptual acuity arises from fully active
perception, followed by weakly active then passive methods.

C. Active Bayesian perception - fixation point with noise

A second active perception strategy is now considered with
relocation movements disturbed by noise, equivalent to tap-to-
tap perturbations of the fixation point. In other respects, the
active perception is identical to above (Sec. V-B), which is now
considered the noise-free case. Only fully active perception is
examined (Fig. 1C), because that was found to give the finest
‘where’ and ‘what’ perceptual acuity for simultaneous object
localization and identification.

The inclusion of relocation noise causes the trajecto-
ries to target a blurred region rather than a single point
(Figs 7C,F), with greater tap-to-tap stochasticity than for

noise-free active perception. Gaussian noise with standard de-
viation σ = {1, 2, 3, 4} horizontal and vertical location classes
is considered (units: 1 mm horizontal, 0.4 mm vertical), such
that on each tap the two directional components of the noise
are found then rounded to the nearest class label.

Our first observation is that relocation noise causes the
decision times to decrease in comparison with noise-free active
perception at the same ‘what’ identity threshold θid (Fig. 6D;
green vs black plots). Apparently, fixating over a region gives
a greater chance of attaining sufficient evidence to reach
decision threshold, compared with a point fixation where the
discrimination may get stuck at a ‘bad’ location.

Our second observation is that relocation noise improves
perceptual acuity compared with noise-free active perception
at identical mean decision times (Figs 6E-G; green vs black
plots). This result arises principally from an improved decision
time, although there were further improvements in identity
acuity (Fig. 6C), apparently because sensing over a region
helps perceive shape (radius of curvature). In all cases, there
is a moderate improvement of perceptual acuity for relocation
noise up to standard deviation σ = 2 and little thereafter.

Comparing active perception with noise to the noise-free
case, the ‘where’ and ‘what’ perceptual acuities (for 5 taps)
improve from ēloc,1 = 0.4 mm to 0.1 mm for horizontal location
(cf. 20 mm range), from ēloc,2 = 0.07 mm to 0.02 mm for ver-
tical location (cf. 4 mm range) and ēid = 0.4 mm to 0.1 mm for
object identity (cf. 8 mm diameter range). Evidently, consider-
able improvements in acuity result from including a moderate
amount of noise in the active perception strategy.



Fig. 7: Trajectories for passive and active perception. (A,D) Passive perception, with horizontal and vertical location plotted
against time. (B,E) Corresponding plots for active perception, with fixation point centered horizontally (10 mm) and towards
the bottom (1.0 mm) vertically. (C,F) Corresponding plots for active perception with noise (standard deviation σ = 1 class).
100 trajectories were selected randomly for each case.

VI. DISCUSSION

A. Best strategy for robot perception

In this study, we applied Bayesian perception to simul-
taneous object localization and identification, or perceiving
‘where’ and ‘what’. We compared active and passive methods
on a simple but illustrative task of perceiving 2D position
(localization) and object curvature (identification) with tapping
movements of a biomimetic fingertip. Active perception can
control changes in location of the sensor during the decision
making process (Fig. 1B,C), whereas for passive perception
the sensor remains at the location where it initially contacted
the object (Fig. 1A). We then compared various active percep-
tion strategies to evaluate which gave the best robot perception.

Our three main observations about active perception were:
(i) Active perception gave an order-of-magnitude improvement
in acuity over passive perception. A ‘fixation point’ active con-
trol strategy gave much better perceptual acuity for 2D location
and identity than passive perception. For the best choice of
parameters (see below), the mean perceptual errors improved
from ēloc,1 ∼ 1.7 mm, ēloc,2 ∼ 0.13 mm and ēid ∼ 0.7 mm
(passive perception) to ēloc,1 ∼ 0.1 mm, ēloc,2 ∼ 0.02 mm
and ēid ∼ 0.1 mm (active perception), an order-of-magnitude
improvement. This was due partly to attaining a good location
for perception from any initial contact location. However, the
results also indicated other benefits of active control (e.g.
sampling a range of locations).
(ii) Perceptual acuity improves with the strength of the active
perception. Just as active Bayesian perception requires an
identity threshold θid on the beliefs to make a ‘what’ decision,
there should be a location threshold θloc to make a ‘where’
decision to relocate the sensor. Passive perception corresponds

to an unattainable threshold θloc ≥ 1 and fully active per-
ception to always attainable thresholds θloc ≤ 1/Nloc; the
intermediate range 1/Nloc < θloc < 1 parameterizes the
strength of the active perception, with this entire range referred
to here as weakly active perception to distinguish it from fully
active perception. Acuity improved as the active perception
became stronger, from passive to weakly active to fully active
perception. This result is not obvious in advance, and follows
from greater improvements to acuity arising from rapid move
decisions than the decrements from poorer relocations. There-
fore, only fully active Bayesian perception need be applied for
‘where’ and ‘what’ tasks like those considered here.
(iii) Relocation noise in active perception can improve acuity.
We also considered an active perception strategy with reloca-
tion noise. For moderate noise variance, the perceptual acuity
was better than the noise-free case, giving the best overall
active perception strategy ‘fixation point with noise’ on our
tactile data. The improved perception of object identity was
due partly to help from sensing curvature over a region rather
than a point. Sampling from a larger region also gave greater
chance of receiving ‘good’ evidence, which resulted in faster
decision times and hence improved location acuity.

B. Similarities with animal perception
Similarly to previous work on active perception [1, 2], the

inspiration for this study was from animal perception. We
now describe briefly some similarities between the present
approach and aspects of animal behavior and physiology.

First, the Bayesian perception method is based on leading
models of perceptual decision making from neuroscience [6].
An aspect of animal perception that these models capture is to
optimize the tradeoff between reaction speed and error rate.



Second, the biomimetic fingertip has taxels with broad,
overlapping receptive fields (Fig. 4A), analogous to those
of mechanoreceptors (touch) and photoreceptors (vision).
Bayesian perception then gives perceptual hyperacuity [9],
a phenomenon associated with animal perception. Given the
taxel spacing is 4 mm, our results display extreme hyperacuity.

Third, active Bayesian perception employs a sensory-motor
loop to move the biomimetic fingertip in response to sen-
sory information during the perceptual process. Sensorimotor
feedback during perception is a generic aspect of both animal
behavior and the physiology of the vertebrate brain.

Fourth, the ‘fixation point’ active perception strategy used
here is analogous to orienting movements common in animal
perception, of which foveation in vision is an example [2].

Finally, relocation noise in the active perception strategy is
similar to microsaccades that occur in vision [14]. Considering
that the function of microsaccades is under debate, our results
suggest that they improve acuity in active perception.

C. Generalization to other ‘where’ and ‘what’ tasks
As stated in the introduction, we expect that our formalism

and results are representative of other ‘where’ and ‘what’
tasks. Our 2D example in robot touch was chosen to be simple
enough to ease the presentation and analysis, but sufficiently
complex to represent a realistic environment. By sensing
only cylindrical stimuli from a fixed orientation, the entire
environment could be mapped over a 2D range of contact
positions. This situation generalizes in an obvious way to 3D
position, but in addition the sensor orientation could also be
under active control as part of the ‘where’ localization.

More generally, we interpret the ‘where’ location dimen-
sions as those degrees-of-freedom that the sensing agent can
actively control, like the pose of a single sensor or possibly the
sensor geometry (e.g. the morphology of a whisker array [17]).
Conversely, the ‘what’ identity dimensions are the perceptual
degrees-of-freedom that are outside the agent’s control, such as
those intrinsic to the object being identified (e.g. curvature, as
here, or surface texture, as considered in a related study [13]).
Active Bayesian perception should thus apply to any SOLID
problem with appropriate definition of ‘where’ and ‘what’.

VII. CONCLUSION

In this paper, we propose that active perception has general
role for Simultaneous Object Localization and IDentification
(SOLID), or ‘where’ and ‘what’ objects are being sensed.
Our active perception method combines sequential analysis
for optimal decision making [18] with active control for per-
ception [1]. Aspects of this method resemble those of animal
perception, supporting wide applicability of this approach.

We believe that this work gives a step towards a long-term
goal of enabling robots to perceive their environments with
the remarkable perceptual capabilities of animals over limited
sensor information and in demanding circumstances.
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