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Abstract—This paper presents a method for generating smooth,
efficiently-executable trajectories for robots under contact con-
straints, such as those encountered in legged locomotion and ob-
ject manipulation. It consists of two parts. The first is an efficient,
robust method for constructing C1 interpolating paths between
configuration/velocity states on implicit manifolds. The second
is a robust time-scaling method that solves for a minimum-time
parameterization using a novel convex programming formulation.
Simulation experiments demonstrate that the method is fast,
scalable to high-dimensional robots, and numerically stable on
humanoid robot locomotion and object manipulation examples.

I. INTRODUCTION

Trajectory optimization helps robots complete tasks faster,
consume less energy, appear more human-like, and interact
with humans more naturally. Although trajectory optimization
of free-space motions is a well-studied classical problem [7,
16], less attention has been given to the setting of robots that
make and break contact. The major challenge with contact
is that imposes kinematic constraints that limit motion to a
nonlinear submanifold in the robot’s joint space. Prior work
on optimizing robot locomotion and manipulation trajecto-
ries [3, 6, 8, 11, 12] relies on descent-based approaches that are
often extremely slow, taking minutes or hours to complete, and
require careful choice of initial trajectories to avoid falling into
local minima. As a result, these methods are best suited for off-
line trajectory generation. Major improvements in reliability
and speed are needed to approach the goal of on-line trajectory
generation, which requires sub-second running time and no
manual intervention.

This paper presents a new method for generating time-
optimized interpolating trajectories under contact constraints
specified as an implicit function. It uses a two-stage ap-
proach [2] that decouples geometric and temporal aspects
of the problem: first, it handles kinematic constraints to
generate a geometric path, and then it performs a time-scaling
optimization to minimize the execution time along the path
while respecting joint-wise velocity and acceleration limits.

New technical contributions in each stage makes the method
fast enough for on-line use. First, I present a recursive spline-
based projection method that generates twice-differentiable
paths on a contact submanifold represented by an implicit
nonlinear function. The path is proven to achieve an arbitrarily
tight tolerance ε > 0 on constraint violation errors. Second, I
present a new time-scaling formulation as a convex, linearly
constrained optimization problem in a squared-rate parameter

Fig. 1. Interpolation begins with a smooth Hermite curve connecting the
endpoints, and recursively bisects and projects the midpoint and its derivative
onto the constraint manifold.

space. The globally optimal time-scaling can be computed reli-
ably using sequential linear programming. Moreover, empirical
evidence suggests that the number of relevant constraints is
only weakly linear in dimensionality, with a small leading
coefficient (approximately 0.02 in the examples in this paper).
Major scalability improvements come from an intermediate
processing step that eliminates irrelevant constraints quickly.

Experiments on a variety of examples demonstrate that the
method generates smooth, dynamically-feasible trajectories in
interactive fashion for robots with up to 100 DOF and multiple
limbs in contact. Trajectories for a 63-DOF humanoid robot
performing manipulation and locomotion tasks are interpolated
and optimized in fractions of a second.

II. RELATED WORK

Smooth interpolation on manifolds is well studied in the
case where the manifold is equipped with a geodesic (e.g.,
SO(3) [5]). For many-DOF robots under arbitrary contact
constraints, geodesics are difficult to derive. Other authors
have considered the problem of planning contact-constrained
robot motions for manipulation tasks [1, 14, 17]. Like the
current work, these methods are also fast and produce paths
that satisfy kinematic constraints within a given resolution, but
the paths are only C0 continuous and dynamic constraints are
not considered. Higher-order polynomials like cubic splines
better match the curvature of contact submanifolds, and appear
to generate paths with lower maximum error.

A common trajectory optimization approach for legged
robots is to formulate a large nonlinear optimization problem
over both joint trajectories and timing [3, 6, 8, 11, 12].
Because of their computational expense, these methods appear
best suited for generating gait cycles [3, 11, 12] or offline
primitives to be reused later [6, 8]. Full trajectory optimization
poses other challenges as well. Most nonlinear optimization
solvers are only able to find local optima, and hence must



be provided with good initial trajectories. Another problem is
maintaining loop closure constraints at contacts. Some authors
parameterize the manifold of closed-loop configurations at
each possible contact state [3, 6, 8], while others enforce loop
closure implicitly by adding nonlinear equality constraints at
collocation points along the trajectory [11]. Parameterization
is manageable for a small number of contact states (e.g., left
foot, right foot, and two foot support) but is challenging and
tedious when hands, knees, and elbows may be involved in
contact. Collocation is more versatile, but the accuracy of
closure is proportional to the number of chosen grid points.
Fine grids greatly increase computational cost and increase the
prevalence of local minima in the optimization landscape.

Two-stage trajectory generation [2, 4] first computes a path
and then optimizes the speed according to dynamic constraints
in a second stage. This approach may fail to achieve the
same quality as full trajectory optimization because there is
a risk of computing a path in stage 1 that will not yield a
fast time parameterization in stage 2, but results are usually
satisfactory in practice given their orders of magnitude speed
up. The classical method integrates the time scaling variable
along dynamic limits [2], but as identified in [9, 13], this
method was found to suffer from numerical instability issues at
dynamic singularities. Recent work formulated a more robust
convex optimization approach that casts time optimization as a
second-order cone program (SOCP) [15]. This paper presents
a simpler convex formulation that can be solved via sequential
linear program (SLP), for which fast and robust implementa-
tions are widely available. Scalability to very high-DOF robots
is improved by quickly pruning irrelevant constraints. As a
result the method solves 100D problems about as quickly as
the prior authors [15] solved a 6D one.

III. PROBLEM STATEMENT

Consider the problem of generating a trajectory y(t) :
[0, T ] → Rn connecting start and goal configurations qs and
qg and velocities q̇s and q̇g . It is required to satisfy kinematic
constraints C(q) = 0, with C : Rn → Rm a set of smooth,
nonlinear constraints, and its first and second derivatives are
required to satisfy velocity and acceleration bounds:

vL ≤ẏ(t) ≤ vU for all t ∈ [0, T ] (1)
aL ≤ÿ(t) ≤ aU for all t ∈ [0, T ] (2)

where all inequalities are taken element-wise. It is assumed
that derivatives of C are nondegenerate when C(q) = 0 and
that there exists a Lipschitz constant M such that ‖C(p) −
C(q)‖ ≤M‖p− q‖ for all p, q ∈ Rn.

The approach operates in two stages:
1) Recursive Hermite projection. Constructs a continu-

ously differentiable geometric path p(s) : [0, 1] → Rn
that connects qs and qg and satisfies C(q) = 0.

2) Convex optimization time scaling. Optimizes a time
parameterization s(t) : [0, T ] → [0, 1] of p such that
y(t) = p(s(t)) satisfies (1–2) and minimizes T .

These two operations are roughly independent, and in particu-
lar, the time-scaling method can be applied to arbitrary cubic

splines. Each will be described in more detail in the following
sections.

IV. RECURSIVE HERMITE PROJECTION

Recursive projection generates a continuously differentiable,
piecewise polynomial path that satisfies C(q) = 0 within a
user-specified tolerance ε. It begins with a interpolating cubic
Hermite curve in Rn and recursively bisects while projecting
midpoints onto C(q) = 0 (Fig. 1).

Hermite curves p(u) are cubic polynomials controlled by
endpoints x0, x1 and tangent velocities v0, v1 such that the
curve satisfies p(0) = x0, p′(0) = v0, p(1) = x1, and
p′(1) = v1. They can also be perfectly bisected into two
Hermite curves pA(u) and pB(u) connected at the midpoint
p(0.5) with tangent p′(0.5).

Given a threshold ε on constraint violation errors and a
growth limit β ∈ (0.5, 1), recursive projection proceeds as
follows:

1) Begin with a Hermite curve p(u) connecting the start
and end configurations. If no tangent directions are
prescribed, obtain tangents by projecting the straight-
line direction onto the nullspace of C(qs) and C(qg).

2) If len(p) ≤ 2ε/M , return ‘success’.
3) Otherwise, subdivide p(u) into two Hermite curves

pA and pB , meeting at the midpoint (x, v) =
(p(0.5), p′(0.5)).

4) Project x onto C(x) = 0 using a Newton-Raphson
solver. Project v onto the nullspace of C(x). Let the
resulting configuration and velocity be xm and vm
respectively.

5) Adjust pA and pB to meet at xm with derivatives vm.
6) If max(len(pA), len(pB)) ≤ β · len(p), return ‘con-

vergence failure’. Otherwise, repeat Lines 2–5 on both
halves.

See Fig. 1 for an illustration of these steps. The output is a
sequence of Hermite curves p1, . . . , pk as well as the fraction
of the range [0, 1] maintained by each subsegment ∆1, . . . ,∆k

to map the original range into the subdivided sequence.
The algorithm terminates when len(p) is small enough,

where len(p) is an upper bound on the length of the Hermite
curve (Fig. 2). To obtain this bound, it computes the length of
corresponding Bezier polygon, len(p) = ‖P0 − P1‖+ ‖P1 −
P2‖ + ‖P2 − P3‖. The growth condition in Line 5 ensures
termination in finite time, and that the projected path’s length
is no more than a finite multiple of the length of the original
curve p0 constructed in Line 1. Notice that at recursion depth
d the condition len(p) ≤ βdlen(p0) must hold, so given the
tolerance in Line 2, the terminal depth is no more than

dmax(ε, β) =
log(2ε/M · len(p0))

log(β)
+ 1 (3)

Hence the subdivided path may be no more than γ(ε, β) =
(2β)dmax(ε,β) times as long as p0. All experiments use the
value β = 0.9.

To interpolate multiple points, standard techniques can be
used to generate a sequence of Hermite curves with smooth
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Fig. 2. (a) Illustrating the recursion termination criterion, proving that the
path p lies within distance ε/M of the submanifold in configuration space,
where M is a Lipschitz constant. (b) The Bezier polygon corresponding to p.
(c) p is guaranteed to lie within the union of spheres centered at the endpoints,
with radius equal to half the length of the Bezier polygon. The spheres fail
to satisfy the ε/M condition, so recursion continues. (d) After subdivision,
both subsegments satisfy the condition and recursion stops.

tangent vectors at each point, e.g., Cardinal splines. Tangents
are projected to the manifold before recursive projection
begins on each curve. The method can also be adapted to check
collision and other infeasibility constraints during bisection,
e.g., for use in motion planning. To do so, collisions are
checked at each midpoint xm in Line 4 and along all leaf
curve segments at the end.

A. Properties of the Interpolator

If the algorithm is successful, the resulting spline:
• Is C1 continuous.
• At all curve endpoints, derivatives are tangent to the

constraint manifold.
• Has arc-length no greater than γ(ε, β) · len(p0) where p0

is the initial curve.
• Satisfies ‖C(p(u))‖ ≤ ε for all u ∈ [0, 1].

I now prove the latter claim.
Theorem 1: The output path p(u) satisfies C(p(u)) ≤ ε for

all u ∈ [0, 1].
Proof: The path is composed of small segments

p1, . . . , pk such that len(pi) ≤ 2ε/M for all i and C(pi(0)) =
C(pi(1)) = 0. I shall prove that for any Hermite curve p,
max0≤u≤1 ‖C(p(u))‖ ≤ M · len(p)/2, which implies the
theorem due to the termination condition in Step 2.

By the Lipschitz condition,

‖C(p(u))‖ = ‖C(p(u))− C(x0)‖ ≤
M min ‖p(u)− x0‖, ‖p(u)− x1‖ (4)

and hence the problem is one of bounding the distance between
points on p and the endpoints.

Hermite curves are equivalent to cubic Bezier curves with
control points P0 = x0, P1 = x0 + 1

3v0, P2 = x1 − 1
3v1, and

P3 = x1 (Fig. 2), and by the convex hull property, p(u) is
contained entirely within the convex hull of P0, . . . , P3. The

Fig. 3. Recursive projection can fail when recursion fails to make progress
along a manifold. This condition is detected in Line 5.
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Fig. 4. Interpolating on an implicit torus embedded in R3. Recursive
projection successfully connects the source point (X) to almost all other points
on the torus, except for the indicated failure points (circles). Views from the
side and above.

edges of this convex hull are some subset of P0P1, P0P2,
P0P3, P1P2, P1P3, and P2P3. The next step in the proof
ensures that all of these edges are within the union of the
balls B0 and B3 of radius len(p)/2 centered at each of p’s
endpoints.

Obviously, P0P3 is contained within B0 ∪ B3 because
len(p) ≥ ‖P3 − P0‖. Next, since a triangle with vertices A,
B, C is completely contained within balls centered at A, B
with radius 1

2 (‖A−B‖+ ‖B − C‖), the edges P0P1, P1P3,
P0P2, and P2P3 are contained witihn B0∪B3. Finally, P1P2 is
contained within B0 ∪B3 because the midpoint of P1P2 can
be reached by walking along the Bezier polygon a distance
len(p)/2 from either endpoint.

Since the hull is contained within a distance of len(p)/2 of
either endpoint of p, the entirety of p(u) is contained within
as well, and therefore ‖C(p(u))‖ ≤M · len(p)/2 as desired.

The interpolator is not complete; it may fail if 1) a midpoint
becomes stuck in a local minima of ‖C(q)‖ during projection,
and 2) the recursion fails to make progress along the manifold
(Fig. 3). I evaluated how often the algorithm fails to connect
two points on a torus, with target points taken on a regular
grid. Over 99% of the torus is successfully reached, and Fig. 4
shows that failures occur only in a few narrow bands.

B. Interpolating on Submanifolds of Riemannian Manifolds

The interpolation algorithm can be extended to handle sub-
manifolds of any geodesically complete Riemannian manifold



rather than Rn. These are needed to handle the base rotations
of mobile manipulators (SE(2)) and free-floating bases of
legged robots (SE(3)), for which straight lines do not properly
interpolate along geodesics.

Let an arbitrary Riemannian manifoldM be equipped with
a distance metric d(a, b) which provides the arc-length of
the length minimizing path connecting points a and b, and
a geodesic function g(t; a, b) which interpolates between a
and b along such a length-minimizing path, with t ∈ [0, 1].
The exponential map expq is defined such that g(t; a, b) =
expa(tġ(t; a, b)). The partial derivatives of g w.r.t. t, a, and
b must also be supplied. Closed form expressions exist for
SO(2) and SO(3) [10].

Hermite interpolation on M is performed using the classic
de Casteljau construction of a Bezier curve [5]. Given end
points x0, x1 ∈ M and tangents v0 ∈ Tx0M, v1 ∈ Tx1M,
an interpolating curve is constructed first by calculating the
Bezier control points:

P0 = x0 P1 = expx0

(
1
3v0

)
P2 = expx1

(
− 1

3v1

)
P3 = x1

(5)

where P1 and P2 are extrapolated from the endpoints along
the terminal tangent vectors. Then, the path p(u) is evaluated
via the de Casteljau recurrences:

p(u) = g(u;P012(u), P123(u))

P012(u) = g(u;P01(u), P12(u))

P123(u) = g(u;P12(u), P23(u))

P01(u) = g(u;P0, P1)

P12(u) = g(u;P1, P2)

P23(u) = g(u;P2, P3)

(6)

With this expression, the recursive bisection algorithm pro-
ceeds as usual except distances are replaced by d(·, ·) and
p′(0.5) in Line 3 is computed via repeated application of the
chain rule:

p′(u) =

(
ġ +

∂g

∂a
P ′012(u) +

∂g

∂b
P ′123(u)

)∣∣∣∣
u,P012(u),P123(u)

P ′012(u) =

(
ġ +

∂g

∂a
P ′01(u) +

∂g

∂b
P ′12(u)

)∣∣∣∣
u,P01(u),P12(u)

P ′01(u) = ġ(u;P0, P1)
(7)

with similar formulas holding for P ′123, P ′12, and P ′23.

V. CONVEX OPTIMIZATION TIME SCALING

The time-scaling solves for a time parameterization s(t) of
the path p that minimizes execution time T . The algorithm use
a piecewise quadratic formulation of s(t), and demonstrate
that with the proper parameterization this gives rise to a
convex program with linear inequalities. Dynamic feasibility is
guaranteed over the entire time-scaled trajectory, rather than
just at a finite set of points, due to the use of conservative
interval bounding on the path’s derivatives.
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Fig. 5. A piecewise quadratic time-scaling s(t) is parameterized by the rates
ṡ0, . . . , ṡN .

The time scaling formulation rewrites ẏ and ÿ in terms of
p and s as follows:

ẏ(t) = p′(s(t))s′(t) (8)

ÿ(t) = p′′(s(t))s′(t)2 + p′(s(t))s′′(t). (9)

With p fixed, the problem of finding a dynamically-feasible
path is reduced to one of finding a monotonically increasing
mapping s(t) such that ẏ and ÿ given by (9) satisfy the con-
ditions (1,2). The problem requires that ṡ(t) to be continuous
so that y is twice differentiable, and also that the trajectory
start and stop at zero velocity: ṡ(0) = ṡ(T ) = 0.

A. Parameterizing the time scaling by gridding the path do-
main

Grid the path domain [0, 1] into N intervals [sk, sk+1],
k = 0, . . . , N − 1 and let s(t) be piecewise quadratic on each
interval. Let ∆sk be the duration of the k’th interval. This
parameterization formulates s as a piecewise quadratic, twice
differentiable curve parameterized by N + 1 rate parameters
ṡ0, . . . , ṡN at segment division points (Fig. 5).

Consider an interval k and its (unknown) time interval
[tk, tk+1]. Over this interval, s(t) is fully determined by end-
point velocities s′(tk) = ṡk and s′(tk+1) = ṡk+1. Verify that
the following equation satisfies the desired terminal constraints
on the interval [tk, tk+1] with ∆tk = tk+1 − tk = 2∆sk

ṡk+ṡk+1
.

s(t) =
ṡ2
k+1 − ṡ2

k

4∆sk
(t− tk)2 + ṡk(t− tk) + sk (10)

So, s′ is a linear interpolation between sk and sk+1 and
s′′(t) = (ṡ2

k+1 − ṡ2
k)/(2∆sk) is a constant independent of

u. Parameterizing in terms of u(t) = (s′(t)− ṡk)/(ṡk+1− ṡk)
to map [tk, tk+1] to the range [0, 1], (9) becomes:

ẏ(t(u)) =p′(s(u))((1− u)ṡk + uṡk+1) (11)

ÿ(t(u)) =p′′(s(u))((1− u)ṡk + uṡk+1)2

+ p′(s(u))
ṡ2
k+1 − ṡ2

k

2∆sk
(12)

These conditions must be satisfied for each interval k =
1, . . . , N and u ∈ [0, 1].



B. Derivative bounding

The next step converts the continuous constraints (1,2)
into finite ones. An interval arithmetic bounding technique is
used to provide a conservative but asymptotically tight bound,
in that as the grid grows finer (N → ∞) the discretized
constraints approach the true constraints on s in the limit.

For all u ∈ [0, 1], the interval k must satisfy:

vL ≤p′(s(u))((1− u)ṡk + uṡk+1) ≤ vU (13)

aL ≤p′′(s(u))((1− u)ṡk + uṡk+1)2

+ p′(s(u))
ṡ2
k+1 − ṡ2

k

2∆sk
≤ aU (14)

Over the domain [sk, sk + ∆sk], the derivatives of p are
bounded via intervals p′(s(u)) ∈ [vLk , v

U
k ] and p′′(u) ∈

[aLk , a
U
k ]. Here the notation [a, b] with vectors a and b indicates

an axis-aligned box in Rn. Since each Hermite curve is a third-
degree polynomial along each axis, velocity extrema are found
either at the endpoints or at critical points where acceleration
crosses zero. Acceleration extrema occur only the endpoints.

To bound the inner term in (13), observe that ṡ(u) is a linear
interpolation with extrema ṡk at u = 0 and ṡk+1 at u = 1.
Hence, (13) is proven feasible if the constraints

vL ≤ vLk ṡk vL ≤ vLk ṡk+1

vUk ṡk ≤ vU vUk ṡk+1 ≤ vU
(15)

are satisfied. (The constraints become one-sided due to the
requirement that s′ > 0.)

Eq. (14) expands to a quadratic constraint on ṡk and ṡk+1.
Note that because the time scaling has positive derivative, the
extrema of the term ((1− u)ṡk + uṡk+1)2 are obtained at the
endpoints ṡ2

k and ṡ2
k+1. Hence, (14) is proven feasible if the

conditions:

ṡ2
k[aLk , a

U
k ] +

1

2∆sk
[vLk , v

U
k ](ṡ2

k+1 − ṡ2
k) ∈ [aL, aU ] (16)

ṡ2
k+1[aLk , a

U
k ] +

1

2∆sk
[vLk , v

U
k ](ṡ2

k+1 − ṡ2
k) ∈ [aL, aU ] (17)

are satisfied.

C. Linear Constraints in the Squared-rate Space

A transformation of the parameter space turns these
quadratic constraints into linear inequalities. The squared-rate
parameter space θ0 = ṡ2

0, θ1 = ṡ2
1, . . ., θN = ṡ2

N allows
(16,17) to be rewritten:

θk[aLk , a
U
k ] +

1

2∆sk
[vLk , v

U
k ](θk+1 − θk) ∈ [aL, aU ] (18)

θk+1[aLk , a
U
k ] +

1

2∆sk
[vLk , v

U
k ](θk+1 − θk) ∈ [aL, aU ]. (19)

Similarly, (15) is rewritten in terms of θk and θk+1:

θk, θk+1 ∈

[
0,max

(
vL
vLk
,
vU
vUk

)2
]

(20)

with the divisions, maxima, and square taken element-wise.

θk 

θk+1 ∂ T
∂ θ

Fig. 6. Illustrating sequential linear programming on a hypothetical 2D slice.
The feasible set is shaded, and contours of T are drawn. First, a negated
gradient direction is computed (solid arrow), and an LP is solved to obtain
the next step (dashed arrow). This continues until the LP move does not
decrease T . The LP trust region (shaded square) is shrunk until a decreasing
move is found. The process continues until convergence.

D. Solving the Convex Optimization Problem via SLP

Let the feasible region F ∈ RN+1 be the set of θ subject
to (18–20) for k = 0, . . . , N−1, θ ≥ 0, and θ0 = θN = 0. The
final optimization problem minimizes time subject to dynamic
feasibility:

min
θ
T (θ) =

N∑
k=1

∆tk =

N∑
k=1

2∆sk√
θk+1 +

√
θk

s.t. θ ∈ F.
(21)

I now state the main result:
Theorem 2: The optimization problem (21) is convex.

Proof: Each interval statement in (18–20) can be written
as up to 4n linear inequalities, and hence F is a convex
polytope. Convexity of T follows because the inverse function
is convex and non-increasing, and the square root function is
concave.
Over the unbounded positive space θ ≥ 0, T approaches a
single global minimum value (namely, zero with θ → ∞).
With bounded F , the following lemma holds:

Lemma 1: The global, unique minimum of (21) in F lies
on the boundary of F .
This follows because F is convex and bounded while the
unconstrained optimum is unbounded.

The problem is linearly constrained, making it suitable for
sequential linear programming (SLP) solvers. SLP starts at an
initial point and linearizes the objective function about the
point to obtain a descent direction, which is optimized by
solving an LP. This process repeats, linearizing the objective
about the new point (Fig. 6). A trust-region method is used to
ensure that the process converges to optimal solutions that are
not at a vertex of F . The implementation operates as follows:
Time Scaling SLP

1) Initialize a rough solution θ by greedily picking each
subsequent θk+1 according to the maximum value that
satisfies all constraints involving itself and θk
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Fig. 7. Of over 500 inequality constraints relating adjacent parameters θk
and θk+1, all but 5 are irrelevant to the feasible set. A halfplane intersection
procedure calculates the feasible polygon (shaded) by iterated cutting.

2) Initialize the trust region size r = ‖θ‖∞.
3) Linearize the objective function about the current solu-

tion θ and solve an LP:

min
x

∂T

∂θ
(θ)Tx s.t.

x ∈ F and ‖x− θ‖∞ ≤ r.
(22)

4) If the LP is infeasible, return ‘failure’.
5) If T (x) > T (θ), set r ← r/2 and repeat from step 3.

Otherwise set r ← 1.5r.
6) If |T (x) − T (θ)| < εT or ‖x − θ‖∞ < εθ return

‘converged’.
7) Set θ ← x and repeat from step 3.

The algorithm terminates when the change in T or the change
in θ decrease below user-specified convergence thresholds εT
or εθ, respectively (Line 6). Also, given a fixed time budget,
it may be terminated with θ containing a feasible solution any
time after the first iteration.

Thanks to widely available and reliable LP implementations
(e.g., CPLEX, GLPK), SLP is robust and fast. Moreover, it
typically takes only a few iterations to converge. Lemma 1
helps explain why this is so: the optimum is often at a vertex
of F , so the LP solution often reaches a maximum without
ever needing to adapt the trust region size.

E. Culling Irrelevant Constraints

Especially for high-DOF problems, most of the 12nN
constraints (18–20) will be redundant. These correspond to the
dynamic constraints that are non-limiting, e.g., joints that are
moving slowly relative to others. LPs are solved more quickly
if these are removed, so for each grid interval k we compute
the feasible polygon Fk in the (θk, θk+1) plane, and prune out
all constraints not supporting an edge of Fk.

To do so, a halfplane intersection routine is invoked. For
each k, the halfplane equations of (18–20) that involve only
θk and θk+1 are calculated. The convex polygon Fk is then
incrementally built, starting from the box (20), and planes are
added one-by-one to cut away portions of the polygon (Fig. 7).
At the end of this process the supporting halfplanes are the
boundaries of Fk and are output to the LP.

VI. EXPERIMENTS

All examples in this paper are performed on a 2.67 GHz
CPU on a single thread. The method is implemented in C++
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Fig. 8. Comparing the error of recursive Hermite projection against two
piecewise linear interpolation techniques as ε is varied. Points are projected
numerically with tolerance 10−8. Hermite projection still outperforms linear
methods by up to several orders of magnitude when normalizing for additional
overhead (bottom). Values are plotted on a log scale.

using the GLPK library to solve linear programs.

A. Interpolation on Manifolds

Given the same resolution ε, the path produced by Hermite
projection has lower maximum error than either the linear de-
scent technique of [14] or piecewise linear projection (Fig. 8).
For a fair comparison, however, it should be noted that the
linear techniques are approximately 50% faster at a given ε;
they terminate sooner because line segments are shorter than
corresponding Bezier polygons, and they avoid overhead in
handling tangent vectors. To normalize for overhead, the linear
descent data was modeled as a linear fit of time vs. log error.
Fig. 8 compares the error ratio of the linear fit vs Hermite
projection for an equivalent computation time, demonstrating
that the benefits of Hermite projection outweigh the added
overhead.

B. Time Scaling

Fig. 9 shows the solution for a unit circle path with axis-
wise velocity and acceleration bounds. The optimal time
scaling is acceleration-limited, with the slope of either ẋ or
ẏ limited throughout. The solution at a given resolution is
suboptimal, but approaches the optimum as the resolution
grows finer. These experiments also suggest that running time
grows approximately quadratically in N .

Irrelevant constraint pruning provides major speed advan-
tages for high-DOF robots, since the number of relevant
constraints is only weakly dependent on n (Fig. 10). For the
63 DOF humanoid described below, computation times are
reduced by two orders of magnitude.
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Fig. 11 compares SLP time-scaling to the recent open source
implementation by Kunz and Stilman [9] of the classical exact
time-scaling algorithm [2] (code accessed May 2012). B-spline
path derivative calculations were integrated into the code, and
the method was run on the B-spline paths produced in Fig. 10.
It worked successfully for a majority of the examples but failed
with numerical error in 5 of 13 runs. Failures did not follow
any clear pattern. In contrast, with N = 1024 grid points,
SLP produces trajectories of about 4% slower duration, but
runs faster, more scalably, and more reliably.

C. Examples on a Humanoid Robot

Finally, the method is tested on a simulated model of
the KAIST Hubo-II+ humanoid robot. The physical robot is
130 cm tall and weighs 42 kg with 37 actuated degrees of
freedom. The configuration space model includes individually
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Fig. 11. Computation times of the new time-scaling method compared
to Kunz and Stilman [9] on the example of Fig. 10. Striped bars indicate
failure.

Fig. 12. Left: Frames from a simulation of a dynamically-optimized trajectory
for the Hubo to crouch while holding an object with both hands. Right: a non-
optimized trajectory abruptly stops at the end of simulation, causing the legs
and arms to overshoot the target and cause a collision.

actuated finger joints and the 6DOF base translation and
rotation, leading to a 63-D configuration space SE(3)×R57.

The first example shows a motion with the hands maintained
at a constant relative translation and orientation, as though
holding an object with a two-handed grasp. Both feet are
constrained to lie on the floor with ε = 2 mm. The start and
end configurations are constructed to be kinematically feasible,
i.e., quasi-statically balanced and collision free. Fig. 12 shows
an execution of the motion as simulated in a rigid body
physics simulator. This is a fairly realistic test of how the
method would perform on a physical robot, because realistic
motor PID controllers and frictional ground contact forces are
simulated. The motion produced by the method is performed
as desired, without incident. In contrast, direct execution of
the path without dynamic optimization causes large jerks at the
start and end of motion, causing the robot to both overshoot
the endpoint and wobble.

Table I displays timing results for this and two more
examples. The second example is a hand-supported stair
climb that grasps the rail and takes a single step to the first
step. The robot traverses five manifolds: LF+RF (left foot +
right foot support), LH (left hand support)+LF+RF , LH+LF,
LH+LF+RF, and LH+RF. A sequence of 10 kinematically-
feasible configurations are provided to the algorithm. The
third example is a backwards ladder climb that moves 6
steps up a ladder. Steps alternate between 3-limb and 4-limb
contact, so the robot moves between 13 contact submanifolds
total. (The robot uses the 4-limb contact stages to shift its
center of mass.) A sequence of 33 kinematically-feasible
configurations are provided as input. To interpolate multi-step
paths, configurations at each contact stage are interpolated



TABLE I
EXAMPLES ON A HUMANOID ROBOT

Example Crouch Stair Ladder

Configs 2 10 33
Manifolds 1 5 13
Contact tol. ε 2 mm 2 mm 2 mm
Grid size N 128 350 1500
Interp. time (s) 0.15 0.24 2.61
SLP time (s) 0.23 0.79 1.50
Opt. duration (s) 1.76 10.8 35.2
Tri. vel. dur. (s) 2.40 24.2 96.0

and then the resulting paths are concatenated together. Short
trajectories can be generated in a fraction of a second, whereas
the longest ladder climbing trajectory takes approximately 4 s.

In all cases, it is worth the added expense in absolute terms
to compute the optimal time scaling rather than to rely on
simpler heuristics. The last row in Table I (Tri. vel. dur.)
compares one such heuristic: a triangular velocity profile that
speeds up and then slows down to a stop at each contact stage.
The apex of the triangle governs the speed of the trajectory
and is scaled to the dynamic limits of the robot. The method is
only slightly faster to compute than time-scaling, yet produces
substantially slower paths. For the ladder climbing example,
time scaling saves 59 s of computation + execution time.

VII. CONCLUSION

This paper presented a method for generating smooth in-
terpolating trajectories on contact submanifolds represented
by implicit nonlinear equality constraints. Contact constraints
are satisfied up to an arbitrary tolerance, the robot’s velocity
and acceleration bounds are strictly satisfied, and computa-
tion times scale well to very high-DOF systems. Example
videos and an implementation are provided in the Manifold
Interpolation and Time Optimal Smoothing (MInTOS) website
http://www.iu.edu/∼motion/mintos/. Future work should study
methods for generating interpolation points that yield feasi-
ble paths, path optimization, and extending the time scaling
approach to consider torque and frictional constraints.
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