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Abstract—Gestures support and enrich speech across various
forms of communication. Effective use of gestures by speakers
improves not only the listeners’ comprehension of the spoken
material but also their perceptions of the speaker. How might
robots use gestures to improve human-robot interaction? What
gestures are most effective in achieving such improvements?
This paper seeks answers to these questions by presenting
a model of human gestures and a system-level evaluation of
how robots might selectively use different types of gestures to
improve interaction outcomes, such as user task performance
and perceptions of the robot, in a narrative performance scenario.
The results show that robot deictic gestures consistently predict
users’ information recall, that all types of gestures affect user
perceptions of the robot’s performance as a narrator, and that
males and females show significant differences in their responses
to robot gestures. These results have strong implications for
designing effective robot gestures that improve human-robot
interaction.

I. INTRODUCTION

People use gestures in different forms of communication,
from narration [20] to conversations [20], across a wide range
of social settings that include instruction [1, 19, 29] and spon-
taneous and rehearsed speech [16]. In these contexts, gestures
communicate semantic information [14], visualize imagery [20],
draw the attention of the recipients [12], regulate discourse
[3], and enhance communication by disambiguating references
and supplementing speech with additional information [14].
In return, gestures help recipients comprehend the presented
information [10, 14] and form opinions about the speaker [16],
thus serving as a key communicative mechanism for both
speakers and recipients [14, 20].

How might robots use these communicative mechanisms
to improve human-robot interaction? What gestures are most
effective in achieving improvements in outcomes like user
task performance and perceptions of the robot? Research in
human-robot interaction has explored how robots might use
gestures to give directions [25], to coordinate joint activities
[30], and to persuade their users [7]. While these studies
demonstrate the potential robot gestures hold in shaping human-
robot interaction, research to date has not explored how robots
might selectively use different types of gestures to target
improvements in specific interaction outcomes such as user
task performance, perceptions of the robot’s effectiveness, and
perceptions of the social and affective characteristics of the
interaction. Such an exploration will not only provide robot
designers with a better understanding of how to maximize
certain outcomes, such as targeting improved student learning

Fig. 1: Gestures of human narrators (left) were modeled, implemented into a
humanlike robot, and evaluated in a human-robot interaction scenario (right).

in the design of an instructional robot, but it will also inform
researchers on how robots might go beyond human capabilities
in effective communication. However, this exploration bears
methodological challenges. It needs to consider interconnec-
tions between different types of gestures and between gestures
and other channels of communication such as speech and gaze
[34], thus requiring a system-level study instead of following
conventional experimental paradigms, such as manipulating
gestures in isolation and measuring their effects in interaction.

To answer the research questions posited above and address
these methodological challenges, this paper presents a model
of how people coordinate their gestures with their speech and
gaze behaviors and a system-level evaluation [26] of a robot’s
use of this model to display different types of gestures toward
improving participants’ recall and retelling of information and
perceptions of the robot’s effectiveness and the social and
affective characteristics of the interaction (Figure 1). More
specifically, this work makes two key contributions: (1) a model
of how four key types of gestures—deictic, iconic, metaphoric,
and beat gestures—temporally and semantically align with gaze
and speech in humans and (2) a system-level evaluation that
uncovers the predictive relationships between different types
of gestures and specific outcomes in human-robot interaction.

The remainder of the paper is organized as follows. Section
II reviews prior research on human and robot gestures and
introduces the system-level evaluation research paradigm.
Section III outlines our process for modeling human gestures
and implementing the model to a humanlike robot. Section IV
presents the methodology for and results from the system-
level evaluation. Sections V and VI discuss the findings,
design implications, and limitations of this work and provide
a summary of its contributions.



II. BACKGROUND

A. Gestures in Human Communication
Conversations across different tasks, cultures, and age groups

involve people gesturing by moving their hands and arms [9].
For speakers, these gestures convey information in support
of their speech, enabling them to reinforce or supplement
spoken content [14, 20]. For recipients, the accompanying
information facilitates the comprehension of the spoken content
[10, 14]. These benefits are observed across a broad range
of communicative settings including narrative [20], conver-
sational [14, 20], and instructional [19] communication and
across cultures [11, 15, 20]. The ability to interpret gestures
also has developmental significance [10], making gestures
particularly important for teaching and learning [29]. For
example, education research has shown that gestures help
young children recall information [36] and learn new algebraic
concepts [1]. Moreover, gestures contribute to the shaping of
students’ perceptions of the teacher and keep them motivated
and engaged in the classroom [27].

While people use gestures in a wide range of communicative
settings and with different communicative goals [8], researchers
have identified particular patterns in which people display
gestures and have proposed classifications for these patterns
[17, 20]. The majority of these classifications agree that human
gesture is composed of four typical types of movements. Fol-
lowing the terminology used by McNeill [20], these movements
include (1) deictics, (2) beats, (3) iconics, and (4) metaphorics.
Deictics point toward concrete objects or abstract space in the
environment to call attention to references. Beats include short,
quick, and frequent up-and-down or back-and-forth movements
of the hands and the arms that co-occur with and indicate
significant points in speech, such as the introduction of a
new topic and discontinuous parts in discourse. Iconics depict
concrete objects or events in discourse, such as drawing a
horizontal circle with the arms while uttering “a big basket.”
Finally, metaphorics visualize abstract concepts or objects
through concrete metaphors, such as using one hand to motion
forward to indicate future events and motion behind one’s
self to refer to past events. Also referred to as representative
gestures, deictic, iconic, and metaphoric gestures are closely
related to the semantics of speech. Figure 2 illustrates a human
narrator and a robot performing these four types of gestures.

B. Gestures in Human-Robot Interaction
Research in human-robot interaction has also recognized the

importance of gestures as a key mechanism for human-robot
communication, particularly exploring how robots might (1)
recognize human gestures to help understand human intent
and language, (2) display humanlike gestures to support their
speech, and (3) use gestures in specific patterns to improve
human-robot interaction. While recognition of human gestures
has long been a research topic in robotics and computer vision,
recent research has explored how gesture recognition might
facilitate human-robot interaction [6, 24, 35].

Research on realizing gestures for robots has been focused
primarily on a subset of the four typical types of gestures, such

as how robots might use deictic gestures to give directions
to their users [25] or to learn a task from their users [35].
This line of research also includes novel approaches to and
control architectures for generating gestures [4, 23, 30]. For
instance, Salem et al. [30] developed a control architecture for
deictic and iconic gestures for a humanoid robot performing
in a human-robot joint task. Similarly, Bremner et al. [4]
introduced a gesture production approach based on actuator
end-point and trajectory to generate open-hand gestures. Finally,
Ng-Thow-Hing et al. [23] proposed a probabilistic model for
synchronizing gestures and speech and conducted a video-
based evaluation to explore how manipulating model parameters
might produce gestures with different levels of expressivity.

Another body of work in human-robot interaction involves in-
vestigating how robot gestures affect people’s perceptions of the
robot and their experiences. This thread of research has shown
that gestures positively shape participants’ affective states [22],
behavioral responses to the gestures [28], engagement in the
interaction [5], and perceptions of the robot when gestures and
speech are mismatched [30]. Such research involved laboratory
studies in which participants performed a task with a physical
robot [5, 30] or video-based studies in which participants
observed robots performing gestures [22, 23, 28].

These different lines of research advance knowledge in
how robots might use gestures toward improving human-robot
interaction and highlight promise that gestures hold for shaping
user experience and improving people’s perceptions of robots.
However, for robots to realize the full potential of using
gestures, a better understanding of how they might selectively
use different types of gestures to target improvements in specific
outcomes in human-robot interaction is needed.

C. System-Level Evaluation

To understand the relationship between robots’ use of differ-
ent types of gestures and interaction outcomes in human-robot
interaction, we followed the system-level evaluation paradigm
[26]. This approach is based on multivariate regression analysis,
in which predictor variables are randomly varied and the
response variable is measured with the goal of understanding
how different predictor variables are related to each other and
how they contribute to the response variable. This approach
was first introduced to evaluate dialogue systems [37] and has
recently been used to study the effectiveness of an interactive
robot system in an object learning scenario [26].

III. GESTURE MODELING AND DESIGN

To answer our research questions, we modeled the four types
of human gestures, implemented these gestures on a humanlike
robot, and evaluated how robot gestures might affect specific
measures in human-robot interaction. This section outlines the
modeling and implementation steps in this process.

A. Modeling Human Gestures

To study how people use gestures, we developed a narration
scenario in which a narrator described “the process of making
paper” with the aid of a projected figure that depicted the
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Fig. 2: Examples of the four common types of gestures—deictic, beat, iconic, and metaphoric gestures—observed in human storytellers (top) and implemented
into the robot (bottom). The narrator uses deictic gestures to point toward an object of reference, beat gestures before introducing a new concept, iconic
gestures to depict a concrete object such as “a flat wooden surface,” and metaphoric gestures to visualize abstract concepts such as “about six hours.”

process to a recipient, as shown in Figure 1. We chose narration
as the setting for the study because narration naturally elicits
the use of a rich set of gestures [20] and fully engages the
observer with the narrator’s behaviors. Narration also serves
as an appropriate scenario for human-robot interaction, as
robots are envisioned to provide their users with information
following the norms and structure of this setting. Finally,
narration provides us with a rich set of metrics to measure
outcomes such as story recall and perceptions of the narrator.

To model how human narrators employ gestures, we recruited
four dyads of participants, aged 21.6 years on average (SD =
1.77), and matched them to represent all gender combinations
(i.e., MM, MF, FM, and FF). For each dyad, one participant
acted as the narrator, while the second acted as the recipient.
The narrator was given text, pictures, and videos on the topic
of the process of making paper and asked to review them for
approximately 25 minutes. After the preparation phase, the
narrator presented the process to the recipient. The average
time for narrations across trials was 4.49 minutes (SD = 1.13).
The trials were videotaped for behavioral coding and analysis.
A primary rater coded all of the data, and a secondary rater
coded 10% of the data to assess inter-rater reliability. The
reliability analysis showed perfect agreement for gesture type
(Cohen’s κ = .845) and gaze target (Cohen’s κ = .916) based
on guidelines suggested by Landis and Koch [18].

B. Developing a Gesture Model for Robots

Gesture and speech are co-expressive channels in human
communication [14, 20]. In this work, we modeled two
particular aspects of gesture with respect to speech: gesture
points, the points in speech where the speaker displays gestures,
and gesture timing, the times when a gesture begins and ends.
We also modeled gesture-contingent gaze cues, gaze cues
displayed during gesturing, based on research that has identified
interdependencies between gestures, speech, and gaze [32, 33].

1) Gesture Points: Utterances involve lexical affiliates—
words and phrases that co-express meaning with representative
gestures, including deictic, iconic, and metaphoric gestures
[31]—that inform us on when a robot might need to gesture
and what type of gesture it might perform. To capture this
relationship, we identified lexical affiliates associated with

representational gestures and used affinity diagramming to
group them into categories of gesture points for each type of
gesture (Figure 3). These categorizations showed that deictic
gestures were frequently used to describe references, including
visual representations of steps and objects involved in the
process of making paper that appeared on the projected figure,
and in conjunction with pronouns. Iconic gestures were mostly
observed during descriptions of actions and concrete objects,
while metaphoric gestures were generally observed when the
speaker described abstract concepts involving actions, relative
quantities, or time. Because beat gestures connect an utterance
not at the semantic level but rather at the structural level
[20], we did not empirically identify lexical affiliates for beat
gestures. Instead, discontinuities in speech, such as introducing
a new concept, served as gesture points for these gestures [20].

2) Gesture Timing: Gestures and utterances are closely
related in the temporal domain [20]. The timing of a gesture
might affect how people perceive and interpret it. While
research has suggested that the stroke of a gesture ends before
the end of its lexical affiliate [20], when a complete gestural
phrase should begin and end relative to its lexical affiliate has
not been specified. In this work, we empirically obtained these
temporal parameters for representative gestures, as summarized
in Figure 4, which confirmed that gesture initiation typically
precedes the onset of lexical affiliates [20, 31].

3) Gesture-Contingent Gaze Cues: The distribution of gaze
cues during each type of gesture was modeled in order to
coordinate the production of gaze, gesture, and speech. We

Deictics

Iconics

Metaphorics

Concrete references

Pronouns
Abstract references

54 items

30 items
18 items
10 items

55.6 %
33.3 %
18.5 %

“the stamper”
“the cooking process”
“this person here”

Gesture Categories # % Example

105 items

Action verbs
Nouns
Descriptors

45 items
44 items
8 items

42.9 %
41.9 %
7.6 %

“peel it o�”
“a big basket”
“the thickness”

51 items

Actions
Relative quantities
Time

12 items
8 items
7 items

23.5 %
15.7 %
13.7 %

“the order that we went in”
“more weight”
“the next day”

Fig. 3: Top lexical affiliate categories for each type of representative gesture.
Percentages represent the amount by which categories of lexical affiliates
co-occur with each gesture type. For example, 42.9% of the lexical affiliates
for iconic gestures are “action verbs.” Note that categories might overlap.



Lexical a�liate

1026 ms 366 msDeictic Gesture

645 ms 555 msIconic Gesture

238 ms 736 msMetaphoric Gesture

Fig. 4: A schematic of temporal alignment between gestures and lexical
affiliates (not to scale). For instance, iconic gestures began on average 645
ms before and ended 555 ms after their corresponding lexical affiliates.

categorized gesture-contingent gaze cues into four gaze targets—
recipient, narrator’s own gesture, reference, and all other places.
An additional category for traveling, the time spent transitioning
between the four categories, was also created (Figure 5).

People tend to look toward shared references during con-
versation [2]. Our data showed a similar trend, as narrators
looked toward references most of the time while gesturing.
This behavior was observed during deictic, beat, and iconic
gestures and was particularly notable for deictic gestures, during
which speakers looked toward the reference approximately
83% of the time. During metaphoric gestures, narrators looked
toward references and recipients at equal rates. Interestingly,
approximately 10% of narrator gaze during iconic gestures was
directed toward the gestures, which narrators might display
to direct the recipient’s attention to the gesture and to signal
that the current gesture is relevant to the ongoing utterance
[34]. Narrators did not display this behavior during metaphoric
gestures, potentially because the abstract lexical affiliates with
which they are associated might require speakers to look toward
the recipient to affirm mutual understanding of their speech.

C. Implementation

The robot’s gestures were designed based on our observations
of the human narrators’ gestures in the modeling study. While
different narrators varied slightly in how they performed
gestures at a given gesture point, they displayed semantically
common elements. For example, when describing “beating
(paper) with a stick,” participants displayed one-handed or
two-handed up and down movements at different speeds
and with different degrees of tilt. For each unique gesture
point, we created one robot gesture that captured the common
elements that we observed from the human narrators displayed
at that gesture point. Robot gestures were created through
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Fig. 5: Distributions of targets for gesture-contingent gaze for each type of
gesture. The human data showed four main gaze targets: the recipient, the
narrator’s own gesture, the reference, and other, non-task-relevant targets.
Traveling represents transitions between these targets. Narrators gazed most
toward references while displaying deictic gestures but split their gaze evenly
between the recipient and references while displaying other types of gestures.

Time (ms)

Speech

Lexical A�liate
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Robot’s
Behaviors

“�e beating is done on a wooden or stone surface with a beating stick.”
Gesture (iconic)

Gaze (toward the recipient)

0 1726 2371 4386 4597

Fig. 6: An example utterance from the robot’s narration, including the lexical
affiliate “a wooden or stone surface,” its corresponding iconic gesture, and the
gesture-contingent gaze behavior of looking toward the recipient.

puppeteering, which involved manually moving the robot’s
arms while recording key frames of the gestural trajectories.

For implementation and evaluation, we used the narrative
script that the participants used for preparation in the modeling
study. We manually marked all possible gesture points in
the script based on the lexical affiliate categories shown in
Figure 3, identifying 30, 30, and 25 points for deictic, iconic,
and metaphoric gestures, respectively. Twenty-four points for
beat gestures were marked based on heuristic principles [20].
Gestures created for the robot were manually assigned to these
gesture points. The gesture-contingent gaze cues were produced
by mirroring the distributions shown in Figure 5.

We implemented the gesture model and its contingent gaze
cues on a Wakamaru humanlike robot shown in Figure 1 using
the Robot Behavior Toolkit, a Robot Operating System (ROS)
module for controlling multiple channels of robot behavior
[13]. The Appendix illustrates the algorithm for synchronizing
gestures and gaze with the robot’s speech. Figure 6 illustrates
an example synchronization of speech, gesture, and gaze cues.

IV. EVALUATION

A. Study Design and Procedure

Following a system-level evaluation paradigm, we manipu-
lated the amount by which the robot displayed each type of
gesture and measured how this variability affected interaction
outcomes. For each gesture type, we marked all possible gesture
points at which human narrators displayed gestures of that type.
To manipulate the amount by which the robot would display
gestures of that type, a random number between 0 and the
number of possible points (i.e., 30, 30, 25, and 24 for deictic,
iconic, metaphoric, and beat gestures, respectively) was drawn
from a uniform distribution, which served as the amount by
which the robot would display gestures of that type during
its narration. To manipulate the gesture points at which the
robot would display gestures, a subset of gesture points that
matched this percentage amount was randomly selected from
the set of all possible gesture points. For each participant,
this process was repeated for all gesture types, producing the
necessary variability in the robot’s gestures to investigate how
well different gestures predicted interaction outcomes. Section
IV-C outlines how we modeled this predictive relationship.

The evaluation study started when the experimenter obtained
the participant’s consent to taking part in the study. Following
this step, the experimenter asked the participant to be seated
across from the humanlike robot and to listen to the robot tell
a story on the process of making paper, as shown in the right



image in Figure 1. The robot’s narration lasted approximately
six minutes. After the story, the participant was asked to
complete a five-minute distractor task followed by a quiz on
the topic of the narration. The participant was then asked to
retell the process of making paper in the same experimental
setting, which was videotaped for later analysis. The experiment
concluded with a post-experiment questionnaire for evaluating
the participant’s perceptions of the robot. For each participant,
the experimental protocol took approximately 30 minutes. Each
participant received $5 for taking part in the study.

B. Measures

We developed objective, subjective, and behavioral measures
to understand how the robot’s use of different types of gestures
affected the participants’ information recall, their perceptions
of the robot, and their ability to retell the robot’s story.

The primary objective measure was how accurately the
participants recalled the information presented by the robot,
measured by a quiz consisting of 11 multiple-choice or true-or-
false questions. The subjective measures sought to capture the
participants’s perceptions of the robot in terms of naturalness
of behavior (5 items; Cronbach’s α = .78), competence (8 items;
Cronbach’s α = .82), and effective use of gestures (2 items;
Cronbach’s α = .81). We also measured their evaluations of their
engagement (8 items; Cronbach’s α = .82) and rapport with the
robot (6 items; Cronbach’s α = .83). Participants responded to
these measures using seven-point rating scales.

In addition to the objective and subjective measures, we
measured how the robot’s gestures affected the participants’
ability to retell the robot’s story, particularly the participants’
articulation of the process of making paper, as indicated by
story length, and use of gestures during narration.

C. Analysis Method

We used a backward stepwise multivariate linear regression
to analyze the data. The linear regression method is used to
model a response variable y by a linear combination of predictor
variables xi, represented as:

y =β0 +β1x1 +β2x2 + . . . +βnxn +e

In the model, β0 is a constant, and βi is a regression coefficient
for corresponding predictor variable xi, indicating to what
extent the variable predicts the response variable. e denotes the
residual error of the model. The backward stepwise regression
process starts with all predictors included in the model. The
process iteratively removes the predictor with the highest p-
value as a relatively less powerful predictor of the response
variable. The iterations continue until certain stop criteria
are met. We used a stop criterion of p < .10. The remaining
predictors construct the final model for the response variable.

For the current work, we constructed linear models for
nine interaction outcomes. Each model involved eight pre-
dictor variables—the four types of gestures and the four
gesture-contingent gaze targets—and a response variable that
represented an interaction outcome. Each predictor variable

represented the percentage amount by which the robot dis-
played that behavior during its narration, which varied by
a small margin from the amount randomly generated for the
manipulation due to overlaps and conflicts in gesture production.
Only the amounts by which the robot displayed gestures were
manipulated. Gesture-contingent gaze cues were drawn from
the distributions in the modeling study and were included in
the analysis as covariates. We constructed separate models for
females and males based on findings from research in human-
robot interaction that show strong differences in how females
and males perceive and respond to robot behaviors (e.g., [21]),
producing a total of 18 models for nine interaction outcomes.

All predictor variables were standardized. A log transfor-
mation was applied to predictor and response variables to
obtain linearity for each constructed model. A small number,
0.000001, was added to all predictor variables to avoid the
singularity of taking log of values of zero.

D. Participants

A total of 32 participants, including 16 females and 16 males,
were recruited from the University of Wisconsin–Madison
campus community. The average age of the participants was
24.34 (SD = 8.64), ranging from 18 to 55. Based on seven-point
rating scales, the participants reported that their familiarity with
robots (M = 2.47, SD = 1.34) and their familiarity with the task
(M = 1.78, SD = 1.21) were fairly low.

E. Results

The regression analysis yielded 15 significant models,
categorized into four groups: task performance, perceived
performance, social and affective evaluation, and narration
behavior. These models are shown in Figure 7 and illustrated
in Figure 8. The statistical tests for the models are provided
in Figure 7, and the paragraphs below provide only a textual
description of the results for readability. In each model, the
adjusted R-squared score, R2

A, shows the degree to which the
predictor variables account for the variance in the response
variable. The standardized β coefficient for each predictor
represents the individual effect of the predictor on this variance,
and the t-test and p-value summarize the significance of this
effect. In this work, p < .05 and p < .10 were considered as
significant and marginal effects, respectively. Note that, because
we cannot directly manipulate gesture-contingent gaze cues,
we cannot draw conclusions on how they affect interaction
outcomes. Hereafter, we only highlight results on gestures.

1) Task Performance: The robot’s use of deictic gestures
significantly predicted information recall for both female and
male participants, suggesting that it is important for the robot
to point toward references to help the participants ground their
understanding of the narration in the references, which in this
particular scenario included illustrations of the steps involved in
making paper. Additionally, metaphoric gestures significantly
predicted male participants’ recall performance, indicating that
they might have leveraged the robot’s visualization of abstract
concepts such as actions and processes involved in making
paper to reinforce their understanding of these concepts.
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Fig. 7: Summary of significant models. For each interaction outcome, models for both genders, RA
2 values, and details of statistical tests for significant gesture

predictors are presented. There was no significant model for narration duration for females. (†), (*), (**), and (***) denote p < .10, p < .050, p < .010, and,
p < .001, respectively. Significance was assessed using two-tailed t-tests. β coefficients are standardized and therefore comparable across gestures.

2) Perceived Performance: Perceived performance involved
three aspects: effectiveness of the robot’s gestures, percep-
tion of competence, and naturalness of the robot’s behavior.
Females’ ratings of the effectiveness of the robot’s gestures
were significantly predicted by the robot’s use of deictic
and metaphoric gestures and marginally predicted by its
use of beat gestures, while males’ ratings were significantly
predicted only by beat gestures. The robot’s use of iconic
gestures significantly predicted males’ perceptions of the robot’s
competence, while no gestures predicted female perceptions.
The robot’s use of metaphoric gestures positively predicted
female participants’ perceptions of the naturalness of the
robot’s behaviors while negatively predicting those of males.
On the other hand, iconic gestures positively predicted male
participants’ perceptions of the naturalness of the robot’s
behaviors. These results suggest that a rich use of different
types of gestures might positively shape the participants’ overall
perceptions of the robot’s performance and that employing
different gesture strategies might be beneficial to maximize
perceived performance outcomes for females and males.

3) Social and Affective Evaluation: The robot’s use of
deictic gestures positively predicted male participants’ rapport
with the robot, while no particular type of gesture predicted
this outcome for females. Surprisingly, metaphoric gestures
marginally but negatively predicted how engaged with the robot
males and females reported themselves. These findings indicate
that the robot’s gestures were less influential on the participants’
evaluations of the social and affective characteristics of the
interaction, which might be due to the limited interaction
afforded by the narrative performance scenario.

4) Narration Behavior: The robot’s use of deictic, beat,
and metaphoric gestures significantly predicted the length of
male participants’ retelling of the robot’s story. Moreover,

male participants who retold the story longer also performed
significantly better in the recall test, β = 0.272, t(14) = 2.47,
p = .027, suggesting that they might have had better recall
and thus provided more detail. However, the analysis did not
show these relationships for female participants. The robot’s
use of metaphoric gestures significantly predicted how much
female participants used gestures during their retelling of the
robot’s story, while the robot’s use of iconic gestures marginally
predicted males’ use of gestures during their retelling. This
finding is consistent with the differential effects of metaphoric
and iconic gestures on females’ and males’ perceptions of the
robot’s performance, suggesting that participants might have
employed gestures that they thought were effective.

V. DISCUSSION

Understanding the relationship between robot gestures and
interaction outcomes, particularly how robots might selectively
use different types of gesture to improve specific interaction
outcomes, promises significant implications for designing
robotic systems that not only communicate effectively with their
users to maximize certain outcomes, but also go beyond human
capabilities in effective communication. This work serves as
a first attempt toward building such an understanding in a
narration scenario. To this end, we studied the gestures of
human narrators, developed a model for controlling the gestures
of narrative robots, and followed a system-level evaluation
paradigm to investigate how the robot’s use of different types
of gestures affected participants’ information recall, perceptions
of the robot, and ability to retell the robot’s story.

The results showed that the robot’s use of deictic gestures
helped improve information recall for both female and male
participants, perceived effectiveness of the robot’s gestures for
females, and ratings of rapport with the robot for males. Beat
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Fig. 8: A visual summary of the results, highlighting the predictive relationships between gestures and outcomes for females and males. Solid and dashed lines
represent significant and marginal effects, respectively. Numbers on lines represent standardized β coefficients and p-values for predictors.

gestures positively contributed to the perceived effectiveness
of the robot’s gestures for both female and male participants,
potentially due to their role in signaling key structural in-
formation on the discourse. Iconic gestures predicted male
participants’ perceptions of the robot’s competence and the
naturalness of the robot’s behavior and gesture use during their
retelling of the robot’s story, while not predicting any outcomes
for females. Metaphoric gestures predicted information recall
for males and perceptions of the naturalness of the robot’s
behavior and the effectiveness of its gestures for females.
Interestingly, metaphoric gestures negatively predicted the
participants’ engagement with the robot, indicating that more
gestures do not necessarily mean better outcomes. We speculate
that the abstract content and the large number of arm motions
involved in this type of gesture might have been a distraction for
the participants. On the other hand, these gestures contributed
to the participants’ ability to retell the robot’s story, positively
affecting narration length for males and gesture use for females.

A. Design Implications

These findings highlight the importance of robot gestures
in shaping key outcomes in human-robot interaction, such as
the ability to recall and retell information and perceptions
of the performance of the robot and the social and affective
characteristics of the interaction. Interaction designers and
roboticists must leverage the design space for gestures to
develop applications that maximize desired outcomes, such as
increasing the use of deictic gestures by an instructional robot
to improve student learning. Designers might also adapt the
robot’s use of the different types of gestures to the specific goals
of the interaction and to user gender. For instance, the use of
metaphoric gestures might be decreased if the application seeks
to increase user engagement with the robot and increased if user
ability to recall and retell information is important. Similarly,
the robot might employ a different balance of metaphoric and
iconic gestures in its interactions with females and males.

B. Limitations
The work presented here has two main limitations. First,

our findings, such as the relative effects of different types
of gestures on the measured outcomes, might have limited
generalizability beyond the specific context of the study,
requiring further work to establish the extent to which they
generalize to other forms of interaction, cultural settings, and
individuals with varying abilities to perceive and interpret non-
verbal social cues. We expect the research approach presented
here to provide the methodological basis for such future
work and other research into understanding complex behavior-
outcome relationships. Second, while the robot platform used in
this work offered the expressivity needed to achieve research
goals, hardware platforms that afford articulate hands and
higher degrees of freedom would enable richer and more finely
controlled gestures and thus a more thorough understanding
of how robot gestures shape human-robot interaction.

VI. CONCLUSION

Gestures play a key role in human communication, support-
ing and enriching speech across various forms of interaction.
While the rich space for designing robot gestures holds great
potential for improving human-robot interaction, a deeper
understanding the relationship between the different types of
gestures and specific interaction outcomes is necessary to enable
effective use of gestures by robots toward maximizing targeted
outcomes. This paper sought to take a step toward building
such an understanding in a narration scenario, following a
process that involved modeling the gestures of human narrators,
implementing these gestures into a humanlike robot, and
following a system-level evaluation approach to evaluate how
the robot’s use of different types of gestures shaped interaction
outcomes. The results provided several insights into the relative
contribution of each type of gesture into different interaction
outcomes. For example, deictic gestures were particularly
effective in improving information recall in participants, and



beat gestures contributed more to the perceived effectiveness of
the robot’s gestures. These gesture-outcome relationships serve
as design guidelines for maximizing targeted outcomes, such
as increasing an educational robot’s use of deictic gestures
to improve student learning. The research approach presented
here might also inform future robotics research into the rich
space for robot design to improve human-robot interaction.
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APPENDIX
ALGORITHM FOR SYNCHRONIZING ROBOT BEHAVIORS

Require: Speech utterances, timestamp[onset,end]-ID pairs for lexical affili-
ates and beat points

1: for each utterance do
2: new nonverbalBehavior
3: for each timestamp[onset,end]-ID pair do
4: gesture.selectGestureFromLibrary(ID)
5: gesture.setGestureDuration(duration(timestamp[onset,end]))
6: gaze.setGazeTarget(sampleFromGazeDistribution(gesture.getType()))
7: gaze.setGazeDuration(gesture.getDuration())
8: nonverbalBehavior.append(gesture,gaze)
9: end for

10: nonverbalBehavior.executeBehavior()
11: end for
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