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Abstract—We present a software synthesis method for speed-
controlled robot walking based on supervisory control of a
context-free Motion Grammar. First, we use Human-Inspired
control to identify parameters for fixed speed walking and for
transitions between fixed speeds, guaranteeing dynamic stability.
Next, we build a Motion Grammar representing the discrete-
time control for this set of speeds. Then, we synthesize C
code from this grammar and generate supervisors1 online to
achieve desired walking speeds, guaranteeing correctness of
discrete computation. Finally, we demonstrate this approach on
the Aldebaran NAO, showing stable walking transitions with
dynamically selected speeds.

I. INTRODUCTION

Walking provides key advantages for robot locomotion.
Walkers are holonomic, they move over rough and uneven
terrain, and they adjust their center of mass to better manip-
ulate their environment. Producing stable walking on bipedal
robots, however, is a challenging control problem. To compose
walking with more varied and autonomous robot actions, the
robot must safely and reliably transition between different
walking behaviors [25, 19]. In this work, we focus on one type
of behavior: transitioning between different walking velocities
to increase flexibility of walking locomotion. Reliable walking
depends on both dynamic stability across a variety of modes
and correctness of the discrete software implementation. We
present a method to achieve both dynamic stability and discrete
correctness in the domain of walking speed regulation by
implementing Human-Inspired control of bipedal robots using
a supervised Motion Grammar, automatically generating stable
and correct hybrid control software.

The contribution of this paper is a method for automatic
synthesis of software for speed-controlled bipedal robot walk-
ing and an experimental realization on the NAO robot. Using
Human-Inspired control, we generate parameters for walking
at fixed and transition speeds [20] (Sect. IV-A), guaranteeing
dynamic, continuous stability. Then, we automatically convert
this set of steps and transitions to a context-free Motion
Grammar [8] (Sect. IV-B), which provides key benefits for
control implementation. With a context-free grammar, we can
efficiently specify a hierarchical, discrete time controller for
step-taking within a single language framework (Fig. 6, Fig. 7).
From this single language, we automatically generate the con-
trol software for the robot (Sect. V-A) without tedious hand-
coding. Then, we apply supervisory control, guaranteeing

1Software for this synthesis and control at http://golems.github.com/
motion-grammar-kit

discrete correctness (Sect. V-B). Finally, we demonstrate this
approach on the Aldebaran NAO humanoid robot (Sect. VI).

II. RELATED WORK

Bipedal robotic walking is a well studied problem with a
variety of control approaches, including Zero Moment Point
control [23], passive walking [7], and hybrid zero dynamics
[24], to name only a few. In this paper, we use Human-
Inspired control [3], which aims for more human-like walking
on bipedal robots [20, 4]. Motion Transitions in this method
[19] model the transition between two different modes, such as
flat ground walking and stair climbing. Work in [25] extended
the idea of Motion Transitions to rough terrain walking and
showed that control parameters for transition steps can be
solved in closed form while maintaining hybrid invariance
throughout the step. Here, we use Motion Transitions to stably
go between a set of fixed-speed walking gaits, implementing
the approach through online supervisory control of a Motion
Grammar.

Linguistic models for hybrid systems are widely used.
Language and Automata Theory [15] was first applied to
Discrete Event Systems (DES) by [21]. The Motion Descrip-
tion Language describes a hybrid system switching though a
sequence of continuously-valued input functions [5]. Hybrid
Automata combine a Finite Automaton (FA) with differential
equations for each FA control state. This is a widely studied
and utilized model [2, 6, 12, 16, 18]. In this paper, we
model hybrid systems using the Motion Grammar which
represents continuous dynamics with differential equations and
discrete dynamics using a context-free grammar (CFG) [8]. In
the walking domain, CFGs naturally represent a hierarchical
decomposition of step-taking, providing a more compact form
than FA. In addition, the grammar notation simplifies some
of the symbolic transformations in this paper. More generally,
CFGs permit a broader class of discrete dynamics than FA
[15]. The challenge posed by CFGs over FA is the need
for a more advanced parsing algorithm; we present such
an algorithm in Sect. V-A. Finally, CFGs, just like FA, are
efficiently parsable and formally verifiable [15, 8]

Model checking and supervisory control formally relate
the behavior of a system model with a given specification.
Ensuring correct operation is important for physical robots
where errors may cause damage or injury. Model check-
ing verifies correctness, and supervisory control enforces it.
Model-checking has been successfully applied to software

http://golems.github.com/motion-grammar-kit
http://golems.github.com/motion-grammar-kit


verification [13]. For robot control, Linear Temporal Logic
(LTL) is commonly used to specify behavior [22, 11]. LTL
formula are representable as Büchi Automata, which define
finite state languages over infinite length strings. We can also
apply supervisory control to CFGs [15, 9]. In this work, we
use regular expressions to design supervisors for walking.
Regular expressions are a convenient notation for specifying
the desired sequences of speeds, and they can be efficiently
converted to FA [1] implementing the supervisors.

Parser generation is an established technique with many
successes. Recursive Descent, LL(1), and LALR parsers are
popular for compilers [1]. The Earley [10] and CYK [17, 26]
algorithms produce parsers for any CFG. Compared to these
parsing methods for program translation, online parsing for
robot control presents some restrictions due to time constraints
and the potential for very long input strings. We address
these issues by developing a specially optimized LL(1) parser
generator (Sect. V-A) to synthesize robot software from the
grammar.

III. BACKGROUND

A. Formal Language and Motion Grammar

Formal language is a model for both discrete dynamics and
computation [21, 15]. A formal language is a set of strings,
and a string is a sequence of atomic symbols. For robots, these
symbols may represent sensor readings, physical regions, or
control laws. In this work, we represent language for robot
operation using context-free grammars.

Definition 1 (CONTEXT-FREE GRAMMAR, CFG):
G = (Z, V, P, S) where Z is a finite alphabet of symbols
called terminals or tokens, V is a finite set of symbols called
nonterminals, P is a finite set of mappings from a nonterminal
to a sequence of terminals and nonterminals, V 7→ (Z ∪V )∗,
called productions, and S ∈ V is the start symbol.

The productions of a CFG are conventionally written in
Backus-Naur form, A → X1X2 . . . Xn, where A is some
nonterminal and X1 . . . Xn is a sequence of tokens and
nonterminals. This indicates that A may expand to all strings
represented by the right-hand side of the production. For clar-
ity, nonterminals may be represented between angle brackets
〈〉 and terminals between square brackets [].

Context-free languages (CFL) generalize the regular lan-
guages while still maintaining useful properties for robot
control. Regular languages – often represented with Finite
Automata – are limited to finite state. CFLs have infinite state
in the form of a pushdown stack, increasing the representa-
tive power. This pushdown stack and the grammar notation
allow natural and efficient expression of hierarchies of action
(Sect. IV-B). CFLs provide these advantages while maintaining
the verifiability and efficiency of the regular set [15, 8]. For
these reasons, we adopt a context-free model for our system.

To represent the hybrid system dynamics, we use a context-
free Motion Grammar [8]. The Motion Grammar augments
a CFG with continuous system dynamics, represented as
semantic rules within the grammar. We define the Motion
Grammar as,

Definition 2 (MOTION GRAMMAR): The tuple
GM = (Z, V, P, S,X ,Z,U , η,K) where,
Z set of terminals;
V set of nonterminals;
P ⊂ V × (Z ∪ V ∪K)∗ set of productions;
S ∈ V start symbol;
X ⊆ <m cont. state space;
Z ⊆ <n cont. observation space;
U ⊆ <p cont. input space;
η : Z × P × N 7→ Z tokenizing function;
K ⊂ X × U × Z 7→ X × U × Z set of semantic rules.

Definition 3 (MOTION PARSER): The Motion Parser is a
program that recognizes the language specified by the Motion
Grammar and executes the corresponding semantic rules for
each production. It is the control software for the robot.

In this model, discrete control corresponds to parsing. The
continuous output of the robot z is discretized into a stream
of tokens ζ for the parser to read. The history of tokens is
represented in the parser’s internal state, i.e. the stack and
control state of a pushdown automaton. Based on this internal
state and the next token seen, the parser decides upon a control
action u to send to the robot. The token type ζ is used to pick
the correct production to expand at that particular step, and the
semantic rule for that production uses the continuous value z
to generate the input u. Thus, the Motion Grammar represents
the language of robot states, events, and control modes [8].

We represent specifications for correct operation as regular
languages. In the general case, theoretical restrictions on
decidablity and computational performance [8] limit speci-
fications to the regular set. To represent regular language
specifications, we use regular expressions. Regular expressions
define a language based on the operators concatenation (“ab”),
which appends two symbols or subexpressions, union (“a|b”),
which covers all strings defined by each subexpression, and
kleene-closure or free-monoid (“a∗”), which permits zero or
more repetitions of the subexpression. A thorough coverage
of regular expressions is given in [15].

Supervisory control operates on system G and specification
S by restricting G to only those transitions allowed in S. The
result G′ is,

G′ = G ∩ S (1)
The controlled system G′ is thus restricted to the only

correct transitions as specified by S. This is how we guarantee
correctness of the system.

B. Human-Inspired Bipedal Walking
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Fig. 1. Angle conventions
for NAO.

In this section, we briefly introduce
the method of Human-Inspired Con-
trol which we use to produce stable
walking gaits and transitions on the
NAO [20, 4].
Robot Model Bipedal walking is well
represented as a hybrid system, ex-
hibiting hybrid dynamics within a sin-
gle step [4]. We model bipedal robots
with a Motion Grammar,

GR = (Z, V, P, S,X ,Z,U , η,K)
(2)



where X = Z is the fully observable domain representing the
physically allowable state or configuration space of the system
X ,Z ⊂ Q, U ⊆ <10 is the set of admissible controls, η
defines a set of a guards or switching surfaces SR ⊂ Z which
represent the edge of the domain, and K defines both a smooth
map called the reset map ∆R for the guards and the control
system (fR, gR) on X , which is obtained by constructing
the Lagrangian mechanical model through the Euler-Lagrange
equation [24]. The configuration space, Q, of the 3D version
of the conventional seven-link biped model [20] is given by
coordinates,

q = (ϕsa, θsa, θsk, θsh, ϕsh, ϕnsh, θnsh, θnsk, θnsa, ϕnsa)T

as illustrated in Fig. 1.
Human-Inspired Control The approach of Human-Inspired
Control achieves human-like locomotion on bipedal robots.
This method identifies a set of outputs from human locomotion
data, i.e., distance from hip to ankle. Then, control laws for the
robot to track these outputs are produced through optimization.

Previous work shows that the outputs of human locomotion
can be expressed as either a linear function of time or a specific
form termed the canonical walking function (CWF) [3, 4, 20],

yH(t, αi) = e−αi,4t(αi,1 cos(αi,2t) + αi,3 sin(αi,2t)) + αi,5
(3)

with parameters αi ∈ <5, generally represented as row vectors
in a parameter matrix α∗. The CWF thus encodes walking
trajectories as a function of time. To achieve human-like
walking, the Human-Inspired controller drives the outputs of
the robot to the outputs of the human as given by the CWF.

Using this function for controller design results in nonau-
tonomous control, i.e, the parameters vary over time. However,
autonomous state feedback, i.e., the parameters are time-
invariant, is generally more robust to disturbances than nonau-
tonomous control. One common procedure is to parameterize
time with a state-dependent map [24]. As shown in [4],
the linearized position of the hip, δpRhip(q), monotonically
increases over the course of a step. Thus, define the following
parameterization,

τ(q) := (δpRhip(q)− δpRhip(q+))/vhip (4)

where vhip is the desired linearized hip velocity and δpRhip(q+)
is the linearized position of the hip at the beginning of a
step. This parameterization importantly allows for control over
walking speed through the parameter vhip. For an arbitrary
vhip, one can obtain autonomous controller output functions
which depend on parameters α∗ from the CWF (3). The
specific construction of the human outputs and the Human-
Inspired Controller can be found in [20]. Notably, for a control
gain ε > 0, the controller drives the system to a specific
surface which is termed a zero dynamics surface.

For the continuous dynamics of the hybrid system, the
control law renders the full zero dynamics surface (FZα)
exponentially stable. Yet the surface will not be invariant
through impact. Therefore, hybrid invariance is enforced only
for the relative degree two outputs. The corresponding surface

is referred to as the partial zero dynamics surface (PZα) and is
fundamental to Human-Inspired Control. In [3], it was shown
that stable walking can be achieved when the system operates
on PZα.

The next step is to use optimization, imposing the con-
straints of hybrid zero dynamics, to find the parameters α∗.
Thus the human-inspired partial hybrid zero dynamics (PHZD)
optimization problem of [20] was employed to obtain the pa-
rameters α∗ which minimize the least squares fit of the sagittal
plane outputs to the corresponding mean human data. By the
nature of the optimization, these parameters will satisfy PHZD
conditions, resulting in an exponentially stable limit cycle for
robot walking at a specific speed vhip. To achieve physically
realistic robotic walking, additional physical constraints are
enforced by the optimization (see [20]). The optimization also
produces a fixed point (ϑ(α), ϑ̇(α)) ∈ SR∩FZα on the PHZD
surface and the guard, that can be explicitly computed in terms
of the parameters α∗ (which will later be used to compute
transitions between two different PHZD surfaces.

An important feature of Human-Inspired Control is that
gaits with nearby speeds are similar, thus implying some de-
gree of continuity. By perturbing and fixing v∗hip and then solv-
ing an optimization problem by searching in the neighborhood
of α∗, subject to the same constraints, we can produce control
parameters for different walking speeds [20]. Choosing a small
perturbation on v∗hip and using α∗ as the seed to the speed
regulation optimization results in rapid convergence. Thus, we
begin with a nominal speed v0hip = v∗hip, iteratively perturb
by ±δ, and use the optimization result as the seed to find
controller parameters for nearby speeds. For our experiments
on the NAO (Sect. VI), we obtain a set of stable control
parameters for 29 different walking speeds from 10cm/s to
38cm/s with a perturbation value of 1cm/s.

IV. MODELING

A. Computing Speed Transitions

To regulate speed of the robot, we identify new control
parameters to stably transition between fixed initial and final
speeds. This process involves identifying and connecting stable
surfaces in the state space of the system. The surfaces for the
initial and final speeds are connected by a surface for the speed
transition.

We connect these initial and final PHZD surfaces by produc-
ing a new zero dynamics surface between them. Each control
parameter αl, obtained from the speed regulation optimization,
defines a unique PHZD surface PZαl for walking speed
vlhip. To switch between two walking speeds, i.e., to switch
between the two different PHZD surfaces for these speeds, we
identify a new control parameter αe defining the intermediate
partial zero dynamics surface, PZeα, which smoothly connects
these two PHZD surfaces and ensures that partial hybrid zero
dynamics is maintained.

To determine the control parameters, αe, we use the fixed
points ((ϑ(αl), ϑ̇(αl))), corresponding to each walking speed.
Let αl−1 and αl be the parameters of the CWF associated
with walking at two different successive speeds. Associated



with these parameters are the linearized position of the hip,
ξ1, at the beginning and end of a step: ξ0,l1 = δphip(∆qϑ(αl))

and ξf,l1 = δphip(ϑ(αl)). Moreover, since ξ1 is used to
parameterize time (see (4)), we can write the desired output
yH(τ, α) = yH(ξ1, α), which is now viewed as a function of
ξ1. Since the desired outputs of αe at the beginning of a step
associate to αl−1 and the end of a step associate with αl, the
goal is to find an αe, which satisfies the following equations,

yH(ξ0,l1 , αl−1i ) = yH(ξ0,l1 , αei ) (5)

yH(ξf,l1 , αli) = yH(ξf,l1 , αei ) (6)
d

dξ1
yH(ξ1, α

l−1
i )

∣∣∣∣
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(8)

for i as each output. However, solving these nonlinear complex
equations will be time-consuming and solutions may not exist.
Thus we use the extended canonical walking function (ECWF)
[19] to describe more complex walking motions, such as going
up and down stairs. We can use this same form for Motion
Transitions [25, 20]. Specifically, the ECWF is given by the
time solution to a linear mass-spring-damper system subject
to sinusoidal excitation,

yeH(t, αei ) =e−α
e
i,4t
(
αei,1 cos(αei,2t) + αei,3 sin(αei,2t)

)
+ αei,5 cos(αei,6t) + κ(α) sin(αei,6t) + αei,7, (9)

where κ(αei ) = (2αei,4α
e
i,5α

e
i,6)/((αei,4)2 + (αei,2)2 − (αei,6)2)

for each output i defined in [20]. Note that due to the linearity
of the parameters αei,1, αei,3, αei,5 and αei,7 in (9), we can write:

yeH(t, αei ) = Y eH(t, αei,2, α
e
i,4, α

e
i,6)


αei,1
αei,3
αei,5
αei,7

 (10)

where Y eH(t, αei ) ∈ <1×4 only depends on the parameters αei,2,
αei,4, αei,6.

Consider the PHZD surface for the ECWF, denoted by
PZαe . The advantage to the ECWF is that, given any two
PHZD surfaces these surfaces can be connected via the PZαe

to ensure that partial hybrid zero dynamics is maintained, and
the corresponding parameters αe can be computed in closed
form; this is not possible with the CWF as there are not enough
parameters present.

To achieve the goal of determining the parameters αei , we
utilize (10) to form the following matrix,

Y =


Y eH(ξ0,l−11 , αei,2, α

e
i,4, α

e
i,6)

d
dξ1
Y eH(ξ1, α

e
i,2, α

e
i,4, α

e
i,6)
∣∣∣
ξ1=ξ

0,l−1
1

Y eH(ξf,l1 , αei,2, α
e
i,4, α

e
i,6)

d
dξ1
Y eH(ξ1, α

e
i,2, α

e
i,4, α

e
i,6)
∣∣∣
ξ1=ξ

f,l
1


Picking αei,2 = αli,2, αei,4 = αli,4, αei,6 > 0 and vehip = vlhip,
yields Y is nonsingular. Therefore, the final four parameters
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of αei can be determined from (5) – (8),
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αei,5
αei,7

 = Y−1
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d
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1

yH(ξf,l1 , αli)
d
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yH(ξ1, α

l
i)
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ξ1=ξ
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1

 (11)

The end result of solving for αe in this manner is that any
solution starting in PZαl−1 which transitions through PZαe

for one step will begin the subsequent step on PZαl . In other
words, we will connect the PHZD surfaces PZαl−1 and PZαl

through PZαe , and thus the control laws are valid and stable
even as the robot transitions between different speeds.

We test the derived control laws in simulation. The desired
and actual value of first five outputs, denoted as yH,i and Oi
respectively, and the limit cycles of both pitch and roll angles
are shown in the Fig. 2. The simulation was started from the
speed of 14 cm/s, then sped up to 17 cm/s at the 2nd step, and
transitioned back to 14 cm/s at the 4th step. As shown in Fig. 2,
the actual outputs, except the first output, which is hip velocity,
converge to desired outputs on each step including the two
transition steps, which shows that the hybrid invariance was
maintained through the transition between two PHZD surfaces.

Permissible Speed Transition Graph Given this set of
smooth transitions between different walking speeds, we now
model this system of fixed speeds and transitions as a directed
graph. Mathematically, we can connect any two partial zero
dynamics surface through the ECWF [19] to enforce hybrid
invariance and guarantee dynamic stability. However, not all
the control parameters, αe, solved from Eq. 11 are physically
permissible, i.e., non-colliding, walking gaits.

To construct the permissible speed transition graph, physical
constraints are checked over the course of the transition step.
Fig. 3 shows the permissible speed transition graph for the
multiple walking speeds. Fig. 3(a) shows the full graph of
walking speeds from 10 to 38 cm/s, where the blue circles
indicate the transition from source speed to target speed is
physically allowed. Fig. 3(b) figure shows a partial graph for
speeds between 10 and 17 cm/s in the conventional directed
graph form.
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B. Grammar for Walking

Given this the graph of permissible speed transitions in
Fig. 3, we proceed to construct the Motion Grammar for the
system, from which we will synthesize the control software.
First, we convert the speed graph (Fig. 3) to a Finite Au-
tomaton (Fig. 4). Then we add symbols for transitions steps
between different speeds. Finally, we incorporate a grammar
for discrete-time control of the individual steps. The result is
a grammar describing all sequences of walking speeds.

We first convert the graph of permissible speed transitions
into a Finite Automaton (FA) for the language of permissible
speed transitions. This means moving the important symbols,
i.e., speeds for this walking domain, from the nodes in the
graph to the edges in the FA. Fig. 4 shows the FA for
transitions between 10 and 17 cm/s. The corresponding FA
for the full system with transitions between 10 and 38 cm/s
has 26 states, 41 terminals, and 230 edges.

Rewriting the graph as an FA has a few benefits. First, we
can apply many existing algorithms for FA such as Hopcroft’s
Algorithm for state minimization [14]. Crucially, abstracting
the graph to an FA provides the automaton state as a compu-
tational memory, enabling more detailed decision making than
simply stating which speeds may follow which other speeds.
This will be necessary as we introduce the additional language
symbols used for online parsing and supervisory control.

start

(STEP 11)
(STEP 10 11) (STEP 11)

(STEP 10)

Fig. 5. Finite Automaton fragment showing
transition step between 10 and 11 cm/s

Now, we add to
Fig. 4 the transition
steps to go between
different fixed walking
speeds. Fig. 5 shows
a fragment of the
resulting FA. The full transition-step FA for 10-38 cm/s has
58 states, 279 terminals, and 308 edges.

#

"

 

!

〈0〉 → [HALT]

| {setparam 10} 〈step〉〈0〉
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〈2〉 → {setparam 11} 〈step〉〈2〉
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Fig. 6. Parameter and Step Grammar'
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〈step〉 → {time← 0} 〈S1〉
〈S1〉 → {count← 0} {κ} 〈S′1〉
〈S′1〉 → [weight < εw] 〈S1〉

| [weight ≥ εw] 〈S′′1 〉
〈S′′1 〉 → [τ < ετ ] 〈S1〉

| [τ ≥ ετ ] 〈S2〉
〈S2〉 → {count← count+ 1} {κ} 〈S′2〉
〈S′2〉 → [weight < εw] 〈S1〉

| [weight ≥ εw] 〈S′′2 〉
〈S′′2 〉 → [count < εc] 〈S2〉

| [count ≥ εc] {reset stance}

Fig. 7. Step Grammar. Thresholds on weight [weight ≥ εw] detect foot
placement, and thresholds on cycle count [count ≥ εc] and time in the current
step [τ ≥ ετ ] avoid erroneous transitions due to bounce during placement.

Next, we replace each of the unique [(step x )] and
[(step y z )] symbols with a semantic rule to apply the appro-
priate parameter matrix to walk at fixed speed x or transition
from speed y to z followed by a symbol for the actual step.
We also add transitions to terminate upon a special [HALT]
symbol. This is shown as a grammar in Fig. 6 for speeds of
10 and 11 cm/s. The full grammar for 10-38 cm/s has 340
productions.

Finally, we take each 〈step〉 symbol and decompose it with
a discrete-time hybrid controller to take a single step. This
step controller is shown as the grammar in Fig. 7. The {κ}
production in this grammar computes the inputs for the robot
based on the current parameter matrix for the current control
cycle. See [20] for the detailed algorithm.

The result of these algorithmic transformations is a grammar
with 291 terminals, 68 nonterminals, and 354 productions,
which represents all step sequences through speeds of 10-38
cm/s that the robot may take.



V. CONTROL

A. Code Generation

Based on this grammatical model for walking, we synthesize
control software as a Motion Parser (Def. 3) for this Motion
Grammar. For efficiency and portability, we generate standard
C code. However, online parsing for real-time control presents
a few challenges compared to translating parsers such as
compilers:
• Compilers can look forward and backward in the input,

while a Motion Parser must provide immediate input to
the system without seeing the future.

• For programming languages, parse trees representing the
structure of the input have limited depth, while parse trees
for a Motion Grammar may be arbitrarily large since the
system may need to run for an arbitrarily long time.

To handle these constraints, we place some restrictions on the
grammar and perform some optimizations when generating the
parser.

While a compiler is typically given its input as a file, a Mo-
tion Parser must act token-by-token while continually driving
the system. This temporal constraint restricts the ability of the
Motion Parser to lookahead to future tokens or backtrack to a
previous point in the parse. First, at each timestep the parser
must immediately provide some input to the robot without
lookahead to future timesteps, which have not yet occurred.
Second, the parser cannot backtrack to previous timesteps,
since these have already occurred. We can conservatively
satisfy these two parsing requirements with the LL(1) class of
grammars [1, p.222]. LL(1) grammars require only one symbol
of lookahead, need no backtracking, and operate on a single
left-to-right scan of the input string. They can be parsed with
constant (O (1)) time at each step. LL(1) grammars are rich
enough for most programming language constructs [1, p.223]
and amply powerful for the walking grammars in this work.
Thus, we employ an LL(1) parser generation approach.

The deeply recursive nature of grammatical productions is
another issue in online parsing. Notice in these grammars
(Fig. 7) that concatenation and looping are implemented recur-
sively, as nonterminals at the end of some parent production.
Representing such a parse tree, either explicitly or implicitly
via recursive function calls, during a long running operation
would consume excessive memory; therefore, we must avoid
building such a large structure in memory.

We can avoid this arbitrarily large memory use with tail call
optimization, as used in functional programming languages
like Scheme and ML. Tail call optimization reduces memory
use when one function immediately returns the result of
another. The optimization reuses the stack frame of the parent
function for the tail function, typically replacing a call
machine instruction with a jump. Similarly in our parser
generator, whenever some parent production has a nonterminal
in the final position of its body, we jump, e.g, goto in C, to
the code for that nonterminal rather than recursively expanding
it. This important optimization limits memory usage for the
deeply recursive Motion Parser.

1i n t supe r mgpa r se
2( m g c o n t e x t t ∗ c o n t e x t ,
3m g s u p e r v i s o r t a b l e t ∗ t a b l e , i n t i )
4{ / / . . .
5case 424 :
6n o n t e r m l p 0 s p d o t s p g 1 r p :
7/ / ( STEP TIME−ZERO STEP−1)
8i f ( ( ( m g s u p e r v i s o r a l l o w ( t a b l e , 5 ) ) &&
9(0 == ( t i m e z e r o ( c o n t e x t ) ) ) ) )
10{
11( t a b l e−>s t a t e ) =
12( m g s u p e r v i s o r n e x t s t a t e ( t a b l e , 5 ) ) ;
13case 425 :
14p r o d l p l p 0 s p d o t s p \
15g 1 r p s p t i m e z e r o r p :
16goto n o n t e r m l p 1 s p d o t s p g 1 r p ;
17}
18re turn −1;
19/ / . . .
20}

Fig. 8. Example of parsing code

We now implement LL(1) parser generation to construct our
Motion Parser. To generate standard C, we need to optimize
tail calls to goto. Since C goto can only target a label in
the same function, we must implement our parser as a single
function. As a design choice, we use the C call stack for
the context-free parsing stack, which is simpler to implement
than maintaining an explicit stack data structure. Consequently,
the parsing function is self-recursive. The nonterminals and
productions in the parsing function are arranged in a jump
table, represented as a C switch-case with one case
for each nonterminal and each production. The block for
each nonterminal first identifies which production for that
nonterminal to expand, based on the set of initial terminals
possible for that nonterminal. We then expand each symbol
in that production. For nonterminals not in the tail position,
we recursively call the parsing function and switch to the
appropriate case in the jump table for that nonterminal. For
tail nonterminals, we directly jump to the case for that nonter-
minal. With this design, we can parse arbitrarily long strings
for tail-recursive LL(1) grammars.

Fig. 8 shows a fragment of the generated parser, corre-
sponding to the first production of Fig. 7. This parser first
calls time_zero, line 9. Notice the goto in line 16,
implementing the tail recursive expansion. The full generated
code for the 354 production grammar amounts to 3488 lines
of C code. When compiled with gcc 4.4.5 -O2, this produces
8914 instructions in AMD64 assembly.

B. Supervision

We perform speed control on the robot using supervisory
control. We algorithmically derive specifications for a su-
pervisor to take the NAO between any two speeds with a
minimum number of steps. Then, we provide this supervisor
to our parser. By following the generated supervisor, the parser
performs speed control.

To generate the supervisor, we first start with the speed FA
Gs as in Fig. 4 and transform it to an FA with monotonically
ascending or descending speeds, Fig. 9. This ensures that the
robot will continually increase or decrease in speed. We pro-
duce these monotonic FA by repeatedly intersecting the speed
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FA Gs (Fig. 4) with a language Sm to enforce ordering for
each terminal symbol. For terminal y, this ordering language
Sm is given by the regular expression,

Sm = {x : x < y}∗ y {x : x > y}∗ (12)

This specification ensures that all symbols before y in the
string are less than y and all symbols after y in the string are
greater than y, enforcing an ascending constraint. The reverse
would enforce a descending constraint. By applying an Sm
for each speed, we produce the monotonic FA in Fig. 9.

Next, we insert the transition steps into these monotonic
FA as in Fig. 5. The result for the ascending case is shown in
Fig. 10.

Now, we find the desired sequence of steps by generating the
shortest string σ in the monotonic transition step FA, Fig. 10.
This sequence is obtained using a breadth-first search of the
FA states until the accept-state is found. For Fig. 10, this gives
the following two steps

σ = [step 10 17] [step 17] (13)

From the string σ in (13), we generate a regular expression
S for the supervisor. Initially, let S be 〈step〉∗, which here
denotes the union of all terminal symbols in Fig. 7. For
each [step a b] in σ, we concatenate to S the expression
[setparam a b] 〈step〉∗. For the last symbol in σ, indicating
the target speed, concatenate ([setparam a] 〈step〉)∗ [HALT].
The result for (13) is the following regular expression, shown
as an FA in Fig. 11.

S = 〈step〉∗ [setparam 10 17] 〈step〉∗ [setparam 17]

([setparam 17] 〈step〉∗)∗ [HALT] (14)

Given the supervisor in Fig. 11, we implement online
supervisory control with a minor extension to our LL(1) parser
generator. Effectively, we execute the LL(1) parser for the
initial grammar G and the supervisory Finite Automaton S
in parallel, transitioning only when both allow it [15, p.135].
Before the parser checks any terminal symbol or executes any
semantic rule, it first ensures that the action is allowed from

start HALT
STEP STEP

(SETPARAM 17)
STEP

(SETPARAM 17)(SETPARAM 10 17)

Fig. 11. Supervisor for transitioning from 10 to 17 cm/s. Here, 〈step〉
corresponds to the union of all terminals in Fig. 7
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Fig. 12. Hip position and velocity for preset and online supervisors

the current state of supervisor S. After reading the terminal
or executing the semantic rule, the parser updates the state of
S for the transition on that symbol. The result implements the
supervised system, G ∩ S.

VI. EXPERIMENTAL RESULTS

Our experimental platform is the Aldebaran NAO, Fig. 1.
The NAO is a 0.5m, 5kg bipedal robot with 25 degrees-of-
freedom (DOF). We focus on controlling the NAO’s legs, each
of which has five DOF and Force Sensitive Resistors (FSR)
on the bottom of the feet to detect the reactive force with
the ground. We use this platform to validate our approach for
speed-controlled walking.

We conduct two different experiments to test the effective-
ness of the proposed supervisory control approach for speed
control: one with a predetermined supervisor, in which the
target speeds were set prior to the experiment, and one with
the supervisor generated online, which allows the target speeds
to be chosen and set during walking.

In the first experiment, the robot starts from an initial speed
of 14cm/s, speeds up to 38cm/s, slows to 32cm/s, 28cm/s,
25cm/s and 20cm/s sequentially, then finally returns to the
initial speed of 14cm/s. The whole experiment takes 30 steps
to achieve these three changes in walking speeds, including
several steps of steady state walking at 14cm/s at the end.
The result are plotted in Fig. 12. Fig. 12(a) figure shows the
actual linearized hip position δphip(q), which is monotonically
increasing over each step (see Fig. III-B) and closely tracks
the desired references throughout all steps. This plot shows
relative hip position, reset after each step, to reduce total plot
size. Fig. 12(b) shows the changes in both desired hip velocity
vdhip and actual mean hip velocity vahip. These velocities are
computed as the slope of a linear fit of hip position δphip(q)
over one step. We note that the robot achieved stable walking
in many trials with multiple walking speeds and transition
between them in a few steps without falling. Compared to
the result of [20], the robot achieves greater speed in fewer
steps using a supervised Motion Parser.

The second experiment examines online supervisory con-
trol. The NAO walks 50 steps for each trial of this experiment,



and an operator can choose and set the target walking speed
during the experiment. The software will then generate a new
supervisor to take the NAO from its present speed to the speed
selected by the operator. For these trials, the robot starts from
same 14cm/s initial speed as before. After a few steps, we set
the target speed to 38cm/s, then again to 25cm/s, and finally
back to the initial speed of 14cm/s to perform a full speed-up
and slow-down cycle. The mean hip velocity and the linearized
hip position for this experiment are shown in Fig. 12. These
results show that by using online supervisory control with the
Motion Grammar, we can dynamically select and change the
speed of the robot while it is walking, all with model-based
guarantees on stability.

We note two performance issues in the experiments. First,
the NAO slightly changes direction during walking due to a
small, unmodeled rolling on the lateral edge of the robot’s
foot. Extending the walking model to include the heel roll
should reduce these direction changes. Second, there is an
initial step down of hip velocity caused by foot scuffing before
the robot reaches steady-state walking. Since we model from
non-zero initial velocity rather than from rest, the robot should
take a few steps to adjust its gait before reaching stable
walking. A transition step from rest to initial walking speed
should improve stability of walking, which we will address in
future work. These issues illustrate the caveat of model-based
guarantees: the guarantee is only as good as the model.

VII. CONCLUSION

In this paper, we presented an approach to develop soft-
ware for speed-controlled robot walking with model-based
guarantees on stability and correctness, and we demonstrated
this method on the Aldebaran NAO. Human-Inspired walking
produces stable controllers for fixed speeds and transitions
between speeds. Framing these transitions as a formal lan-
guage with the Motion Grammar enables automatic synthesis
of correct control software through parser generation and
supervisory control. Our experimental results on the NAO
show that this technique allows supervisors to be updated
online with dynamically selected walking speeds and achieves
greater speed in fewer steps than previous implementations.
With this linguistic hybrid method for speed control, we have
guaranteed both continuous domain stability through stable
walking and discrete-domain software correctness through
proper transitioning of dynamically selected behaviors.
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