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Abstract—We propose an incremental sampling-based mo-
tion planning algorithm that generates maximally informative
trajectories for guiding mobile robots to observe their envi-
ronment. The goal is to find a trajectory that maximizes an
information metric (e.g., variance reduction, information gain,
or mutual information) and also falls within a pre-specified
budget constraint (e.g., fuel, energy, or time). Prior algorithms
have employed combinatorial optimization techniques to solve
these problems, but existing techniques are typically restricted
to discrete domains and often scale poorly in the size of the
problem. Our proposed Rapidly-exploring Information Gath-
ering (RIG) algorithm extends ideas from Rapidly-exploring
Random Graphs (RRGs) and combines them with branch and
bound techniques to achieve efficient optimization of information
gathering while also allowing for operation in continuous space
with motion constraints. We provide a rigorous analysis of
the asymptotic optimality of our approach, and we present
several conservative pruning strategies for modular, submodular,
and time-varying information objectives. We demonstrate that
our proposed approach finds optimal solutions more quickly
than existing combinatorial solvers, and we provide a proof-of-
concept field implementation on an autonomous surface vehicle
performing a wireless signal strength monitoring task in a lake.

I. INTRODUCTION

Mobile robots are increasingly being tasked with gather-
ing information about their environment. Emerging applica-
tion domains include marine monitoring [21], aerial surveil-
lance/search [8], tactile object recognition [10], and facility
inspection [9]. In all of these domains, the goal is to maxi-
mize some metric of information (e.g., quality of the survey,
probability of locating a target, or accuracy of the inspection)
while satisfying constraints on fuel, energy, or time.

The informative motion planning problem of maximizing
information gathered subject to a budget constraint is par-
ticularly challenging because it typically requires searching
over a large and complex space of possible trajectories. Such
problems have been shown to be NP-hard [20] or even
PSPACE-hard [18] depending on the form of the objective
function and the space of possible trajectories. Prior work
has leveraged approximation algorithms [20] and branch and
bound solvers [2] to provide informative trajectories for mobile
robots. However, these prior algorithms are limited to discrete
domains and often scale poorly in the amount of budget and
the size of the environment.
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Fig. 1. Example information landscape and trajectory generated by the
proposed algorithm for an autonomous vehicle monitoring a phenomenon of
interest (e.g., an ocean event, seismic activity, or an area to be surveyed).
The red areas have higher information quality than the blue areas. Our algo-
rithm extends ideas from stochastic motion planning to provide informative
trajectories that satisfy a budget constraint.

In this paper, we provide an algorithm that solves the
informative motion planning problem using iterative sampling.
Our approach combines ideas from Rapidly-exploring Random
Graphs (RRGs) [12] with insights from branch and bound
optimization [2] to provide improved efficiency and generality.
Adapting theoretical analysis from the RRT* algorithm also
allows us to show asymptotic optimality for a large class of
objective functions. Prior algorithms, including Information-
rich RRTs [16] and Belief-space RRTs [4], have been shown
to solve related problems for certain objective functions. The
key novelty of this paper is the introduction of an incremental
sampling-based algorithm for generating informative trajecto-
ries that is asymptotically optimal, outperforms existing com-
binatorial solvers, and allows for general motion constraints.

The remainder of this paper is organized as follows. We first
discuss related work to highlight the need for efficient informa-
tive motion planning algorithms (Section II). We then provide
a formalization of the informative motion planning problem
(Section III), and we introduce the proposed sampling-based
algorithm along with a rigorous analysis of the asymptotic
optimality of our approach (Section IV). To validate our
algorithm, we compare it to existing combinatorial solvers,
and we also provide a field implementation on an autonomous



surface vehicle (Section V). Finally, we draw conclusions and
discuss avenues for future work (Section VI).

II. RELATED WORK

Autonomous information gathering problems have a rich
history in mathematics, computer science, and robotics dating
back to early work in sequential hypothesis testing [23].
Early research was concerned with the problem of determining
which experiments to run to best determine the nature of an
unknown. Similar ideas were then generalized to account for
constraints on physical systems, which resulted in a vibrant
community studying active perception [1].

Active perception problems were later extended to account
for mobile sensing within the framework of Bayesian reason-
ing [5]. Subsequent works have resulted in an extensive suite
of solutions that incorporate information theoretic measures
for such problems as object recognition, mapping, and scene
reconstruction (see [6] for a survey). Modern applications of
next best view planning and belief space planning continue
to push the envelope of gradient-based optimization in these
domains [11]. While such algorithms have been shown to
be useful for a range of domains, they typically rely on
restrictive assumptions on the objective function and do not
have guarantees on global optimality. Finite-horizon model
predictive control methods [3, 19] provide improvement over
myopic techniques but also do not have performance guaran-
tees beyond the horizon depth.

A number of general solvers for robotic information gath-
ering problems utilize combinatorial optimization techniques
to search over a discrete grid. The recursive greedy algo-
rithm [20] is one example that achieves bounded performance
for submodular objective functions. Branch and bound tech-
niques have also been proposed that only require the objective
function to be monotonic [2]. The resulting solvers typically
require computation exponential in the size of the problem
instance due to the large blowup in the search space with
increasing budget. An alternative is to utilize a finite-horizon
solver that solves the problem for only a portion of the budget
at a time [8]. While such solvers perform heuristically well,
they do not carry guarantees for behavior outside the horizon
length.

The use of sampling-based motion planning algorithms,
such as the Rapidly-exploring Random Tree (RRT) [15] and
probabilistic roadmap (PRM) [14], has increased enormously
in past years. Such algorithms have the advantage of quickly
exploring a space of interest to achieve a feasible solution. The
development of the RRT* and PRM* algorithms has led to
algorithms that asymptotically approach the optimal solution
with increasing computation time [12]. Variants have also been
proposed that have anytime capabilities and utilize branch and
bound techniques to trim the search tree [13]. Recent work has
shown that extensions of these sampling-based algorithms can
solve problems with uncertainty in position while preserving
asymptotic optimality guarantees [4]. These algorithms are
concerned solely with minimizing a cost function, and they do
not consider the problem of maximizing an information metric.

As such, they cannot directly be used to solve informative
motion planning problems.

Sampling-based algorithms are natural candidates for gen-
erating motion plans for information gathering tasks. The
Information-rich RRT (iRRT) was designed to maximize
the accuracy of tracking a mobile target [16]. The iRRT
extends sampling-based algorithms to solve a class of in-
formation gathering problems. However, the authors do not
provide asymptotic optimality guarantees, and the application
is limited to tracking problems. In the current paper, we
introduce the Rapidly-exploring Information Gathering (RIG)
algorithm that combines ideas from the iRRT [16], RRT* [12],
RRBT [4], and combinatorial branch and bound [2] algorithms
to provide efficient asymptotically optimal information gath-
ering for a rich space of objective functions.

III. PROBLEM SETUP

In the general case, informative motion planning requires
solving the following maximization problem:

P∗ = argmax
P∈Ψ

I(P) s.t. c(P) ≤ B, (1)

where Ψ is the space of possible trajectories for a robot or team
of robots, B is a budget (e.g., time, fuel, or energy), and I(P)
is a function representing the information gathered along the
trajectory P .1 We will assume the the robots are modeled using
discrete time dynamics, and that the trajectory is deterministic
given the environment and the control inputs. As a notational
convention, we will denote the portion of a trajectory from
times t0 to tf as Pt0:tf . Where it will not cause confusion,
we will also denote a partial trajectory Pt as the segment of a
trajectory centered around time t. We allow for restrictions
on the space of valid trajectories, including kinodynamic
constraints, obstacles, and vehicle speed limitations.

We assume in this paper that the form of the cost and
information objectives are known a priori. Regarding the
cost function, we assume it is strictly positive, monotonically
increasing, bounded, and additive. These assumptions include
most objective functions utilized in prior sampling-based mo-
tion planning literature (e.g., distance, energy, etc.) [12]. Note
that these assumptions ensure that all trajectories satisfying
the budget will be of finite length.

We consider information objective functions of the fol-
lowing three types: modular, time-varying modular, and sub-
modular. If we let Pa and Pb be two partial trajectories,
and we let Pab be the trajectory found by combining them,
we define a modular information objective as one where
I(Pab) = I(Pa) + I(Pb). A time-varying modular objective
is the same, except that the value of I(Pab) depends on the
time when Pa and Pb are executed. In contrast, a submodular
objective is one where I(Pab) ≤ I(Pa)+I(Pb). In the context
of robot motion planning, one key property of submodular

1We note that RIG can potentially be used to optimize any quantifiable
metric of interest along the trajectory. The scope of this paper is limited to
information gathering objectives, but the examination of additional objectives
of a similar form is an interesting avenue for future work.



objectives is that the amount of information gathered in the
future is dependent on the prior trajectory, whereas with
modular objectives it is not.

Two major factors make solving these optimization prob-
lems particularly difficult: (1) for nearly all interesting objec-
tive functions, finding the optimal solution is formally hard
(NP-hard or PSPACE-hard) [18, 20], and (2) the space of
trajectories Ψ grows with increasing budget, making exhaus-
tive searches intractable. We propose an incremental algorithm
that utilizes sampling to generate increasingly informative
trajectories that satisfy the cost budget constraints. This ap-
proach allows for the generation of informative trajectories
with complex information objectives.

IV. ALGORITHM DESCRIPTION

We now discuss the proposed motion planning algorithm
that efficiently generates trajectories to maximize an informa-
tion metric while also maintaining budget constraints. The key
idea is to sample the configuration space of the vehicle and
to build up a graph of possible trajectories by incrementally
extending candidate trajectories towards the sampled points.

The full Rapidly-exploring Information Gathering (RIG)
algorithm is described in Algorithm 1. The main loop of the
algorithm begins with a start node and generates randomly
sampled points in the configuration space. For each new point
that is sampled, the algorithm extends all nearby nodes towards
the newly sampled point to generate a graph of solutions.
Nodes in the graph are only extended if the resulting cost
does not exceed the budget, and nodes that are not promising
can be pruned (see Section IV-C).

After nodes are extended, the cost and information at each
new node is calculated, and an additional step is required
where the information and cost is recursively updated along
all the new edges. During this recursive update, new nodes
are generated to store the information and cost generated by
the trajectories formed from the newly added edges. More
nodes are then generated at the neighbors of these newly
added nodes and so on until all eligible nodes have been
expanded. Pruning can also be employed during this step to
limit the number of nodes added. After the algorithm has
run for many iterations, the graph will contain a number of
possible informative trajectories within the budget constraint.

The general RIG algorithm allows for constraints on the
vehicle’s motion through the use of a Steer() function to extend
nodes towards newly sampled locations. Requirements on the
steer function are discussed in the next section. Points on the
graph are extended using a Near() function. The near function
can be heuristically set or set based on pre-specified ball
around the sampled point (as in [12]). The algorithm can also
account for obstacles in the environment by limiting feasible
trajectories to a free configuration space Xfree.

The main challenges presented by the information gath-
ering problem are (1) focusing the graph generation such
that candidate trajectories satisfy the budget requirements, (2)
managing computational complexity for computing the infor-
mation gathered at each node on the graph, and (3) pruning

Algorithm 1 Rapidly-exploring Information Gathering (RIG)
1: Input: Step size ∆, Budget B, Workspace Xall,

Free space Xfree, Environment E , Start config. xstart

2: % Initialize cost, information, and starting node
3: Iinit ← InitialInformation(xstart, E)
4: Cinit ← 0, n← 〈xstart, Cinit, Iinit〉
5: % Initialize vertex list, edge list, and graph
6: V ← {n}, Vclosed ← ∅, E ← ∅, G ← (V,E)
7: while processing time remains do
8: % Sample configuration space of vehicle
9: xsamp ← Sample(Xall)

10: % Find near points to be extended
11: Nnear ← Near(xsamp, V \ Vclosed)
12: for all nnear ∈ Nnear do
13: % Extend towards new point
14: xnew ← Steer(xnnear

,xsamp,∆)
15: if NoCollision(xnnear ,xnew,Xfree) then
16: % Calculate new information and cost
17: Inew ← Information(Innear

,xnew, E)
18: c(xnew)← EvaluateCost(xnnear

,xnew)
19: Cnew ← Cnnear

+ c(xnew)
20: nnew ← 〈xnew, Cnew, Inew〉
21: if PRUNE(nnew) then
22: Delete nnew
23: else
24: % Add edges and vertex
25: E ← E ∪ {(nnew, nnear), (nnear, nnew)}
26: V ← V ∪ {nnew}
27: % Add to closed list if budget exceeded
28: if Cnew > B then
29: Vclosed ← Vclosed ∪ {nnew}
30: end if
31: G ← (V,E)
32: % Recursively add nodes along new edges
33: G ← UpdateInfoAndCost(nnew,G)
34: end if
35: end if
36: end for
37: end while
38: P ←MaxInformationP lan(G)

partial trajectories that cannot lead to a more informative final
trajectory than the current best. We now discuss how we can
overcome these challenges.

A. Budgeted Trajectory Generation

The problem of maximizing information subject to a budget
constraint differs in several ways from problems typically
solved using sampling-based motion planners. In many prob-
lem domains, a vehicle must move from one point to another
while minimizing the trajectory cost [12]. For the problem of
information optimization, there is no fixed goal point. Instead,
there is a hard constraint on budget at which point the mission



time has expired or the vehicle has run out of fuel.2

To apply sampling-based motion planners to these problems,
we make the following modification: if a candidate trajectory
would exceed the budget, it will never be extended towards a
sampled point. We maintain a closed list of nodes on the graph
that represent completed trajectories. The proposed method
can also be used in a receding-horizon manner by planning
over a budget increment and then re-planning after the budget
increment is expended. As new points are generated, trajec-
tories that are not completed will be extended and eventually
lead to completed trajectories. This approach builds up a large
number of completed trajectories that efficiently explore the
space of trajectories and provide different levels of information
maximization.

B. Computational Complexity

As described above, we assume that given a partial trajec-
tory Pt0:tf for times t0 to tf , we can calculate the information
gathered by some known function I(Pt0:tf ). For modular
and time-varying modular functions, it is straightforward to
build trajectories in an incremental fashion by storing the
information gathered at t− 1 and then adding the incremental
information gathered at t. For submodular functions, the entire
partial trajectory is necessary to calculate the information at
time t. Thus, the trajectory must be reconstructed by traversing
the graph backwards, which is an O(N) operation.

For some objective functions, the cost of calculating the
information gathered may also increase as the length of the
trajectory grows. The computational requirement for adding
a new node grows as O(N + f(N)), where f(N) is the
computational cost of calculating I(·) for a trajectory of length
N . The locations of the active nodes are stored in a KD-
tree, which allows for efficient retrieval of the near nodes. The
memory requirements grow linearly in the number of nodes
since the stored information remains constant.

It is important to note that these computational requirements
grow in the number of nodes added to the graph. Since all
of the near nodes are extended for each new sample, denser
graphs will add more nodes per iteration than sparser graphs.
This additional computation provides motivation for pruning
away trajectories that are no longer useful for finding the best
information gathering trajectory. We will next discuss how to
develop pruning strategies using formal analysis of asymptotic
optimality.

C. Theoretical Analysis

In this section, we show that the RIG algorithm is asymp-
totically optimal for stationary modular objective functions,
time-varying modular objective functions, and submodular
objective functions. The asymptotic optimality requires that
a conservative pruning strategy is used that does not remove
trajectories that could potentially lead to the most informative
plan.

2We note that our proposed algorithm can also be utilized if a fixed goal
point is specified. In this case, nodes would enter the closed list when the
minimum cost to reach the goal exceed the remaining budget.

We first state a number of modest assumptions that are
required for this analysis. These assumptions are adapted from
the Rapidly-exploring Random Belief Tree (RRBT) [4] and the
Rapidly-exploring Random Graph (RRG) [12] algorithms.

Assumption 1: Let xa, xb, and xc be three points within
radius ∆ of each other. Let the path e1 be generated by
Steer(xa, xc,∆), e2 be generated by Steer(xa, xb,∆), and
e3 be generated by Steer(xb, xc,∆). If xb ∈ e1, then the
concatenated path [e2, e3] must be equal to e1 and have equal
cost and information.

This assumption is nearly equivalent to the assumption
required for RRBT [4] except that we require that both the
cost and information be equal for the concatenated edge. The
assumption states that the Steer() function is consistent for
intermediate points and that both the cost and information
functions are also consistent. This assumption is necessary
due to the refinement as additional samples are added, which
in the limit leads to samples that are infinitely close together.
For general robot dynamics, this property requires that we can
simulate the continuous system for any intermediate time step.

Assumption 2: There exists a constant δ ∈ R+ such that for
any point xa ∈ Xfree there exists an xb ∈ Xfree, such that (i)
the ball of radius δ centered at xa lies inside Xfree and (ii)
xa lies inside the ball of radius δ centered at xb.

This assumption is equivalent to the corresponding assump-
tion in the RRG and RRT* algorithms [12] that requires that
some free space is available around the optimal trajectory to
allow for convergence.

We now examine requirements for pruning strategies that
lead to asymptotic optimality of the RIG algorithm.

Theorem 1: Given two nodes na and nb that are co-located
with different cost and information values. Let pga be the
maximally informative partial trajectory originating from the
node corresponding to na that satisfies the remaining budget.
Similarly, let pgb be the maximally informative partial trajectory
originating from the node corresponding to nb that satisfies
the remaining budget. If a pruning strategy is employed that
removes co-located nodes that are dominated by a partial
ordering na < nb, RIG is asymptotically optimal if the
following condition holds:

na < nb ⇒ I(pga) + I(na) < I(pgb) + I(nb). (2)

Proof: (Sketch) The condition above states that a partial
ordering exists such that the most informative final trajectory
from na is always less than the most informative final tra-
jectory from nb. Thus, no maximally informative trajectory
will ever be pruned as long as the partial ordering is upheld.
We must now show that the resulting graph will contain the
optimal path in the limit. This claim follows from Assump-
tions 1 and 2 and the analysis of the asymptotic optimality of
RRG in [12]. The key idea is that if there is sufficient space
to sample within a ball around all points in Xfree then, in the
limit, an infinitely dense graph will be created within the ball
around all points. If the Near() function returns every vertex
within a ball of radius r ∝ (log(n)/n)1/d, where n is the



number of vertices in the graph and d is the dimensionality of
the state, then using Assumption 2, we have that such a ball
exists around all points. Additionally, Assumption 1 states that
the Steer() actions can be infinitely subdivided and hence in
the limit will produce all paths that may be optimal.

D. Pruning of Suboptimal Plans

In order to ensure that we generate the maximally infor-
mative trajectory in the limit, we need to guarantee that we
do not remove any partial plans that may lead to the optimal
plan. When a new node is added to the graph, all near nodes
are extended towards it. For a dense graph, the new node will
be reached by multiple nodes in the graph, which will lead
to multiple new partial plans with co-located endpoints. When
this occurs, it is advantageous to prune partial plans that cannot
lead to the optimal solution. We now describe conservative
pruning strategies to this effect.

For a modular objective function, it is straightforward to
show that if na and nb are co-located, and c(na) > c(nb),
where c(na) is the cost to reach na and c(nb) is the cost to
reach nb, then I(pga) ≤ I(pgb). Thus, we can prune paths at
a given node if an alternative path exists to that node such
that I(na) > I(nb) and c(na) ≤ c(nb). Figure 2 shows
that pruning suboptimal paths reduces the number of nodes
required by more than an order of magnitude for the modular
case.

For submodular objective functions, the pruning strategy
above may remove partial plans that lead to the optimal plan.
To see this, note that the maximally informative trajectory from
a node I(pga) depends on the prior path taken to reach that
node. Thus, we cannot guarantee that paths should be pruned
even if they are dominated both in information and in cost. To
achieve a conservative pruning strategy in this case, we must
generate an upper bound on I(pga). We can do this by calculat-
ing the reachable information Imax(na), i.e., the information
within the remaining budget [2]. The reachable information
can be calculated either through integration, sampling, or by
enumeration if the information function is evaluated at discrete
points. We note that if the reachable information is calculated
as an approximation, the pruning strategy must be adjusted
accordingly to preserve asymptotic optimality.

Given a way to calculate the reachable information, we can
now prune nodes that are co-located if I(na) > Imax(nb)
and c(na) ≤ c(nb). In practice, the more aggressive pruning
strategy for modular objectives can alternatively be used as
a heuristic for submodular objectives to sacrifice asymptotic
optimality for computational efficiency.

V. EXPERIMENTAL RESULTS

We now discuss simulations and field tests validating the
proposed informative motion planning algorithm. We compare
the RIG algorithm to a combinatorial branch and bound
algorithm from prior work [2]. The branch and bound algo-
rithm incrementally extends partial paths in a discrete space
and maintains an upper bound on the solution quality of
each partial path using the bounding strategy for calculating
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Fig. 2. Number of iterations versus number of nodes in the graph while
running the RIG algorithm. The plots are terminated after the optimal solution
is found. Pruning paths that are known to be suboptimal can lead to more
than an order of magnitude reduction in the number of nodes.

Imax(·) described above. The branch and bound algorithm
is guaranteed to terminate with the optimal solution. As
such, it provides an apt comparison to validate the scalability
improvements of RIG as well as the advantage of operating
in continuous space.

A. Synthetic Problems

The simulations were run on a single desktop with a 3.2
GHz Intel i7 processor with 9 GB of RAM. The RIG algorithm
and combinatorial branch and bound algorithm were both
implemented in C++ on Ubuntu Linux. Nearest neighbor
queries were provided by the Open Motion Planning Library
(OMPL) [7].

The simulations model a synthetic information gathering
problem in a 10 km × 10 km environment. To provide a
comparison with the branch and bound algorithm, the vehicle
is given a simple motion model where it is assumed to move
holonomically on a discrete 1 km grid. The RIG algorithm was
modified such that nodes could only be created on the vertices
of the 1 km grid, which effectively yields a discrete variant
of the algorithm. In some simulations, circular obstacles are
placed randomly in the environment with radii (also chosen
randomly) between 1 km to 5 km.

The information objective for these simulations was spec-
ified by the random placement of five gaussian information
sources. The intensity of each information source degrades ex-
ponentially with a randomly chosen length scale and intensity.
In the time-varying case, the information sources move with
a known trajectory. For the submodular case, no additional
information is gathered from a point once it has been observed
by the vehicle. An example problem and solution trajectory is
shown in Figure 1, and an accompanying supplemental video
shows animations of growth over time for this example.

Given the specifications described above, 100 random sce-
narios were chosen for each budget, and the RIG algorithm
was compared to the combinatorial branch and bound algo-
rithm. Figure 3 shows the time to find the optimal discrete
path for increasing budget lengths. For the modular and time-
varying modular objectives, the RIG algorithm is able to find
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Fig. 3. Simulated results for the proposed sampling-based information gathering algorithm in a 10 km × 10 km environment. Each data point is averaged over
100 simulated trials with a random information landscape derived using a mixture of Gaussians. For comparison to the discrete branch and bound algorithm,
waypoints are restricted to fall on a 1 km grid. For modular and time-varying modular information objectives, the proposed RIG algorithm quickly approaches
the optimal discrete solution even at high budgets. For submodular objective functions, RIG quickly approaches a near-optimal solution.

the optimal solution quickly even at higher budgets. Here,
the optimal solution was known from running the branch and
bound algorithm. In general, the optimal solution can be iden-
tified at the point where the graph stops improving. Refining
an upper bound on optimal as the algorithm progresses is a
potential area for future work.

Adding obstacles to the environment can either increase or
decrease the computation time. Obstacles restrict the number
of possible paths through the environment, but they also can
prevent the algorithm from converging quickly. With larger
budgets, the computational gains from restricting the number
of paths outweigh the additional convergence time as obstacles
are added, and with smaller budgets the opposite occurs.

The gain in computation time for RIG over the com-
binatorial algorithm is less pronounced for the submodular
information objective, due to the looser pruning criterion
necessary to guarantee convergence to the optimal solution.
Initial simulations (not shown) demonstrated that RIG provides
a marginal improvement over the combinatorial algorithm for
finding the optimal solution. However, a strength of RIG is that
it rapidly explores the environment and quickly generates a
near-optimal solution. Figure 3 shows significant improvement
in computation time for achieving a solution within 90%
of optimal. In the next section, we will also demonstrate
how using the RIG algorithm in continuous space can be
used to improve path planning for optimizing a submodular
information objective in a wireless signal strength mapping
application.

B. Wireless Signal Strength Mapping

We now demonstrate our proposed approach using a lake
monitoring scenario with an autonomous surface vehicle
(ASV). The ASV is propeller-driven and is capable of moving
at speeds up to 2 knots. It is equipped with a GPS unit and
a Doppler Velocity Log (DVL), which provide localization
capabilities for the vehicle. The vehicle communicates with
a ground station through a standard 802.11 wireless con-
nection. The vehicle is capable of measuring the wireless
signal strength at its current location in dBm. Experiments
were conducted at Puddingstone Lake in San Dimas, CA
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Fig. 4. Root means square error (RMSE) of the predicted wireless signal
strength in a lake after executing four different data collection trajectories.
The trajectories planned by the branch an bound algorithms are based on
a discrete grid, and the trajectories planned by the proposed RIG algorithm
operate in continuous space (trajectories are shown in Figure 5). The RIG
algorithm is able to achieve lower RMSE for a given trajectory length.

(Lat. 34.088854◦, Lon. -117.810667◦).
The vehicle is maneuverable enough to accurately track

waypoints given by a planner. As a result, we are able to
generate trajectories in 2D space, which significantly reduces
the complexity of the planning problem versus planning in
the full 6D space of the vehicle’s position, orientation, and
velocities. Turning restrictions were incorporated into the
Steer() function to ensure that the trajectories are executable.3

The goal in this experiment is to reconstruct the wireless
signal strength over the entire area of interest, which would
be useful for constructing an ad hoc network and planning
surfacing locations for underwater exploration missions. In the
context of informative motion planning, we want to minimize
the root mean square error (RMSE) of the wireless signal
strength predictions over the area of interest given a budget on
the trajectory length. We note that there is no straightforward
way to calculate the expected RMSE after executing a given
trajectory due to the difficulty in predicting fluctuations in

3We note that it may be possible to generate a trajectory in 6D that gathers
more information for a given trajectory length than the optimal trajectory in
2D. Further analysis of full 6D planning with RIG is an interesting avenue
for future work.
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Fig. 5. Left and Center: Trajectories taken by the branch and bound algorithm (shown as yellow waypoints) versus the RIG algorithm (shown as white
waypoints) by an autonomous vehicle monitoring wireless signal strength in a lake. The RIG algorithm is able to operate in continuous space to provide a
richer set of possible trajectories for monitoring the environment. Right: The full survey is also shown (planned by a human operator), which was used to
compare the predictive accuracy after executing the autonomously planned trajectories.
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Fig. 6. Left and Center: Wireless signal strength map built after executing the 400 m trajectories generated by branch and bound and RIG. Right: Wireless
signal strength map built after executing the full 2500 m survey. The map generated by RIG is qualitatively closer to the one generated by the full survey.

signal strength. As an alternative, we use a surrogate metric
for planning that correlates with RMSE.

We utilize nonparametric regression in the form of Gaussian
Processes (GPs) to provide a prediction of the wireless signal
strength across the area of interest. For simplicity, we employ
a standard squared exponential kernel [17] that captures the
fact that predictions that are nearer to each other are more
correlated than those that are further apart. We use the pre-
dicted variance from the GP as a proxy for RMSE, which
has been shown in prior work to correlate [22]. Due to the
scalability issues of the GP, a local approximation is employed
where only the 100 nearest data points are used to calculate
the prediction and variance. For a given trajectory, we can
now calculate the expected reduction in variance over some
sampled set of points in the space of interest. Using this
expected reduction in variance as an information metric fully
defines an informative motion planning problem.

Trajectories were planned for budgets of 200 m and 400 m
using RIG and the discrete branch and bound algorithm
(shown in Figure 5). RIG was run for one minute using
the aggressive pruning strategy that prunes all paths that are
dominated in both distance and information. We note that the

variance reduction information objective is not modular, which
means this pruning strategy is a heuristic here. The branch and
bound algorithm was run on the finest grid possible that would
lead to completion in less than one minute. The trajectories
were then uploaded to the vehicle and executed.

The mean reconstruction errors after executing the different
trajectories are shown in Figure 4. For both the 200 m and
400 m budgets, the trajectory generated by the proposed
RIG algorithm provides lower RMSE error than the trajectory
generated by the discrete branch and bound algorithm. The
resulting wireless signal strength maps (shown in Figure 6)
also show a qualitative improvement for the paths generated
by RIG. These results demonstrate the benefit of planning in
continuous space. The experiments on the autonomous surface
vehicle also demonstrate the ease of implementation of the
proposed algorithm on a fielded system.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to generate highly
informative motion plans while respecting a budget constraint
through the use of iterative sampling-based motion planning
algorithms. Variants of the proposed RIG algorithm apply to



modular, time-varying modular, and submodular information
objectives. We have also shown that the RIG algorithm is
asymptotically optimal, in that it approaches the optimal
solution with increasing runtime, as long as a conservative
pruning strategy is used to eliminate suboptimal plans. We
have demonstrated through simulations that the proposed
algorithm is capable of finding optimal solutions in discrete
domains quickly. We have also demonstrated the effectiveness
of the RIG algorithm in a wireless signal strength mapping
domain where it is able to improve the accuracy of a wireless
signal strength map given a limited budget on mission time.

The general algorithm proposed in this work opens up a
number of avenues for future work. More aggressive pruning
strategies may allow for asymptotically optimal behavior with
submodular objective functions while pruning away more
suboptimal trajectories. Additional work could also provide
more efficient methods for calculating the information of a
given trajectory for complex objective functions. More future
work lies in generating more intelligent sampling strategies
that focus the candidate trajectories towards particularly in-
formative areas of the environment. Finally, the proposed
algorithm can potentially be extended to incorporate objective
functions that do not have the property of submodularity. The
work we have presented here provides a foundation for the
application of sampling-based motion planning algorithms to
a wide range of robotic information gathering tasks.
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