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Abstract—From teaching in labs to training for assembly, a key
role that robots are expected to play is to instruct their users
in completing physical tasks. While task instruction requires
a wide range of capabilities, such as effective use of verbal
and nonverbal language, a fundamental requirement for an
instructional robot is to provide its students with task instructions
in a way that maximizes their understanding of and performance
in the task. In this paper, we present an autonomous instructional
robot system and investigate how different instructional strategies
affect user performance and experience. We collected data on
human instructor-trainee interactions in a pipe-assembly task.
Our analysis identified two key instructional strategies: (1)
grouping instructions together and (2) summarizing the outcome
of subsequent instructions. We implemented these strategies into
a humanlike robot that autonomously instructed its users in
the same pipe-assembly task. To achieve autonomous instruction,
we also developed a repair mechanism that enabled the robot
to correct mistakes and misunderstandings. An evaluation of
the instructional strategies in a human-robot interaction study
showed that employing the grouping strategy resulted in faster
task completion and increased rapport with the robot, although it
also increased the number of task breakdowns. Our model of in-
structional strategies and study findings offer strong implications
for the design of instructional robots.

I. INTRODUCTION

As robots enter instructional roles such as teaching in
classrooms, training for assembly on a shop floor, and teach-
ing medical students surgical procedures, they will need to
effectively present task instructions, providing clarifications
and corrections when needed, to improve task outcomes and
user experience. Robots’ success in instruction will depend
on their effectiveness first in their use of language, including
linguistic and nonverbal cues [2, 5, 14, 22], and second in their
presentation of task information, including what information
they disclose at a given moment, how they present task
information, and how they correct misunderstandings. This
paper focuses on the latter problem of effectively presenting
task information and explores how robots might adopt the
strategies that human instructors use to present task information
and what strategies might be most effective.

Human instructors carefully plan instructions to maximize
their students’ ability to integrate the material, such as first
choosing a subgoal to address in a task and plan future
instructions to address the chosen subgoal to help contextualize
the instructions [4, 10]. To aid participants in completing
the step, instructions are iteratively refined until they are
atomic. Instructors might also engage the student in the

Fig. 1. The robot autonomously guiding a participant in assembling pipes.

instruction, encouraging “learning by doing” to enable the
student to achieve a deeper understanding of the instructions by
performing them [1]. These discourse strategies might inform
how a robot should order instructions and engage participants.

In addition to an effective method of delivery, task-based
instruction requires instructors to monitor student understanding
and progress and to provide feedback and corrections. As
the instructor and student progress in the task, they may en-
counter breakdowns—misunderstandings or miscommunication
concerning the task goals—that can impede task progress.
Instructors need to repair these breakdowns by resolving such
differences in understanding. Failure to repair breakdowns
might lead to compounded breakdowns later in the interaction,
further hindering progress. This repair is often context-specific
in that it requires knowledge of prior actions and current
expectations in order to succeed. Additionally, humans use a
variety of techniques to repair breakdowns [12] and adapt their
use of these techniques to the context of the interaction [20].

In this paper, we build a better understanding of these
instructional and repair strategies by collecting and analyzing
data from human instructor-trainee pairs on task instruction. We
then implement models of these strategies on an autonomous
robot system that guides users through a pipe-assembly task,
mimicking real-world assembly tasks in which robots are
expected to participate (Figure 1). This system enables the
robot to use each of the teaching strategies employed by human
instructors to provide students with task instructions and to
autonomously handle repair when breakdowns arise. Using this
system, we conducted an exploratory human-robot interaction
study to assess the tradeoffs between different instructional
strategies in measures such as the number of repairs conducted,
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task completion time, and user experience with the robot. In
summary, our work makes the following contributions:

1) A better understanding of human-human instruction.
2) Models for planning instructions and repairing break-

downs and their implementation in a robot system.
3) The validation of our models and their implementation

in an instructional scenario and an understanding of the
effectiveness of different instructional strategies.

4) The demonstration of an integrated process for designing
effective robot behaviors that involves modeling human
behaviors, implementing the resulting model in robots,
and evaluating implemented behaviors in a user study.

II. BACKGROUND

In order to enable robots to successfully fulfill instructional
roles, it is necessary to understand what instructional strategies
would be best for robots to follow. We draw inspiration from
how humans give task instruction to model and implement
teaching strategies that maximize task outcomes and student
experience in human-robot instruction. This section reviews
prior work on strategies that humans use in presenting task
information and on the development of instructional robots.

A. Instruction in Human-Human Interaction

Effectively communicating a series of instructions is a
complex task that has been studied at a number of levels,
including how human instructors develop and communicate
instructions for their students. Prior work has suggested that
instructors follow a discourse planning process based on
iterative refinement, where the instructor first picks a subgoal
to complete and then further decomposes the subgoal into
atomic actions [4, 10]. Instructions are then ordered based on
logical segmentations of steps to help students contextualize
the task [11]. These models provide important insights into
how instructors break task goals into a set of instructions.

Successfully directing a student in a task also relies on
feedback from the student. Despite the best efforts of in-
structors, there will inevitably be instances of breakdowns—
misunderstandings or miscommunication concerning task
goals—that can either impede ongoing progress or lead to
breakdowns in the future [29]. To correct breakdowns, humans
engage in repair, a process that allows participants to correct
misunderstandings and helps ensure that all participants have a
similar understanding of the relayed information [12, 29]. The
process of engaging in repair is often context-sensitive [21].
For example, when a topic is being discussed in a classroom,
the instructor frequently initiates repair to clarify students’
statements. However, when the classroom is engaged in a task,
students are more likely to initiate repair with their peers.

B. Instruction in Human-Robot Interaction

Prior research in robotics has explored how robots might
function in instructional settings, such as daycare facilities and
classrooms [15, 25, 24], and aid in task instruction, such as
offering assistance in a hand washing task [13] and giving
directions in a cooking task [27]. Among these studies, work

Fig. 2. The instructor (participant on the left) directing the student (participant
on the right) in assembling a predetermined pipe configuration.

on task instruction has focused on how robots might adapt task
instructions to user needs and instructional goals. For instance,
Torrey et al. [26] explored how adapting the comprehensiveness
of the robot’s instructions to its user’s expertise might affect
task outcomes and user experience. They found that more
comprehensive instructions resulted in fewer mistakes among
novices, while experts rated the robot as more effective, more
authoritative, and less patronizing when it provided brief
descriptions. Foster et al. [6] studied the effects of the order
in which the robot provided task goals along with instructions
on student recall of task steps, showing that providing task
goals prior to issuing task steps resulted in fewer requests for
repetition by the student later in the task.

Just as repair is necessary in human instruction, robots must
also be capable of identifying breakdowns and offering repair
for effective human-robot instruction. Prior work has explored
a variety of techniques to alleviate the need for repair, such as
taking into account the speaker’s perspective [28] or mitigating
the negative impact of breakdowns through framing [18]. While
these studies point to instructional and repair strategies as key
elements of the design of instructional robots, enabling robots
to use strategies that maximize task outcomes and student
experience requires a better understanding and models of
effective task instruction. The following section details our
work on developing such models.

III. MODELING

To better understand human teaching strategies, we collected
video data of human-human interactions during an instructional
pipe-assembly task that resembled assembly tasks in which
robots might guide humans, such as furniture assembly. Below,
we discuss our data collection process, analysis, and the
instruction models we constructed from the data.

A. Data Collection

We collected video data from eight instructor-trainee dyads
during a pipe-assembly task. In each of these interactions, one
participant (the instructor) first learned how to connect a set
of pipes into a particular formation from a pre-recorded video.
Instructors were given as much time as necessary to re-watch
the video and were provided use of the pipes during training.
Upon learning the instructions, the instructor trained the second
participant (the trainee) on how to correctly assemble the pipes
without the aid of the video (Figure 2).



Eight males and eight females aged 18 to 44 (M = 23.75,
SD = 8.56) were recruited from the local community. Each
interaction was recorded by a video camera equipped with a
wide-angle lens to capture the participants and the task space.
The instructional portion of the task, excluding the time the first
participant spent learning how to construct the pipes, ranged
from 3:57 to 6:44 minutes (M = 5 : 11, SD = 2 : 19).

B. Analysis

The analysis of the videos involved coding for significant
events, including the number of instructions given during a
single turn, whether subsequent instructions were summarized,
and how repair was initiated and given. To ensure reliability of
the coding, a second coder analyzed the videos. The inter-rater
reliability showed substantial agreement between the primary
and secondary coders (79% agreement, Cohen’s κ = .74) [17].

The analysis of our data helped us to better understand
different strategies instructors use to deliver instructions and
confirmed examples for our understanding of repair gained
from the literature. In our data, we observed instructors
organizing their instructions along two major factors: how
many instructions they gave at once, and whether or not they
gave a high-level summary of what the next few instructions
would accomplish. We coded our videos with these two factors.
Our analysis showed that, considering all instructions given
across all dyads, 72% of instructions involved descriptions of
individual steps, while 28% were grouped with one or more
other instructions. Twenty-one percent of all instructions were
prefaced with a summary of the instructions that followed, with
the remaining 79% of instructions not including a summary.

Our analysis also showed that instructors always initiated
the repair verbally, regardless of whether they became aware
of the breakdown verbally, such as a question by the trainee, or
visually, such as noticing that the task space was not configured
correctly. We found that 65% of these repairs were trainee-
initiated, while 35% of repairs were instructor-initiated.

Trainee-initiated repair—also called requests—always in-
volved verbal statements that clarified or confirmed instructor
expectations when the trainee either did not understand or
misunderstood an instruction. These statements ranged from
brief queries (e.g., “What?”) to more detailed requests, such as
“Where should the pipe go?” Consistent with prior work that
associated confusion with not understanding and clarification
with misunderstanding [8, 12, 16], we classified requests into
the categories confusion, confirmation, and clarification.

Where trainee-initiated repair was directed towards better
understanding expectations, instructor-initiated repair clarified
or corrected the trainee’s perceptions of the task. Instructors
initiated repair under one of two circumstances: mistake
detection and hesitancy. When instructors noticed the trainee
performing an action that the instructor knew not to be
consistent with the goals of that instruction, such as picking
up the wrong piece, they verbally corrected the trainee. When
instructors noticed that the trainee was hesitating to take action,
which was indicated by an average delay of 9.84 seconds in
following an instruction, they asked if the trainee needed help.

GroupedNot grouped
Not summarized

Summarized

Instruction
Summarization

Instruction Grouping

Instructor: Now take this [points 
toward pipe] and just attach it like 
that [makes connecting motion] 
<student acts>. !en take this one 
[points toward joint] and put it 
here. <student acts>

Instructor: You'll now connect these 
two and then connect them to this 
piece [points toward piece] so they'll be 
pointing straight up. <student acts>

Instructor: So you're going to use 
these two to connect them in and 
form a U-shape. So take one of 
these [points toward pipe] 
<student acts>, and then one of 
those [points toward washer] 
<student acts>, and you'll want 
the skinny side facing out. 
<student acts>

Instructor: OK and you want to start 
with one arm. So the arms are going to 
screw onto the smooth side, so they'll 
go onto the top of the t-piece. So you're 
going to want to take a washer "rst, and 
you'll want to put the fat side towards 
the curve of the washer and then put 
the washer on top of that, and then put 
the t-piece there. <student acts>

Fig. 3. Examples of how the two factors found in our modeling, instruction
grouping and instruction summarization, can be jointly used.

C. Model

Our analysis informed the development of a model with two
components: instructional strategies and repair.

1) Instructional Strategies: As noted in our analysis, in-
structor strategies for organizing instructions involved two
factors: grouping and summarization. In grouping, instructors
vary the number of instructions given from 1 . . . i before the
student completes the instructions. Instructors may provide one
instruction at a time and allow the student to carry it out before
providing the next instruction or offer grouped instructions by
conveying i instructions, given that i > 1, prior to the student
fulfilling the instructions. When instructors provide instruction
summarization, they preface their instructions with a high-level
summary of the goal of the subsequent k instructions. For
example, when the next four steps will result in a set of pipes
forming a U-shape, the instructor may say “Now, we’ll be
taking a few pipes and connecting them into a U-shape” prior
to giving the first step. While we categorized instructional
strategies into the grouping and summarization factors, our
analysis demonstrated that all four possible combinations of
these factors were exhibited, as illustrated in Figure 3.

2) Repair: Regardless of the instructional strategy utilized,
we observed instructors engage in three forms of repair:
requests, hesitancy, and mistake detection. Below, we describe
these behaviors and present model components for determining
whether repair is needed and, if so, how it might be performed.

Requests: All trainee requests, including questions and
statements, were considered as requests for repair. To enable
the model to determine the appropriate response, we classified
requests into semantic categories using semantic-language
modeling. For example, “Which piece do I need?” and “What
piece should I get?” were recognized as the same question.

Hesitancy: Depending on the task, indicators such as time
elapsed since the last interaction or time elapsed since the
workspace was last changed can signal hesitancy in performing
instructions. For the pipe-assembly task, we chose to use
the time elapsed since the workspace was last changed as a
conservative predictor of hesitancy-based breakdowns, as using
time elapsed since the last interaction could result in incorrectly
inferring hesitancy while the trainee is still working. Based on
our observations of how long human instructors waited before
offering repair, we considered 10 seconds of no change to the
workspace to indicate a hesitancy-based breakdown.



Mistake Detection: While requests and hesitancy-based
breakdowns are triggered by the student’s action or inaction,
mistake detection requires checking the student’s work. In our
proposed model, we chose a simulation-theoretic approach
to direct the robot’s behavior in relation to the participant.
This approach posits that humans represent the mental states
of others by adopting their partner’s perspective to better
understand the partner’s beliefs and goals [7, 9]. This approach
has been used in designing robot behaviors and control
architectures to allow robots to consider their human partner’s
perspective [3, 19]. In the context of an instructional task, the
instructor has a mental model of an action that they wish to
convey to the trainee. Following instruction, the instructor can
assess gaps in the trainee’s understanding or performance by
comparing the trainee’s actions to their mental model of the
intended action and noting the differences that occur.

Following the simulation-theoretic approach, we defined a
set of instruction goals P = {p1, . . . ,pn} for the robot regarding
the result of the participant’s action or inaction given the current
instruction. Depending on the task, P may vary at each step
of the instruction, as some instruction goals may no longer
be applicable, while others may become applicable. As the
participant engages in the task, the robot will evaluate whether
the current state of the workspace is identical to the set of
instruction goals P∗. If any of the individual task goals pk do
not match p∗

k , then there is a need for repair.
How repair is carried out depends on which task goal pk

has been violated. As we observed in our analysis of the
human-human interactions, the instructor repaired only the part
of the instruction that was currently incorrect. Additionally,
there is an inherent ordering to the set P that is informed
by the participant’s perception of the task. The participant’s
ordering of P is informed by elaboration theory, which states
that people order their instructions based on what they perceive
as being the most important and then reveal lower levels of
detail as necessary [20]. By imposing an ordering of decreasing
importance on the set P based on these principles for a given
task, we can ensure that each pk takes precedence over any
pk+n for n > 0. If multiple pk are violated, then the task goal
with the lowest k is addressed first. An example of this ordering
can be seen if a participant has picked up the wrong piece and
attached it in the wrong location. The instructor first repairs
the type of piece needed and then the location of that piece.

Although we discuss the model for detecting mistakes in
terms of task steps and goals, this model can also be extended
to understanding and repairing verbal mistakes. For example,
if the participant mishears a question and responds in a way
that is inconsistent with the answers expected, then repair is
needed. The appropriate answers of the intended question can
be formalized as pk, and any answer that does not fulfill pk
can be considered as a cause for repair.

IV. SYSTEM

To create an autonomous system that implements our models,
we contextualized our task in the same scenario used for
modeling human-human interactions. Using our findings from

the previous stage, we designed our system to enable the
processing of both verbal and visual information to check the
participant’s workspace and to detect and repair breakdowns.

A. Hardware

We implemented our model on a Wakamaru humanoid robot
(Figure 1). Our model uses information provided by both
video and audio captured at 12 frames per second using a
Microsoft Kinect stereo camera and microphone-array sensor.
The camera and microphone were suspended three feet above
the participant’s workspace, as shown in Figure 5. This camera
setup provided a visible range of the workspace of 43 inches
by 24 inches. A second stereo camera was placed behind the
robot to track the participant’s body and face.

B. Architecture

The architecture for our model involved four modules:
vision, listening, dialogue, and control. The vision and listening
modules capture and process their respective input channels.
The control module uses input from these modules to decide
the need for repair and relays the status of the workspace to
the dialogue module if feedback from the robot is needed.

The pipe-assembly task used in our implementation involves
multiple copies of five types of pieces: three types of pipes
(short, medium, and long) and two types of joints (elbow
and t-joints). All pieces were marked with augmented reality
(AR) tags to allow detection by the workspace camera. The
orientation of each tag was used to identify object type, location,
and rotation. The location and orientation of tags on pipes and
joints were consistent across each type of object, and tag
locations on each object were known to the system.

1) Vision Module: The vision module was designed to
achieve two goals: to detect the status of the participant’s
workspace and to process information on the participant’s
location. Sensing necessary for achieving each of these goals
is managed by a separate camera.

At each frame, the vision module processes the frame to
discover which pipes are connected, creating a graph of pipe
connections, C. There are three main instructions to building C:
finding the AR-tag glyphs in the frame, associating those glyphs
with pieces, and detecting which pieces are connected based
on a set of heuristics. The description of these instructions are
omitted due to space limitations.

At the completion of the participant’s turn, C is checked
against the correct workspace configuration, C∗. If the two
graphs are isomorphic—identical in structure—then the partic-
ipant has successfully completed the instruction. If the graphs
are not isomorphic, then the robot will discover an inconsistency
between the two graphs during the isomorphism check. The
lowest p∗k which is violated is then passed to the control module.
In those cases where the system needs to check multiple
instructions at once, the graph C is built incrementally by
systematically eliminating possibly extraneous pieces and then
comparing against C∗.

The second goal of the vision module—detecting the
participant’s location—is checked at every frame. When the



Human Student

Robot Instructor

Action-Triggered Repair

Perceived State
P' = {p1' , . . . , pn'}

p1' – p1
mismatch

Goal State
P = {p1 , . . . , pn}

Request-Triggered Repair

“Can you repeat that?”
Repetition

Hesitation-Triggered Repair

Clari!cation

Con!rmation
“Is this the right pipe?”

“Where should the pipe go?”

Pt' = Pt+1'
Perceived State

at time t
Perceived State

at time t+1 

Fig. 4. Examples of the three types of repair. In action-triggered repair,
the student’s configuration of pieces does not match what the robot knows
to be the correct configuration. Request-triggered repair is initiated when the
student directs a question or statement to the robot that requires the robot to
respond appropriately. In hesitation-triggered repair, the workspace remains
unchanged for more than 10 seconds, prompting the robot to offer assistance.

participant is within 1 ft. of the workspace, the robot repositions
its head so that it is gazing at the table, monitoring the
workspace. When the participant is further away (e.g., standing
back to check their work, retrieving the piece), the robot raises
its head and gazes toward the participant’s face. However, if the
participant or the robot is talking, or if the robot is checking
the workspace in response to a prompt from the user, the
robot looks toward the participant or where on the workspace
changes have been made, respectively.

2) Listening Module: The listening module detects and cat-
egorizes requests from the participant into semantic meanings
using the capabilities of the Microsoft Kinect sensor and speech-
recognition API. We provided the API with a grammar that
included speech acts from our data on human-human instruction
that we marked as one of the following semantic meanings:

• Request for repetition: (e.g., “What did you say?” “Can you
repeat the instructions?”)

• Check for correctness: (e.g., “Is this the right piece?” “I’m done
attaching the pipe.”)

• Check for options: (e.g., “Which pipe do I need?” “Where does
it go?”)

Utterances that did not belong to one of these categories, such
as confirmation of an instruction, were ignored by the system.

We use a dialogue manager to coordinate responses to each
type of query. Each recognized utterance has an associated
semantic meaning that indicates the purpose of the utterance.
For example, the phrase “What did you say?” is assigned the
semantic meaning of “recognition request.” These semantic
meanings allow the control module to understand the type of
utterance processed and to reply to the utterance appropriately
given the current state of the participant’s workspace. To
process requests that refer to the workspace, the system first
checks the state of the workspace through the vision module.
For example, asking “Did I do this right?” requires the robot
to determine whether the current workspace is correct.

3) Control Module: Decisions on the robot’s next action are
determined by the control module. It uses input from the vision
and dialogue modules and, following a simulation-theoretic
approach, makes decisions by comparing this input to actions
that the robot expects in response to its instructions. According
to our model, we define a set P that describes which possible

expectations can be violated by the participant. Consistent with
elaboration theory, ordering of task expectations are based
on observations from our study of human instructor-trainee
interactions, which resulted in the following categories:

• Timely Action (p0): The participant acted in a timely fashion.
• Correct Piece (p1): The participant used the correct piece.
• Correct Placement (p2): The participant placed the piece in the

correct location relative to the current workspace.
• Correct Rotation (p3): The participant rotated the piece correctly

relative to the current workspace.

The first expectation ensures that the participant does not
hesitate for too long, which might indicate confusion, when
adding the next piece. Based on our previous analysis, we
considered a 10-second delay in changing the workspace
after the last instruction to indicate hesitancy. The remaining
expectations ensure that the participant chooses the correct
piece to add, adds the piece in the correct location, and rotates
the piece correctly. Figure 4 illustrates p1, p2, and p3.

4) Dialogue Module: After evaluating input from the vision
and listening modules, the control module passes three pieces
of information to the dialogue module: current instruction, the
semantics associated with the speaker’s last utterance (if any),
and the control module’s evaluation of the workspace (if any).

Given this information, the dialogue module initiates the
appropriate verbal response, choosing from among predefined
dialogue acts based on which task instruction the participant is
completing, the current layout of the workspace, and the type
of question the participant asked. Not all responses depend
on all three pieces of information; for example, requests for
repetition of the last instruction are independent of how the
workspace is currently configured, and responses to hesitancy
are independent of the current workspace and interaction with
the participant. However, a request to check if an instruction
has been correctly completed requires knowledge of both the
instructions completed and the current layout of the workspace.

V. EVALUATION

To evaluate the effectiveness of the strategies that we
identified from our analysis in human-robot instruction, we
conducted a study that followed the same task setup as
our modeling study. Due to a lack of sufficient theory that
would predict the effects of these instructional strategies on
trainee performance and experience, we chose not to pose any
hypotheses and performed an exploratory evaluation.

A. Study Design

To assess the effectiveness of and tradeoffs between various
teaching strategies, we designed a between-participants-design
study to compare four different models of teaching strategies
that fell along two factors: grouping and summarization.
Grouping defines how many instructions are issued during
the instructor’s turn. For the purposes of our study, grouping
has two levels: no grouping, where a single instruction is given
during the round, and grouping, where a set of two or more
instructions are given at once. Summarization defines whether
or not the instructor gives a summary of the objective of the
next few instructions. In our study, we created two levels of this



Fig. 5. The setup used in our experimental evaluation. After the robot gave
an instruction, the participant retrieved the necessary pieces from behind them
and assembled the pieces on the workspace in front of the robot. A camera
above the workspace captured the configuration of the pieces.

factor: no summarization, where the instructor does not give
summaries, and summarization, where the instructor offers
summaries. We observed the instructor-trainee pairs in our
modeling study to exhibit all four combinations of these two
factors and created four conditions for our study: (1) no group-
ing, no summarization, (2) grouping, no summarization, (3) no
grouping, summarization, and (4) grouping, summarization.

The architecture detailed in the previous section was used in
all conditions. Differences between conditions were controlled
in the control module that managed decisions on how to struc-
ture instructions. Additionally, the dialogue module responded
to requests in the grouping level that did not exist in the no
grouping level (e.g., repeating multiple instructions).

B. Task

All participants were autonomously guided through assem-
bling a set of pipes by the robot in the setup shown in Figure 5.
Participants were given two bins—one for pipes and one for
joints—that contained only the pieces necessary for completing
the task, mimicking the setup in which different types of
parts might be kept at a workshop. Following an introduction,
the robot directed the participant in the assembly task by
issuing instructions according to the condition to which the
participant was assigned, varying the number of instructions
provided and whether or not high-level summaries of future
instructions were provided. The robot also provided repair as
necessary. Following completion of the task, the robot thanked
the participant. Completing the task took between 3:57 and
9:20 minutes (M = 6 : 44, SD = 1 : 23).

In the no grouping, no summarization and no grouping,
summarization conditions, the robot provided one instruction
at a time, while the grouping condition involved two to
four instructions at a time. Additionally, in the no grouping,
summarization and the grouping, summarization conditions,
the robot provided a high-level summary of the next few steps
prior to giving instructions, while it provided no summary in
the other conditions. Following instructions, the participant
retrieved the pieces to complete the steps and assembled the
pieces on the table. If the participant requested repetition or
clarification, the robot answered. When the participant asked
the robot to check the workspace, it confirmed correct actions

or provided repair according to our model. If no repair was
needed, it congratulated the participant on completing the task
and proceeded to the next instruction or set of instructions.

The resulting pipe-structure included a total of 15 connected
pipes and joints. While the resulting structure was a tree that
had no cycles, it had no predefined “root” piece, making the
computational complexity of checking for isomorphism against
the correct structure an NP-hard problem. We significantly
reduced the runtime of this operation by exploiting domain
knowledge in our data structure in the form of an incidence
matrix of connected joints versus pipes. Once all the pipes
were connected, checking for graph isomorphism required
approximately 10K permutations of the incidence matrix—far
fewer than the hundreds of trillions of checks required without
knowledge of the incidence matrix.

C. Procedure

Following informed consent, participants were guided into
the experiment room. The experimenter explained the task
and introduced the participant to the pieces used in the task.
After the experimenter exited the room, the robot started the
interaction by explaining that it would provide step-by-step
instructions for assembling the pipes. The robot then provided
instructions until the participant completed the entire structure.
At the end of the task, the robot thanked the participant. The
participant then completed a questionnaire and received $5.

D. Participants

A total of 32 native English speakers between the ages of
18 and 34 (M = 23, SD = 4.9) were recruited from the local
community. These participants had backgrounds in a range of
occupations and majors. All conditions were gender balanced.

E. Measures & Analysis

We used two objective measures to evaluate participant
performance in the task: number of breakdowns and task time.
Number of breakdowns was defined as the number of times
the participant made a mistake in fulfilling an instruction or
asked for repetition or clarification of the instruction. We also
measured task completion time, expecting a lower number of
repairs to indicate a faster task time. These measures were
coded from video recordings of the trials. To ensure reliability
of the measures, a second experimenter coded for repairs.
The inter-rater reliability showed substantial agreement (87%
agreement, Cohen’s κ = .83) [17].

We also used subjective measures that collected data on
the participant’s impressions of the robot, including likability,
naturalness, and competency, the participant’s experience with
the task, and their rapport with the robot. Participants rated
each item in our scales using a seven-point rating scale. A
confirmatory factor analysis showed high reliability for all
scales, including the likability (10 items, Cronbach’s α = .846),
naturalness (6 items, Cronbach’s α = .842), and competency
of the robot (8 items, Cronbach’s α = .896) and participant
experience (8 items, Cronbach’s α = .886) and rapport with the
robot (6 items, Cronbach’s α = .809).
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Fig. 6. Results from our evaluation. Significant and marginal results were found for total task time, number of breakdowns encountered, participants’ perceived
rapport with the robot, and their overall experience with the task.

Our analysis of data from these measures involved a
two-way analysis of variance (ANOVA), including grouping,
summarization, and the interaction between them as fixed-effect
factors. For main and interaction effects, we used α levels of
.050 and .10 for significant and marginal effects, respectively.
We conducted four contrast tests to understand the effects of
each factor in the absence or presence of the other factor using
a Bonferroni-adjusted α level of .0125 (.05/4) for significance.

F. Results

We primarily report marginal and significant effects of the
instructional strategies used by the robot on objective and
subjective measures and summarize them in Figure 6.

To ensure that possible errors in the robot’s autonomous
behavior did not negatively affect participant evaluations, we
examined video recordings of the study for mistakes by the
system. Our criteria for removing data included 1) whether
or not the robot offered incorrect instruction or repair and 2)
whether or not the robot failed more than once to understand
a single speech act by the participant. Our examination found
no instances of system error regarding the configuration of
the pipes in the instructions it gave or the repair it offered,
indicating no instances of an incorrect instruction or repair.
While the robot failed to understand 21% of the participants at
least once during their entire interaction, no single speech-act
was misunderstood more than once, as participants either more
clearly reiterated or rephrased their statement.

To evaluate the effectiveness of the instructional strategies,
we measured the number of breakdowns that occurred during
the task and the time taken to complete the task. The analysis of
this data showed that grouping instructions significantly reduced
task completion time, F(1,28) = 13.35, p = .001, η2 = .313, while
significantly increasing the number of breakdowns, F(1,28) =
8.87, p = .006, η2 = .213. Summarization had no overall effect
on task time, F(1,28) = 0.07, p = .793, η2 = .002, or the number
of breakdowns, F(1,28) = 1.25, p = .274, η2 = .030. The analysis
also showed a marginal interaction effect between grouping and
summarization over the number of breakdowns, F(1,28) = 3.47,
p = .073, η2 = .083, but no interaction effects were found over
total task time, F(1,28) = 1.29, p = .266, η2 = .030. Contrast
tests across conditions showed that, when the robot did not

provide a summary, grouping instructions significantly reduced
task completion time, F(1,28) = 11.47, p = .002, η2 = 269, but
resulted in a significant increase in the number of breakdowns,
F(1,28) = 11.71, p = .002, η2 = .282.

The subjective measures captured the participants’ percep-
tions of the robot, including likability, naturalness, and compe-
tency, their rapport with the robot, and their overall experience
with the task. The analysis showed an interaction effect between
grouping and summarization over the participants’ rapport with
the robot, F(1,28) = 8.76, p = .006, η2 = .211. When the robot
provided no summary, grouping instructions improved partici-
pant rapport with the robot, F(1,28) = 10.81, p = .003, η2 = .260.
When the instructions were not grouped, summarization also
improved rapport with the robot, F(1,28) = 9.54, p = .005,
η2 = .230. Consistent with the results on participant rapport,
we also found a marginal interaction effect between grouping
and summarization over participants’ ratings of their overall
experience with the task, F(1,28) = 3.68, p = .065, η2 = .115.

VI. DISCUSSION

The data from our objective and subjective results provided
a number of findings to guide the design of instructional robots,
the implications of which we highlight below.

Our objective results showed that grouping instructions
resulted in a tradeoff between task completion time and the
number of breakdowns that the participants encountered. We
found that participants completed the task significantly faster
when the robot grouped its instructions than when the robot
provided instructions one-by-one. We observed that when
participants received multiple instructions, they retrieved all
parts necessary to complete these instructions from the bins
at once, proceeded with assembling multiple pieces in a
sequence, and sought confirmation of the correctness of the
whole sequence from the robot, completing the overall assembly
significantly faster. When participants received instructions one-
by-one, they instead retrieved pieces one-by-one and proceeded
to the next instruction only when the robot confirmed the
successful completion of an assembly, which resulted in overall
longer task completion times. Contrary to the improvement in
task completion times, participants encountered significantly
more breakdowns when the robot grouped its instructions than



when the robot provided individual instructions. We speculate
that grouped instructions required participants to retain a
greater amount of information, which might have impaired
their understanding or recall of the instructions, resulting in
mistakes in the assembly that had to be repaired by the robot.

Further analysis into breakdowns that occurred with grouped
instructions showed that 60% of breakdowns occurred in the
first set of instructions, which contained four instructions, 25%
occurred in the second, third, and fifth set of instructions, which
all contained three instructions, and 15% occurred in the fourth
set of instructions, which contained two instructions. This
distribution of breakdowns indicates an increase in the number
of breakdowns as the number of grouped instructions increases,
which might indicate a greater cognitive load placed on the
participant by the introduction of more pieces into an instruction
[23]. Additionally, participants may have demonstrated selective
attention when the robot provided grouped instructions, causing
them to miss information [23]. Our data on the number of
breakdowns provided limited support for this explanation; in
carrying out grouped instructions, participants encountered
fewer breakdowns when the robot provided a summary of
subsequent steps (M = 0.88, SD = 0.99) than when no summary
was provided (M = 1.88, SD = 1.36), although this effect was
not significant at α level .0125. The summary provided by the
robot might have consolidated the participants’ understanding
of the grouped instructions. However, some of the breakdowns
that occurred early in the interaction may have been caused
by the participant acclimating to the task or the task involving
a greater variety of pieces to choose from at the beginning.

Our analysis of the subjective measures showed a significant
interaction effect between grouping and summarizing on
participant rapport with the robot. We found that participants
reported higher rapport with the robot when it grouped
instructions with no summary than when the robot used
neither grouping nor summarization. This improvement might
be due to the quicker, less monotonous experience that the
robot offered when it delivered instructions all at once and
spent no time on summarizing them. The results also showed
that participants reported higher rapport with the robot when
the robot provided a summary of subsequent steps along
with individual instructions than when it neither grouped its
instructions nor provided a summary. Consistent with the
interaction effect on participant rapport with the robot, we
also found a marginal interaction effect between grouping
and summarizing on their overall experience with the task,
although the contrast tests did not show significant differences
at α level .0125. We speculate that, when the robot provided a
summary of what was ahead in the task, as a summary involved
information on upcoming steps, participants might have felt
more informed and perceived the robot as more invested,
although this information did not improve task performance.

Design Implications: These results have a number of implica-
tions for the design of instructional robots. Our results suggest
that, despite resulting in more mistakes, grouping significantly
improves task completion times, making it ideal for settings in
which faster task completion are critical and mistakes are not

costly. Furthermore, coupling summarization with grouping
alleviates some of the mistakes caused by providing multiple
instructions at once. However, there are many scenarios where
providing instructions one-by-one might be preferable. For
example, with more complex tasks or students who might
have trouble keeping up with the robot’s instructions (e.g.,
novices), providing instructions one-by-one might help the
student complete the task with fewer breakdowns. Additionally,
in situations where mistakes could be dangerous or costly,
individual instruction might reduce the chance of these mistakes
occurring. In these scenarios, including summaries of upcoming
instructions might also improve student rapport with the robot.

Limitations: The work presented here has three key limita-
tions. First, although our model considers two structural compo-
nents of instruction-giving, there may be other components we
did not observe in our modeling study and thus did not include
in our model. Analyses of human interactions in a more diverse
set of instructional scenarios may enable the development of
richer models of instruction. Second, while our repair model
offered repair when prompted, the system did not proactively
offer repair due to the difficulty of accurately discerning when
mistakes occurred. The structure of the task and available
methods for perception made it difficult to continuously update
a model of the workspace and determine whether it was being
modified, as participants obstructed the camera’s view when
modifications were occurring. Third, our evaluation focused on
testing only the immediate effects of the proposed instructional
strategies on student performance and perceptions. We plan to
extend our work to explore a more diverse set of instructional
scenarios, instructions that are distributed over time, and long-
term effects of the proposed strategies on task-based instruction.

VII. CONCLUSION

As robots move into roles that involve providing users with
task guidance, such as teaching in labs and assisting in assembly,
they need to employ strategies for effective instruction. In this
paper, we described two key instructional strategies—grouping
and summarization—based on observations of human instructor-
trainee interactions in a pipe-assembly task. We implemented
these strategies on a robot that autonomously guided its users in
this task and evaluated their effectiveness in improving trainee
task performance and experience in human-robot instruction.
Our results showed that, when the robot grouped instructions,
participants completed the task faster but encountered more
breakdowns. We also found that summarizing instructions
increased participant rapport with the robot. Our findings show
that grouping instructions results in a tradeoff between task
time and breakdowns and that summarization has some benefits
under certain conditions, suggesting that robots selectively use
these strategies based on the goals of the instruction.
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