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Abstract—This paper addresses the development of a light-
weight autonomous quadrotor that uses cameras and an inex-
pensive IMU as its only sensors and onboard processors for
estimation and control. We describe a fully-functional, integrated
system with a focus on robust visual-inertial state estimation, and
demonstrate the quadrotor’s ability to autonomously travel at
speeds up to 4 m/s and roll and pitch angles exceeding 20°. The
performance of the proposed system is demonstrated via chal-
lenging experiments in three dimensional indoor environments.

I. INTRODUCTION

Aerial robots have great potential for applications in search
and rescue and first response. They can, in principle, navigate
quickly through 3-D unstructured environments, enter and exit
buildings through windows, and fly through collapsed build-
ings. However, it has proved to be challenging to develop small
(less than 1 meter characteristic length, less than 1 kg mass)
aerial robots that can navigate autonomously without GPS.
In this work, we take a significant step in this direction by
developing a quadrotor that uses a pair of cameras and an IMU
for sensing and a netbook class processor for state estimation
and control. The robot weights less than 750 grams and is
able to reach speeds of over 10 body lengths/second. The
paper describes the design of the system and the algorithms
for estimation and control, and provides experimental results
that demonstrate the performance of the system.

The literature on autonomous flight in GPS-denied en-
vironments is extensive. Laser-based autonomous flight ap-
proaches for micro-aerial vehicles (MAVs) frequently require a
partially-structured environment to enable incremental motion
calculations [1, 18] or mechanized panning laser-scanners that
add considerable payload mass [10]. Vision-based approaches
(monocular-, stereo-, and RGB-D camera-based) enable full
6-DOF state estimation but operate at limited update rates
due to computational complexity and limited onboard process-
ing [5, 6, 23]. We are interested in pursuing high-speed flight
and therefore require accurate 6-DOF state estimation with low
latency in general, unstructured, and unknown environments.
Previous work toward this goal includes a laser-based approach
for state estimation toward high-speed flight in general known
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Fig. 1.  The experimental platform with limited onboard computation (Intel
Atom 1.6 GHz processor) and sensing (two cameras with fisheye lenses and
an off-the-shelf inexpensive IMU). The platform mass is 740 g.

Fig. 2. Snapshots from two vantage points of the quadrotor autonomously
tracking a line trajectory at 4m/s. We highlight the position of the robot
with a red circle. Videos of the experiments are available at: http://youtu.be/
erTk71643Ro.

3-D environments [2].

The contributions of this work are twofold. First, we develop
a vision-inertial (VINS) state estimator that is able to handle
high-speed motion with linear velocities up to 4m/s. The
proposed state estimator adaptively fuses the information from
monocular and stereo camera subsystems in order to avoid a
drift in scale while requiring a limited computational overhead.
The estimator runs onboard a 1.6 GHz Intel Atom processor
with 20Hz vision processing and provides 100 Hz state es-
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timation after fusion with the IMU. The resulting integrated
system enables autonomous high-speed maneuvers in GPS-
denied environments using a quadrotor that weighs only 740 g
(Fig. 1). Second, we pursue experimentation by integrating our
VINS estimator with a nonlinear tracking controller [11] and
by generating smooth polynomial trajectories that minimize
the image jitter caused by excessive angular velocities. We
study the performance of the system through rigorous experi-
ments in multiple environments with maximum vehicle speeds
of 4m/s (Fig. 2). The architecture diagram in Fig. 3 depicts
the integration of the perception, state estimation, trajectory
design, and control modules onboard as well as the offboard
operator interface.

II. VISUAL-INERTIAL STATE ESTIMATION

The key component technology in our system is a robust
visual-inertial state estimator that accurately tracks the pose
and velocity of the quadrotor in 3-D environments. The
problem of monocular VINS state estimation is well studied
in the literature [7, 8, 9]. A nonlinear observability analysis of
the estimation problem shows the presence of unobservable
modes that can only be eliminated through motions that
involve non-zero linear accelerations [7, 8]. Thus it may be
difficult to directly use state-of-the-art VINS systems such as
the ones described in [9] on hover-capable platforms such as
quadrotors.

In [23], an optical flow-based velocity estimator, in conjunc-
tion with a loosely coupled filtering framework, successfully
enables autonomous quadrotor flight via a downward-facing
camera. However, this approach assumes a slowly-varying
visual scale, which can be difficult to enforce during fast
motions at low-altitudes with potentially rapid changes in
the observed environment and large variations in scene depth
(height). A downward-facing camera also severely limits the
application of vision-based obstacle detection for planning and
control purposes.

Stereo vision-based state estimation approaches for au-
tonomous MAVs such as those proposed in [5, 6] do not suffer
from the problem of scale drift as seen in monocular systems
or limit the observable camera motion. However, we found that
the overhead to compute state estimates using these methods
exceeds the limited onboard computation budget at the frame-
rates required to enable high-speed operation.

System architecture.

Based on the above evaluation we choose to equip our
quadrotor platform with two forward-facing fish-eye cameras
and develop a loosely-coupled, combined monocular-stereo
approach. A primary forward facing fisheye camera oper-
ates at a high rate and supports pose estimation and local
mapping, while a secondary camera operates at a low-rate
and compensates for the limitations of monocular vision-
based approaches. The pose estimate derived from the VINS
is fused with IMU information to enable feedback control.
Note that we do not address the full vision-based SLAM
problem [4, 21] due to computational constraints. We require
that visual pose estimation and map update be done at frame
rate (20 Hz) in order to maximize robustness to rapid changes
in observable features during fast maneuvers. The proposed
VINS estimator builds upon our earlier work [19] with the
following improvements: 1) an orientation estimation approach
to reduce drifting; 2) online scale recovery using low-rate
stereo measurements; and 3) system optimizations that enable
onboard processing with a limited computation budget.

A. Feature Detection, Tracking, and Outlier Rejection

Both cameras in the system are modeled as spherical
cameras and calibrated using the Omnidirection Calibration
Toolbox [17]. For the primary camera that runs at 20 Hz, we
detect Shi-Tomasi corners [20] and track them using the KLT
tracker [12]. Due to the limited motion between image frames,
We are able to perform the feature detection and tracking cal-
culations on the distorted fisheye camera image, reducing the
overall computational burden. All features are transformed into
unit length feature observation vectors u;; using calibration
parameters. Here we denote u;; as an observation of the i™
feature in the 5" image in the camera body frame.

Following the method in [23], we remove tracking outliers
by using the the estimated rotation (from short term integration
of gyroscopic measurements) between two consecutive frames
and unrotate the feature observation prior to applying the
epipolar constraint in the unrotated frame:

(uij_l X ARUU)T =0

where AR is the rotation between two consecutive images
estimated by integrating gyroscope measurements, and 7' is
the translation vector with unknown scale. Only two corre-
spondences are required to solve an arbitrary scaled 7', thus a
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Fig. 4. Camera geometry notation. r; and I?; represent the 4™ primary
camera pose in the world frame and p; is the position vector of the i
feature in the world frame. u;; and v;; are unit length feature vectors in the
body frame of the primary and the secondary cameras, respectively. d is the
baseline line of the calibrated stereo cameras.

2-point RANSAC can be used to reject outliers. This approach
reaches a consensus with much fewer hypotheses compared to
the traditional 5-point algorithm [15].

For the low rate stereo subsystem, candidate correspon-
dences can be found using the KLT tracker. With calibrated
stereo cameras, outlier rejection of these candidates is possible
via applying epipolar geometry constraint. We denote the
observation of the i‘" feature by the secondary camera as Vij
and define the inter-camera baseline as d.

B. Pose Estimation

In general, and especially for a monocular system, the
number of features with good 3-D position estimates is much
smaller than the number of tracked features. Even in a stereo
setting, a large number of features cannot be triangulated due
to scene ambiguity. Although these “low quality” features can-
not be used for position estimation, they do carry information
about the orientation. Therefore, similar to [3], we decouple
the orientation and position estimation subproblems.

1) Orientation Estimation: Orientation estimation is tradi-
tionally computed via the essential matrix between two con-
secutive images and compounding incremental rotation [22].
However, we wish to minimize rotation drift, especially for the
case of hovering when the same set of features can be observed
over an extended period of time. We store the index of each
frame k in which feature 7 is observed in the set J; C Zx>q
and record its observation, u;, and the corresponding camera
orientation Rj. M; denotes the frame of the index of the first
observation of ¢ and j is the current frame index. Note that
M; may be different for each feature. We maintain all features
in an ascending order according to M; (Fig. 5).

We pick all features that have at least T); observations for
orientation estimation. 7 is determined by:

Ty =T, 1 +1-D,

where the integer D; € [0,Tj_1] is the minimum number of
observation reduction that makes the estimated essential matrix
well-posed. In other words, we require the singular values of
the essential matrix to be close to [\/5, V2, 0]. D; is found
in a brute force manner. However, if the robot is hovering,

Feature ID

Observations
(Indexed by
Frame ID)

Fig. 5. Data structure for feature storage. Features are managed in a linked list
and newly added features are added to the end of the list. For every feature, all
observations are recorded in pre-allocated memory. Feature deletion, addition,
as well as the lookup of observations of a given feature can be performed in
constant time.

Dj is likely to be zero as there are no large changes in the
distribution of feature observations. On the other hand, fast
motions can result in D; = T;_; and only consecutive frames
can be used for orientation estimation due to rapid changes
in the feature distribution. As T;_; is likely to be one in this
case, the computation overhead of this brute force search is
limited.

We denote the index of the last feature that has at least T}
observations as n. The image index M,, and its corresponding
camera orientation )7, are used as a reference, via the 8-
point algorithm [13], to estimate the essential matrix Fyy,, ;
and then the rotation Ry, ; between the MD image and
the current image j. Therefore the current orientation can be
written as:

R; = Ry, R, -

We require that the onboard attitude estimate be aligned
with the inertial frame and therefore employ a common IMU
design strategy where drift in the vision-based attitude estimate
(roll and pitch) is eliminated via fusion with accelerometer
measurements. This approach assumes that the vehicle state
is near hover or at a constant velocity. However, fast vehicle
motions can invalidate these assumptions. In this work, we find
that applying small weightings to accelerometer measurements
yields a reasonable estimate (Fig. 9(c)) given small drift in the
vision-based attitude estimate.

2) Position Estimation: We begin by assuming a known
3-D local feature map and describe the maintenance of this
map in the next subsection. Given observations of a local
map consisting of known 3-D features, and assuming that this
local map is noiseless, the 3-D position of the camera can be
estimated by minimizing the sum-of-square sine of angle error
of the observed features:

rj —Pi ?

)
[l = pill

r; = argmin
rj

X Rjuij

i€z
where, as shown in Fig. 4, r; is the 3-D position of primary
camera in the world frame when the ;" image is captured, T
represents the set of features observed in the j image, and
p; is the 3-D position of the i" feature in the world frame.
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Fig. 6. The 3-D distribution of e;; and the ellipsoid of the best fit Gaussian
distribution (Fig. 6(a)). The error distribution histogram for each axis is shown
in Fig. 6(b))

R;, which is the estimated rotation of the primary camera, is
treated as a known quantity while doing position estimation.
Note that (1) is nonlinear. However, if we assume that the
change of feature distance between two consecutive images is
small, we can approximate (1) and solve the camera position
r; via the following linear system:

I3 —ulul.T I3 —ulul.T
J Y _ 1] g
S R,
€T v €T v
where d; = [[rj—1 — pil, uj; = Rju;;. Equation (2) always

represents three equations in three unknowns, regardless of
the number of observed features. Therefore, the position
estimation problem can be solved efficiently in constant time.

In our formulation, position estimation is essentially an
intersection of multiple rays. We can therefore represent the
localization error via the statistical distribution of the ray-to-
robot distance. We experimentally verify that this distribution
can be be approximate by a 3-D Gaussian distribution (Fig. 6).
The covariance for position estimation at the j® frame is
obtained as:

E!‘j = ‘I| Zeuew

i€l

= r r
e;; = (rj —pi) X uj; x uj;.

We apply a second RANSAC to further remove outliers
that cannot be removed from the epipolar constraint check
(Sect. II-A). A minimum of two feature correspondences are
required to solve this linear system. As such, an efficient 2-
point RANSAC can be applied for outlier rejection.

C. Local Map Update

As stated in Sect. II-B2, a map consisting of 3-D features is
required to estimate the position of the camera. We approach
the local mapping problem as an iterative procedure where the
pose of the camera (r; and I?;) is assumed to be a noiseless
quantity. We do not perform optimizations for the position
of both the camera and the features at the same time (like
traditional SLAM approaches) due to CPU limitations.

We define the local map as the set of currently tracked
features and cull features with lost tracking. New features are
introduced into the local map when the current number of

tracked features falls below a pre-defined threshold. Given 7;,
the set of observations of the i" feature up to the ;" frame,
we can formulate the 3-D feature location p; via triangulation

as:
p; = argmin Z [ (pi — r&) X Rpu® +
Pi keg;
17, (vir) | (pi — r — Red) x Rypvir||®
where

1 Vi exists
0 v;; does not exist.

1y, (van) = {

Note that v;; may not be available for every k£ € J; due
to the slower frame rate of the secondary camera. The feature
position p; up to the 5™ frame can be solved via the following
linear system:

Aijpi = bij 3)

where

=
I

Z Aj + A%
keJ;
> Afri + A% (ve + Rid)
keJ;
u A ro..r
ik = (H3 - uikuikT)

ik = 17, (vir) (]13 - Vz'TkV;kT) .

1>

Again, it can be seen that regardless of the number of
observations of a specific feature, the dimensionality of (3)
is always three. This enables multi-view triangulation with
constant computation complexity. Also, this system is memo-
ryless, meaning that for the i feature up to the j® frame, only
A;; and b;; need to be stored, removing the need of repeated
summation of observations. Moreover, the condition number
or the ratio between the maximum and minimum eigenvalues
of the matrix A;; gives us information about the quality of
the estimate of p;. We evaluate every feature based on the
condition number and reject those features with high condition
numbers as unsuitable for position estimation.

D. Scale Recovery

One drawback of the above pose estimation approach is the
drifting of scale due to accumulated error in the monocular-
based triangulation and the low measurement rate from the
stereo subsystem. Here we propose a methodology that makes
use of the instant stereo measurement to compensate scale
drift. Using current observations from the primary and sec-
ondary cameras only, we can perform stereo triangulation and
obtain a set of 3-D points pj, in the reference frame of the
primary camera, where k € K is the set of features that gives
valid stereo correspondences in the current image. The ratio:

\IC| Z lpr — r]” (4)

2 pil
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Fig. 7. Scale changes during the flight of a trajectory in Sect. IV-C.

measures the drift in scale (from y = 1). Scaling all features
according to the inverse of this ratio preserves scale consis-
tency. However, as this measurement can be noisy, we apply
a complementary filter to estimate the scale drift:

y=01-a)yy+ay (5)

where 0 < a < 1. Hence, the proposed approach assumes
that the scale drifts slowly. This is a major differentiation
between our approach and [23], which requires that the scale
changes slowly. As such, our approach is able to accommodate
variations in the visual scene and resulting scale changes
that can arise during fast indoor flight with a forward-facing
camera.

Figure 7 shows changes in ~ and 7 during the flight of
a figure eight pattern (Sect. IV-C). The new position of the
feature p; can be updated by modifying b;; as (6) and solve
the linear system (3) again.

1 1
b;b = ;b” — ;Aijr]‘ -+ Al-jrj (6)

E. UKF-Based Sensor Fusion

The 20Hz pose estimate from the vision system alone
is not sufficient to control the robot. We therefore employ
a UKF (Unscented Kalman filter) framework with delayed
measurement compensation to estimate the pose and velocity
of the robot at 100 Hz [14]. The system state is defined as:

x=[r, i, ® a] T

where ® = [¢, 0, ¢]T is the roll, pitch, and yaw Euler
angles that represent the 3-D orientation of the robot; and
a, = [abm, ap, s abz] T is the bias of the accelerometer mea-
surement in the body frame. We avoid the need to estimate the
metric scale in the filter (as in [23]) through the stereo-based
scale recovery noted above.

1) Process Model: We consider an IMU-based process
model:

u= [w7 a]T = [Wxa Wy, Wz, Qgy Ay, az]T

vV = [VUJ7 va; Vab]T
Xep1 = f(Xe, w, Vi)
where u is the body frame angular velocities and linear
accelerations from the IMU. v represents additive Gaussian

noise associated with the gyroscope, accelerometer, and ac-
celerometer bias.

2) Measurement Model: The pose estimate from the vision
system is first transformed to the IMU frame before being
used for the measurement update. The measurement model is
linear and can be written as:

z=—Hx+n

where H extracts the 6-DOF pose in the state and n is additive
Gaussian noise. Since the measurement model is linear, the
measurement update can be performed via a KF update step.

III. TRAJECTORY GENERATION AND CONTROL
The equation of motion of a quadrotor is given by:

mi = —mgzw + fzp @)
M=JQ+Qx JO

where zy, zp are vertical axes in the world and the body
frame, respectively. {2 is the angular velocity in the body
frame. J is the inertial matrix. f and M are thrust and
moment from all four propellers. We choose to use a nonlinear
tracking controller [11] due to its superior performance in
highly dynamical motions. The 100 Hz state estimate is used
directly as the feedback of the controller.

Given a set of waypoints specified by the human operator,
we would like to have the quadrotor smoothly pass through
all waypoints as fast as possible, while at the same time
maintaining a high quality state estimate. A crucial condition
that determines the quality of the vision-based estimate is
the tracking performance. With our fisheye cameras setup, it
can be seen from Fig 8 that fast translation has little effect
on the tracking performance due to the large field of view.
However, fast rotation can blur the image easily, causing the
failure of the KLT tracker. This observation motivates us to
design trajectories that minimize the angular velocities of the
platform. By differentiating (7), it can be seen that the angular
velocity of the body frame is affinely related to the jerk (T,
derivative of the linear acceleration). Therefore, we generate
trajectories that minimize the jerk of the quadrotor, and utilize
a polynomial trajectory generation algorithm [16] that runs
onboard the robot with a runtime on the order of 10 ms for a
set of 10 waypoints.

IV. EXPERIMENTAL RESULTS
A. Offboard Mapping

The system presented up to this point is capable of au-
tonomous following of online generated trajectories given
user specified waypoints, however, there is no guarantee on
global localization consistency, nor obstacle-free trajectories.
Although it is not the focus of this work, we wish to provide
the human operator an intuitive map for sending waypoints to
the robot. To this end, we stream the low-rate stereo images
to a ground station, project the stereo pointcloud based on the
onboard state estimates, and generate dense voxel grid maps
in which the human operator is able to select collision-free
goals for the robot. This module does not generate any global
corrections for the onboard system.
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Fig. 8.  Effects on feature tracking performance due to fast translation
(Figs. 8(a)-8(b)) and fast rotation (Figs. 8(c)-8(d)). The number of tracked
features significantly reduced after rotation.

B. Experiment Design and Implementation Details

The experimental platform (Fig. 1) is based on the Hum-
mingbird quadrotor from Ascending Technologies!This off-
the-shelf platform comes with an AutoPilot board that is
equipped with an IMU and an user-programmable ARM?7
microcontroller. The high level computer onboard includes
an Intel Atom 1.6GHz processor and 1GB RAM. The only
new additions to this platform are two grayscale mvBlueFOX-
MLC200w cameras with fisheye lenses. We use one camera to
capture images at 20 Hz as the primary camera. The secondary
camera captures images at 1Hz. All camera images are at
376 x 240 resolution. The synchronization between cameras
is ensured via hardware triggering. The total mass of the
platform is 740 g. All algorithm development is in C++
using ROS? as the interfacing robotics middleware. We utilize
the OpenCV library for corner extraction and tracking. The
maximum number of features is set to be 300.

The experiment environment includes a laboratory space
equipped with a sub-millimeter accurate Vicon motion track-
ing system?, a long hallway, and a regular indoor environment.
The Vicon system is only used for ground truth. In all
experiments, the robot is autonomously controlled using its
onboard state estimate. A study of the hover performance of
the proposed vision-based state estimator yields similar results
to those presented in our earlier work [19]. Three experiments
are presented: (1) fast tracking of a figure eight trajectory
with ground truth comparison; (2) high speed straight line
navigation in a long hallway; and (3) autonomous flight in
complex indoor environments.

C. Autonomous Trajectory Tracking with Ground Truth Com-
parison

In this experiment, the robot is programmed to fly through
a figure eight pattern in which each circle in the pattern

Uhttp://www.asctec.de
Zhttp://Www.ros.org
3http://www.vicon.com

~—— Actual ~——Actual
—— Estimated 2, —— Estimated

— Desired _ — Desired
2 0
E
< -2

20 30 40 50 20
Time (sec)

X (m)
o n &

30 40 50
Time (sec)

~

Y (m)

)

Y (mis)
°

20 30 40 50 20 30 40 50
Time (sec) Time (sec)

20 30 40 50 20
Time (sec)

Z(m)
Z (mis)
°

30 40 50
Time (sec)

(a) Position (b) Velocity

—Actual
— Estimated
—Desired

~——Actual
50{ — Estimated
Of A\ [\ NNAN~—————

0 50

Roll (deg)

30 4
Time (sec)

50

]

0 50

30 4
Time (sec)

Yaw (deg)  Pitch (deg)
3

0
-2 4 X (m)

30 40
Time (sec) Y (m)

(¢) Orientation (d) Trajectory

Fig. 9.
speed.

The robot is commanded to follow a figure eight pattern at high

is 0.9m in radius. The maximum speed of this flight is
approximately 2m/s. Performance is evaluated against the
ground truth from Vicon. The estimated, actual, and desired
values of the trajectory, position, and velocity are shown in
Fig. 9. Large and frequent attitude changes can be seen in
Fig. 9(c), as well as in the snapshots (Fig. 10).

Our focus is on generating state estimates that are suit-
able for high-speed flight, rather than generating globally
consistent maps. Therefore, it makes less sense to discuss
the drift in absolute position. The onboard velocity esti-
mate, on the other hand, compares well with the Vicon
estimates with standard deviation of {0y, 0y, 0y} =
{0.1105, 0.1261, 0.0947} (m/s). We can also see that the
velocity profile matches well with the desired velocity. Note
that the Vicon velocity estimate is obtained by a one-step
numerical derivative of the position and in fact nosier than the
onboard velocity estimate. It is likely that the actual velocity
estimation errors are smaller than the values reported above. It
should also be pointed out that the tracking error is the result
of a combination of the noise of the estimator and the tracking
error of the controller.

D. High Speed Straight Line Navigation

This experiment represents the highest speed that our system
is able to handle. The robot is commanded to follow an ap-
proximately 15 m long straight line trajectory with a maximum
speed of 4m/s. The estimated and desired trajectory, position,
and velocity are shown in Fig. 11. Figure 2 shows snapshots
of this flight. It can be seen that the estimated covariance
scales with respect to the speed of the robot. Although we
do not have ground truth for this experiment, we measure



Fig. 10.  Snapshots taken from different cameras of the quadrotor au-
tonomously tracking a figure eight pattern at 2m/s . Note the large rotation
of the robot.
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Fig. 11. The robot is commanded to track a straight line at high speed. A
estimated position error standard deviation is presented in Fig. 11(a). Note that
we do not have ground truth in this figure. The plot of the estimated covariance
(multiplied by 200) shows that the covariance scales with the speed of the
robot.

estimator performance by initially placing the robot in the
middle of the hallway and visually verifying the drift after
the trajectory is completed. The rough measurement of the
drift is {0.5, 0.1, 0.3} (m) in X, Y, and Z axes, respectively.

E. Autonomous Flight in Complex Indoor Environments

In this experiment, the robot autonomously flies through
a challenging environment with a maximum speed of 1.5 m/s.
The robot successfully completes the trajectory and avoids two
obstacles (a wall and a table). Note the effect of the very
repetitive patterns in the wood paneling on the wall (Fig. 13),
as the robot approaches this pattern, the robot estimate drifts
significantly in the vertical direction. This is because the wood
paneling has limited features to estimate changes in the vertical
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Fig. 12. The robot tracks a trajectory in a complex indoor environment. A
scaled estimated position error standard deviation is presented in Fig. 12(a).
There is drift in the vertical direction caused by the dominant horizontal
texture due to the vertical wood paneling and the absence of any texture in
the vertical direction (Fig. 13). This leads to the significantly larger covariance
in the Z-direction as seen in the figure.

Fig. 13. Snapshots taken from different cameras of the quadrotor flying a
challenging trajectory in complex environments. Note the repetitive patterns
on the wall, causing significant drifting in the vertical direction.

direction. The fact that we lack features for state estimation is
reflected in the increase in the error covariance (Fig. 12(a)).

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a less-than-750 gram, fully
autonomous quadrotor and described the algorithms for ro-
bust autonomous flight. The main contributions of our work
include robust vision-based state estimation with inexpensive
IMUs and its integration with a nonlinear controller on an
Intel 1.6 GHz Atom processor to enable high-speed flight in
3-D complex environments. The estimator adaptively fuses
information from a high frame rate monocular-based estimator
and a stereo-based subsystem to provide robust performance
even in maneuvers that cause the feature set to change rapidly.
We also present experimental results navigating at speeds up
to 4 m/s with roll and pitch angles that exceed 20°.



Our future work addresses the development of robust control
algorithms that allow the robot to adapt its controller to the
uncertainty in the state estimate. Secondly, although our work
in this paper was less concerned with global consistency, we
plan to expand the functionality of the system by incorporating
visual loop closing techniques in order to generate globally
consistent environment representations in an online setting.
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