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Abstract—The use of a multi-camera system enables a robot
to obtain a surround view, and thus, maximize its perceptual
awareness of its environment. An accurate calibration is a nec-
essary prerequisite if vision-based simultaneous localization and
mapping (vSLAM) is expected to provide reliable pose estimates
for a micro aerial vehicle (MAV) with a multi-camera system. On
our MAV, we set up each camera pair in a stereo configuration.
We propose a novel vSLAM-based self-calibration method for
a multi-sensor system that includes multiple calibrated stereo
cameras and an inertial measurement unit (IMU). Our self-
calibration estimates the transform with metric scale between
each camera and the IMU. Once the MAV is calibrated, the MAV
is able to estimate its global pose via a multi-camera vSLAM
implementation based on the generalized camera model. We
propose a novel minimal and linear 3-point algorithm that uses
inertial information to recover the relative motion of the MAV
with metric scale. Our constant-time vSLAM implementation
with loop closures runs on-board the MAV in real-time. To the
best of our knowledge, no published work has demonstrated real-
time on-board vSLAM with loop closures. We show experimental
results in both indoor and outdoor environments. The code for
both the self-calibration and vSLAM is available as a set of ROS
packages at https://github.com/hengli/vmav-ros-pkg.

I. INTRODUCTION

Vision-based MAVs are more versatile than laser-based

MAVs. Whereas a laser only provides geometry data, a camera

can provide both geometry data via stereo and structure-from-

motion techniques, and appearance data. A camera is a passive

sensor while a laser is an active sensor and is thus susceptible

to interference. Furthermore, a camera is lighter and has a

smaller footprint. However, utmost care has to be taken when

choosing the camera configuration for a vision-based MAV

expected to operate robustly in challenging environments.

A single-camera configuration introduces limited perceptual

awareness, and in turn, flight constraints because if the camera

observes too few features for some time, localization can fail

and lead to a crash. In the case of a single downward-looking

camera [32], the MAV cannot fly too close to the ground which

often has little texture, and at the same time, it cannot perform

obstacle avoidance due to the absence of a forward-looking

camera. In the case of a forward-looking camera, constraints

are imposed on the path planning. For example, in [24], any

planned path ensures that there are a sufficient number of

features for localization. In addition, in [11], a path is planned

such that the MAV does not move outside the camera’s field

of view, and inadvertently crash into an unseen obstacle.

In this paper, we use a multi-camera system on a MAV;

together with the use of fish-eye lenses, this camera configura-

tion provides a surround view of the vicinity. Our multi-camera

Fig. 1. We show an image from each of the four fish-eye cameras on our
MAV platform. Our camera configuration provides a surround view. Each pair
of cameras is arranged in a stereo configuration so that 3D scene information
is available at all times.

approach is similar in spirit to Furgale et al. [9] who uses

a car equipped with multiple cameras configured to provide

a surround view. The use of such a multi-camera system

eliminates the constraints on path planning associated with

a single camera as discussed earlier, and allows for immediate

path planning in all directions. Furthermore, localization is

more robust as there is always at least one camera that

observes a sufficient number of features. Another benefit of

using multiple cameras is that we directly infer metric scale.

Our MAV is self-contained in the sense that all algorithms

necessary for autonomous flight are run on-board. With this

self-contained MAV, we circumvent latency and reliability

issues related to off-board computing, especially in areas

where Wi-Fi reception is poor. On the other hand, more

cameras correlate to a requirement for more computational

resources, but with recent advances in computing hardware,

especially in multi-core processors, it is now computationally

feasible to run image processing algorithms on-board a MAV

that uses multiple cameras.

For robust operation in the field, we arrange each camera

pair in a stereo configuration such that 3D scene information

is always available. Thus, we avoid the use of failure-prone

map initialization methods required for monocular cameras

and multi-camera systems with non-overlapping fields of view.

https://github.com/hengli/vmav-ros-pkg


The use of multiple cameras on a MAV raises two issues

we have to resolve before we can realize autonomous flight:

finding the inter-sensor transforms, and estimating the MAV’s

pose with multiple synchronized sensors. We come up with

novel methods for self-calibration and pose estimation based

on the generalized camera model [23]. Our self-calibration

method is designed for a multi-sensor system with multiple

calibrated stereo cameras and an IMU; we do not assume

overlapping fields of view between any two stereo cameras.

This method is based on vSLAM, only assumes that each

stereo camera is pre-calibrated, and does not require operator

input, fiducial markers or external positioning systems. We

are able to estimate the extrinsic calibration parameters with

metric scale which is inferred from stereo. We do not know

of other existing vSLAM-based self-calibration methods for

multiple calibrated stereo cameras. We propose a 3-point

minimal and linear solution for motion estimation that uses

inertial information to recover the relative motion with metric

scale. We incrementally build a graph of keyframes and

constraints, and use the double-window optimization method

[3] to optimize this graph. This graph optimization enables

real-time on-board SLAM with loop closures on a vision-based

MAV, which to the best of our knowledge, has not been shown

before in published works.

II. RELATED WORK

There is an extensive body of work on calibration for multi-

sensor systems. For tractability, we look at current state-of-the-

art methods that involve cameras. Kelly and Sukhatme [14]

perform visual-inertial SLAM with a camera-IMU system,

and at the same time, estimate the calibration parameters

including the camera-IMU transform. However, the calibration

parameters are only accurate as long as the camera-IMU

system experiences constant excitation. Furgale et al. [8]

proposes an offline method to find an accurate estimate of the

transform and the temporal offset between a camera and an

IMU using a calibration pattern. Here, this method makes use

of temporal basis functions for parameterization of continuous-

time variables, and continuous-time batch estimation. If we use

this approach to calibrate each camera-IMU pair, the inter-

camera transforms may not be accurate as we do not consider

camera-camera constraints in the form of 3D scene points

mutually observed by multiple cameras. Brookshire and Teller

[4] take a more generic approach similar to hand-eye calibra-

tion by calibrating a multi-sensor system based on relative

motion measurements for each sensor. In contrast, in our self-

calibration, we exploit 3D scene points mutually observed

by multiple cameras to obtain a more accurate estimate of

inter-camera transforms. Carrera et al. [6], Heng et al. [12]

develop self-calibration methods for multi-camera systems

that are based on vSLAM. However, [6] only estimates the

inter-camera transforms up to scale while [12] infers metric

scale from odometry data. In contrast, by utilizing calibrated

stereo, our self-calibration method estimates the inter-camera

transforms with metric scale without requiring odometry data.

We explore existing work on SLAM with a multi-camera

system [13, 15, 5, 31]. Kaess and Dellaert [13] solve an

optimization problem comprising pose-point constraints and

odometry constraints in order to obtain the pose of the multi-

camera system, and do not perform loop closure detection.

Kim et al. [15] models a multi-camera system as a spherical

camera. The drawback with this spherical model is that the

relative motion of the system can only be estimated up to

scale. Furthermore, they do not show experiments with their

multi-camera system on unmanned aerial vehicles. Carrera

et al. [5] uses a forward-looking camera and a backward-

looking camera on a ground robot, and implements pose-graph

SLAM based on odometry data and loop closure detection.

The absence of bundle adjustment in any form limits the metric

accuracy of the map. Tribou [31] implements a multi-camera

version of PTAM that makes use of a three-camera system

with non-overlapping fields of view on a MAV. As initial

scene point depths are not known, an initialized map does not

have accurate metric scale, and bundle adjustment that runs

in a separate thread is relied on to gradually recover metric

scale. Due to the cubic complexity of bundle adjustment, the

approach of Tribou [31] does not scale to large environments.

Furthermore, pose estimates with incorrect metric scale can

cause control instability issues. In addition, loop closures are

not performed. Li et al. [21] shows that in the case of only

intra-camera feature correspondences, and the relative rotation

being an identity matrix, the generalized epipolar constraint

reduces to the epipolar constraint which only allows us to

recover the relative pose up to scale. Due to the absence

of inter-camera feature correspondences from non-overlapping

fields of view, metric scale cannot be recovered if the MAV

moves with minimal rotation. In contrast, wide overlapping

fields of views for each stereo camera on our MAV ensure

that we always have inter-camera feature correspondences, and

thus, are able to obtain pose estimates with metric scale all

the time. Furthermore, our use of double-window optimization

[3] allows our SLAM implementation to run in constant time,

and thus, scale to large environments.

We then look at vision-based MAVs that run real-time pose

estimation algorithms on-board. Schauwecker and Zell [27]

deploy one downward-looking stereo camera and one forward-

looking stereo camera on a MAV, independently estimate the

MAV’s pose from each camera, and fuse both pose estimates.

In contrast, we use all cameras to obtain a single pose

estimate. Weiss et al. [32] utilizes both an IMU and downward-

looking camera together with a modified version of PTAM to

estimate the MAV’s pose, and infer scale from accelerometer

measurements. Schmid et al. [28] uses a FPGA board to

compute depth maps from a forward-looking stereo camera

and relies on stereo visual odometry for pose estimation. Shen

et al. [29] uses a forward-looking stereo camera with fish-eye

lenses. Here, they use gyroscopic measurements to filter out

incorrect feature correspondences, and uses a local map to

estimate the MAV’s pose. We note that the pose estimation

in all discussed works is susceptible to drift as loop closure

detection is not carried out. To the best of our knowledge,

there is no published work on real-time on-board SLAM with



loop closures for vision-based MAVs.

A number of works exploit the vertical direction infor-

mation provided by the IMU to simplify motion estimation

algorithms; the vertical direction is not susceptible to drift

unlike gyroscopic measurements. However, the IMU present

on our MAV is of the MEMS type, and the maximum error of

the vertical direction is 3 degrees as measured with a Vicon

motion capture system. As a result, we did not get accurate

relative pose estimates from using the known vertical in our

motion estimation algorithm.

III. MAV PLATFORM

We use a AscTec Firefly equipped with an Intel Core i7

single computer board and the ROS1 framework for mes-

sage transmission. The IMU on the AscTec Firefly is time-

synchronized to the single computer board. A VRmagic D3

four-camera system is mounted on the AscTec Firefly. In this

multi-camera system, each camera is connected to an ARM

Cortex A8 board via a proprietary cable. A Lensagon 1.5

mm f/2.0 fish-eye lens with a 185◦ field of view is fitted

to each camera. The IMU on the AscTec Firefly sends a

periodic trigger signal at 15 Hz to the ARM board which

then grabs pixel-synchronous 754×480 monochrome images

from all four cameras. Each time a trigger is sent, the IMU

publishes inertial data. In this way, we facilitate inertial-visual

fusion by making inertial information available for each image.

Furthermore, all sensor measurements are timestamped with

respect to the system clock on the single board computer. On

the ARM board, we use the RTI Connext DDS middleware2

to transmit image data over an Ethernet connection to the

single computer board. We note that this high-bandwidth

image transmission is not possible with ROS as ROS is only

able to publish a maximum of 15 images per second on

the ARM board given the computational constraints of the

ARM processor; still, we leverage ROS for all other message

transmissions due to the wide variety of libraries and ease of

use that ROS offers for message data manipulation.

To enable autonomous flight, we use the state estimation

framework from [32] for robust pose estimation by fusing both

inertial data from the IMU and pose data from vSLAM.

For the purpose of brevity, we define the following symbols

to be used in this paper. We define a n-camera system to

contain cameras C1, . . . , Cn. In this multi-camera system,

there are n
2 stereo cameras S1, . . . , Sn

2
and each stereo camera

Si comprises the camera pair {C2i−1, C2i}. For each camera

Ci, we denote its intrinsics as KCi
, and its extrinsics with

respect to the IMU’s reference frame V as [RCi
, tCi

].

IV. SELF-CALIBRATION

Our self-calibration method utilizes vSLAM with natural

features, and estimates the camera-IMU transforms for a multi-

sensor system with multiple calibrated stereo cameras and an

IMU. Although this method is designed for calibration of a

multi-camera system in which each pair of cameras is arranged
1http://www.ros.org
2https://www.rti.com/products/dds/index.html
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Fig. 2. Our self-calibration pipeline estimates the camera-IMU transforms.

in a stereo configuration, this method can easily be extended

to a multi-camera system with at least one stereo camera and

any number of monocular cameras. One by-product of the self-

calibration is a metrically accurate and globally consistent map

which can be used for map-based localization.

Figure 2 shows the pipeline underlying the self-calibration

method. From steps 1-4, we obtain a globally consistent map

for each stereo camera via stereo vSLAM. Using the poses of

the stereo cameras estimated by stereo vSLAM, step 5 gives

us an initial estimate of the inter-stereo-camera transforms.

Step 6 merges maps from all stereo cameras into a single

map. In steps 7-8, we obtain globally consistent pose estimates

for the multi-camera system. In addition, we obtain inter-

stereo-camera feature correspondences that correspond to loop

closures classified as correct. These feature correspondences

provide a strong prior for accurate inter-stereo-camera trans-

forms, and in step 9, allow us to recover an accurate estimate

of the inter-camera transforms. Step 10 yields the transform

between the multi-camera system and the IMU, and thus, the

camera-IMU transforms.

A. Stereo Calibration

The stereo calibration outputs the camera intrinsics and

stereo transform for each stereo camera. The unified projection

model and plumb bob distortion model [22] are used to model

the camera intrinsics. In our chessboard-based stereo calibra-

tion, we detect the chessboard in each pair of stereo images,

and after a minimum number of chessboards is detected, we

use the method in [22] to find the initial values for the camera

poses and intrinsic parameters. From the camera poses, we

infer the stereo camera poses and the stereo transform between

the two cameras, and subsequently, use non-linear refinement

to optimize the intrinsic parameters, stereo camera poses, and

the stereo transform.

B. Extrinsic Calibration

1) Stereo Visual Odometry (VO): In this step, each stereo

camera builds its own map. For each stereo frame, we use

the CenSurE feature detector [2] implemented in OpenCV to

detect features in each image. For each feature, we compute

both the ORB feature descriptor [26] and the backprojected

http://www.ros.org
https://www.rti.com/products/dds/index.html


unitary ray. We match features between the two images, and

for each feature match with corresponding backprojected rays

(r1, r2), if r2Er1 is less than a threshold where E is the

essential matrix representing the stereo transform, we mark

the feature match as valid and triangulate the feature match.

We define the reference frame of the stereo camera

{Ci, Ci+1} to be that of camera Ci. To compute the current

pose of the stereo camera, we find 3D-2D correspondences

between the first images of the previous and current stereo

frames, and use the P3P method [17] together with RANSAC

to find the pose that corresponds to the highest number of

inliers. We optimize the pose via sliding window bundle

adjustment. Here, each error residual is equivalent to the dot

product between the observed backprojected ray and the ray

passing through the camera center and the 3D scene point.

This dot product is faster to compute compared to the image

reprojection error.

2) Loop Closure Detection: The loop closure detection step

is the first of the next three steps that together make the map

built by each stereo camera globally consistent. We use the

DBoW2 implementation of the vocabulary tree [10]. For a

stereo camera {Ci, Ci+1}, we restrict loop closure detection

to images from camera Ci. For the first image in each stereo

frame, we find the n most similar images, and we filter out

matched images whose timestamps are too close to the that

of the query frame. This is to avoid unnecessary linking of

adjacent frames. Again, we use the P3P method [17] together

with RANSAC to find an inlier set of 2D-3D correspondences

for each of the n images. We add a loop closure between the

query frame and the frame which has the highest number of

2D-3D correspondences provided that this number exceeds a

threshold.

3) Robust Pose Graph Optimization: This step finds correct

loop closures. At the same time, we obtain globally consistent

estimates of the stereo camera poses which are a better initial

guess for bundle adjustment compared to pose estimates from

stereo VO which have drift. Hence, better convergence is

achieved in bundle adjustment. We build a pose graph in which

the nodes are the stereo camera poses, and edges between

nodes correspond to measurements of relative 6D transforms

obtained from either stereo VO or loop closures. We use the

approach in Lee et al. [18] to simultaneously optimize this

pose graph, and classify loop closures as either correct or

wrong. We then merge pairs of duplicate 3D scene points

corresponding to correct loop closures.

4) Bundle Adjustment: This step outputs a globally con-

sistent map for each stereo camera. Here, we run bundle

adjustment to optimize the stereo camera poses and 3D scene

points. The error residuals in the bundle adjustment are based

on the dot product of two rays as described in Section IV-B1.

5) Hand-Eye Calibration: In this step, we find an initial

estimate of the transforms between stereo cameras. Without

loss of generality, we assume that the reference frame of the

camera system is the same as that of camera C1. Using the

optimized stereo camera poses as input, we use the hand-eye

calibration method [7] to find the transforms between S1 and

Si for i = 2, . . . , n
2 . As a result, we have an initial estimate for

the pose of each camera with respect to the camera system’s

reference frame.

6) Map Merging: In this step, we merge the maps from

all stereo cameras. At the beginning, we set the poses of the

camera system to be the same as that of S1. We recompute

the scene points observed by Si for i > 1 by multiplying the

inverse of the pose of Si and the original 3D coordinates of

the scene points with respect to Si and which were computed

during stereo triangulation in Section IV-B1.

7) Loop Closure Detection: We restrict loop closure detec-

tion to images from cameras C1, . . . , Cn−1 and perform the

same loop closure detection procedure as described in Section

IV-B2.

8) Robust Pose Graph Optimization: We repeat the robust

pose graph optimization procedure as described in Section

IV-B3. From loop closures identified as correct, we obtain

feature correspondences between different stereo cameras, and

these feature correspondences allow the full bundle adjustment

to recover an accurate estimate of the transforms between the

stereo cameras.

9) Full Bundle Adjustment: We run full bundle adjustment

to optimize the camera intrinsics, camera extrinsics, camera

poses, and 3D scene points. In the full bundle adjustment, we

minimize a cost function comprising two sets of residuals:

min
Kc,Pi,Qj ,Tc,Xp

∑

c,i,p

wpρ
(
||π1(Kc,Pi,Tc,Xp)− pcip||

2
)

+
∑

c,j,q

ρ
(
||π2(Kc,Qj ,Yq)− pcjq||

2
)
.

(1)

π1 is a projection function that predicts the image coor-

dinates of the scene point Xp seen in camera c given the

camera’s intrinsic parameters Kc, the camera system pose Pi,

and the transform from the camera frame to the camera system

frame Tc. pcip is the observed image coordinates of Xp seen

in camera c with the corresponding camera system pose Pi.

Similarly, π2 is a projection function that predicts the image

coordinates of the chessboard corner point Yq seen in camera

c given the camera’s intrinsic parameters Kc, and the camera

pose Qj . pcjq is the observed image coordinates of Yq seen

in camera c whose pose is Qj . ρ is a robust cost function used

for minimizing the influence of outliers.

In equation 1, the first set of residuals corresponds to the

sum of image reprojection errors of the 3D scene points, and

the second set of residuals corresponds to the sum of image

reprojection errors of the chessboard corner points. 3D scene

points observed by multiple stereo cameras usually make up

a small percentage of all scene points in the map. To ensure

that these 3D scene points make a significant contribution to

accurate estimation of the inter-camera transforms, we assign a

higher value to wp for feature observations that are associated

with such 3D scene points. We optimize the camera intrinsic

parameters as we wish to make use of the high number of 3D

scene points to improve the accuracy of the camera intrinsics.



However, overfitting of intrinsic parameters can occur. To

prevent overfitting, and at the same time, ensure metric scale,

we include the residuals from the stereo camera calibrations.

10) Hand-Eye Calibration: We find the rotation offset be-

tween the reference frames of the IMU and the camera system

using the method in [7]. We do not require the translation

offset as our three-point algorithm for motion estimation only

makes use of the rotation offset. However, the translation offset

is required for state estimation which fuses data from both

the IMU and vSLAM, and a hand-measurement is sufficiently

accurate. After the hand-eye calibration, we have the final

estimates of the camera-IMU transforms.

V. VISUAL SLAM

In this section, we describe the algorithms used in our

keyframe-based vSLAM implementation. We propose a novel

3-point algorithm to estimate the relative motion of the MAV

with metric scale and with respect to the current keyframe.

As this 3-point algorithm makes use of the relative rotation

measurement from the IMU via short-term integration of

gyroscopic measurements, the accuracy of this relative rotation

measurement with respect to the current keyframe drops over

time due to gyroscopic drift. Hence, after a certain period

of time during which there is no new keyframe, we switch

to the pose estimation method [20] which is also based on

the generalized camera model and uses 3 correspondences.

Our motion estimation technique is far more computationally

efficient than the pose estimation technique. Furthermore, our

motion estimation algorithm is linear and computes one unique

solution, while the pose estimation algorithm is non-linear and

returns up to 8 solutions. A computational analysis reveals

that the number of arithmetic operations required by the pose

estimation algorithm is a very high multiple of that required by

the motion estimation algorithm on the order of ten thousands.

However, the pose estimation algorithm does not assume any

prior information unlike the motion estimation algorithm.

We mark the current frame as a keyframe if the number of

correspondences falls below a threshold. Over time, we incre-

mentally build a graph of keyframes and constraints obtained

from both visual odometry and loop closures. We choose the

double-window optimization method [3] to optimize the graph

as the ability of this method to run in constant time makes

real-time vSLAM on-board a MAV feasible.

A. Motion Estimation

Here, we discuss in depth our novel 3-point algorithm for

motion estimation based on the generalized camera model.

1) Generalized Epipolar Constraint (GEC): Pless [23] in-

troduced the generalized camera model for a multi-camera

system which allows for non-central projection. In this model,

we replace each image pixel x in camera Ci with a ray

expressed as a Plücker line 6-vector L that passes through

the camera center of Ci and the normalized image point

x̂ = K−1
Ci

x:

L =
[

qT q′T
]T

, (2)

TABLE I
COMPARISONS OF TOTAL NUMBER OF ITERATIONS NEEDED FOR

RANSAC (w = 0.5 AND p = 0.99)

Algorithm # RANSAC Iterations # Solutions Total

Minimal 3-Point 34 1 34

Minimal 6-Point [30] 292 64 18688

Linear 17-Point [23] 603606 1 603606

where q and q′ are the direction and moment vectors:

q = RCi
x̂, q′ = tCi

× q. (3)

We write the GEC [23] as

L2
T

[
E R

R 0

]

︸ ︷︷ ︸

EGC

LT
1 = 0, (4)

where L1 ↔ L2 are two Plücker line vectors representing a

ray correspondence between two generalized camera frames

V1 and V2, and EGC is the 6 × 6 generalized essential

matrix in which the first item is the conventional essential

matrix E = [t]×R where R and t are the rotation and

translation from V1 to V2. We note that for the conventional

essential matrix, t is computed only up to scale, but for a

generalized camera, the scale of t can be computed as shown

in [21]. In the degenerate case of no inter-camera feature

correspondences and R being an identity matrix, the scale of t

cannot be recovered. However, the wide overlapping fields of

view for each stereo camera ensure that inter-camera feature

correspondences are always present, and thus, we are always

able to compute the scale of t.

2) Minimal 3-Point Algorithm: We estimate R from short-

term integration of gyroscopic measurements between the two

frames V1 and V2. Substituting L1 = [qT
1 q′

1
T
]T and L2 =

[qT
2 q′

2
T
]T into and rearranging equation 4 in the form At =

b, we get

qT
1 R

T [q2]×
︸ ︷︷ ︸

A

t = −qT
1 R

Tq′

2 − q′

1
T
RTq2

︸ ︷︷ ︸

b

. (5)

As t has three unknown variables, we require 3 Plücker

line correspondences to solve for t. Given 3 Plücker line

correspondences, we construct the 3× 3 matrix

C =
[
AT

1 AT
2 AT

3

]T
, (6)

and the 3-vector

D =
[
b1 b2 b3

]T
, (7)

and solve the system of linear equations Ct = D to obtain

t. We note that this 3-point algorithm is linear and does not

require scene point triangulation.

3) Robust Estimation: We make our 3-point algorithm

robust to outliers by implementing it within RANSAC. We

determine the best solution by choosing the solution that has

the highest number of inliers.

The number of iterations k needed in RANSAC for a n-

point algorithm is given by k = ln(1−p)
ln(1−wn) , where n is the

number of correspondences, w is the probability that any se-

lected correspondence is an inlier, and p is the probability that

all the selected correspondences are inliers. The total number



of iterations m needed to run RANSAC while evaluating s
solutions is given by m = k× s. Table I shows the number of

iterations required by our 3-point algorithm; for comparison,

we include the 6-point minimal solution [30] and linear 17-

point solution [23] to the GEC problem. We observe that our

3-point algorithm requires much fewer iterations compared to

the 6-point and 17-point solutions; in other words, our 3-point

algorithm is very computationally efficient when estimating

the relative motion. We then optimize the relative motion

estimate returned by RANSAC using non-linear refinement

and the inlier set of correspondences associated with the

relative motion estimate.

B. Pose Estimation

When there is no new keyframe for some time, the relative

rotation measurement between the current keyframe and the

current frame becomes inaccurate due to gyroscopic drift,

and using such rotation measurements will cause our 3-point

algorithm for motion estimation to return inaccurate estimates.

In this case, we switch to the pose estimation algorithm [20]

based on 3D scene points observed in the current keyframe. In

this pose estimation algorithm, we require only 3 correspon-

dences to recover the absolute pose associated with the current

frame. The pose estimation algorithm returns up to 8 solutions,

but in most cases, 2 solutions are returned. As in motion

estimation, we use the RANSAC framework for robustness

to outliers, and to find the best solution that corresponds to

the highest number of inliers.

C. Location Recognition

To ensure that the map in the immediate vicinity of the

MAV is globally consistent, we find loop closures. We use the

same P3P RANSAC technique discussed in Section IV-B2 to

find loop closures.

D. Optimization

For graph optimization, we use the double-window opti-

mization method [3] which we implement using Google’s

Ceres Solver [1]. In double-window optimization, we simul-

taneously optimize both an inner window and outer window

which correspond to sets of pose-point constraints and sets

of pose-pose constraints respectively. For robustness to out-

liers, we use the Huber and Cauchy robust cost functions

respectively for the inner and outer windows. We make one

modification to the double-window optimization such that we

include residuals, each of which corresponds to the error

between the vertical direction associated with the MAV’s

estimated pose and the vertical direction measurement from

the IMU. This modification ensures that the map is aligned

with the ground plane.

VI. EXPERIMENTS AND RESULTS

We conduct experiments to evaluate the accuracy of our

self-calibration method and vSLAM implementation. We use

a Vicon motion capture system in some experiments for the

sole purpose of collecting ground truth data. The results of

these experiments are described in detail in this section.

TABLE II
COMPARISON OF OUR ESTIMATED INTER-SENSOR TRANSFORMS WITH

GROUND-TRUTH ESTIMATES FROM THE VICON-BASED CALIBRATION

METHOD. iRj IS THE ROTATION GIVEN IN ROLL, PITCH, AND YAW

ANGLES BETWEEN SENSORS i AND j . itj IS THE TRANSLATION BETWEEN

SENSORS i AND j .

Our self-calibration
Difference with

Vicon-based calibration

C1RC2
[−0.06◦ 0.20◦ −1.39◦] [0.001◦ 0.035◦ 0.016◦]

C1tC2
[31.89 −0.10 0.04] cm [0.15 0.01 0.11] cm

C1RC3
[177.41◦ 0.85◦ 176.59◦] [0.177◦ 0.025◦ 0.029◦]

C1tC3
[1.38 3.31 −28.21] cm [0.67 0.14 0.55] cm

C1RC4
[176.20◦ 0.34◦ 177.63◦] [0.183◦ 0.060◦ 0.086◦]

C1tC4
[32.66 1.47 −27.96] cm [0.73 0.06 0.61] cm

IMU
RC1

[−94.09◦ 2.42◦ −92.07◦] [0.231◦ 0.050◦ 0.187◦]

A. Self-Calibration

We use a Vicon motion capture system to evaluate the

accuracy of the parameters estimated by our self-calibration

method. To obtain ground-truth estimates, we devise a Vicon-

based calibration method in which we use the Vicon system

to track the pose of both the MAV and a chessboard moving

across the field of view of each camera. Hence, the transform

between the chessboard and MAV is known at any time step.

From intrinsic camera calibration which also computes the

camera poses with respect to the chessboard, we obtain an

initial guess of both the intrinsic camera parameters and the

transform between each camera and the MAV. We optimize

these intrinsic parameters and camera-MAV transforms via

non-linear refinement. From Vicon pose measurements and

IMU measurements, we perform a hand-eye calibration to find

a ground-truth estimate of the rotation between the MAV and

the IMU, and thus, the camera-IMU transforms.

Prior to running our self-calibration method, we separately

calibrate each stereo camera on the MAV. Subsequently, we

carry the MAV along a figure-8 path several times while

varying the height of the MAV above the ground. During

this manoeuvre, the MAV’s heading is roughly parallel to the

direction of motion. This figure-8 manoeuvre ensures that all

calibration parameters are fully observable.

The figure-8 manoeuvre took 90 seconds and the travelled

distance was 54.16 m. Our self-calibration took 16 minutes,

and the resulting average reprojection error associated with the

generated map was 0.659 pixels. The map had 23957 scene

points with an average scene point depth of 4.36 m.

We report in the first column of Table II the estimated

rotation in terms of roll, pitch, and yaw angles, and translation

of Ci with respect to C1 for i = 2, 3, 4. We also report

the estimated rotation and translation of C1 with respect to

the IMU. The second column of Table II shows the differ-

ences between the estimated rotations/translations and those

estimated by the Vicon-based calibration method. We observe

that our estimated inter-camera transforms are accurate with

rotation and translation errors not exceeding 0.183◦ and 0.73
cm respectively.

The average error of the MAV’s positions estimated by our



self-calibration method using Vicon measurements as ground

truth is 1.28 cm. This low error indicates that our self-

calibration produces an accurate map, and in turn, accurate

calibration parameters.

B. vSLAM

We conduct a combination of both simulation and real-

world experiments. The simulation experiments are designed

to provide a quantitative analysis of the accuracy of our 3-point

algorithm for motion estimation. Two real-world experiments

are carried out in different settings to verify the accuracy of the

poses estimated by our vSLAM implementation. In both real-

world experiments, the MAV flies autonomously by relying

on pose estimates from vSLAM which are input to the state

estimator, and we manually send velocity commands to the

MAV via a remote control. In the first experiment, the MAV

moves along multiple loops in an indoor environment, and we

use the Vicon motion capture system to record the MAV poses.

In the second experiment, the MAV flies in a horizontal loop

in an outdoor environment, and we use the loop closure error

metric to evaluate the pose accuracy.

In all real-world experiments, the input to our vSLAM

implementation consists of 754 × 480 images from the 4-

camera system together with inertial data, and our vSLAM

implementation runs at 7-12 Hz with the inner window size

and outer window size for the double-window optimization set

to 15 and 50 respectively.

1) Simulation Experiments: Here, we run simulations to

quantify the accuracy of our 3-point algorithm for motion

estimation, and compare the accuracy against that of the

2-point algorithm based on the Ackermann motion model

[19] and that of the linear 17-point algorithm [23]. In each

simulation, we use the same multi-camera system setup on

the MAV. For each trial, we generate a random relative motion

(θ, ρ) where θ and ρ are the relative yaw and scale respectively

of the Ackermann motion defined in Lee et al. [19]. θ and ρ
are assigned random values within the ranges of [0.05, 0.15]
rad and [0.25, 0.75] m respectively. The 3D scene points are

randomly generated within the range of [−10, 10] m with

respect to the world reference frame. Point correspondences

are obtained by reprojecting the 3D scene points into the

cameras, and we ensure that each 3D scene point is seen by

at least one camera over two consecutive frames.

Figures 3(a) and 3(b) show the average translation and

rotation errors over 1000 trials, and a range of pixel noise

levels between 0 and 1 pixels and with a 0.1 pixel interval.

Following Quan and Lan [25], we define the translation error

as 2||t− t̃||/(||t||+ ||̃t||), where t and t̃ are the estimated and

ground truth translations. The rotation error is defined as the

norm of the Euler angles from RR̃T , where R and R̃ are the

estimated and ground truth rotation matrices. We can see that

the errors from the linear 17-point algorithm are significantly

higher, while the 2-point and our 3-point algorithms similarly

show low errors.

Figures 3(c) and 3(d) show the translation and rotation

errors over 1000 trials, and a range of IMU noise levels

Fig. 4. We show the keyframe graph at the end of a 3-loop flight in an
indoor environment. The red and blue spheres represent the keyframe poses
belonging to the inner and outer windows respectively. A blue line traces the
keyframe positions while a red line traces the corresponding Vicon-measured
positions.

between 0 and 0.6 degrees and with an interval of 0.1 degrees.

The pixel noise is kept fixed at 0.5 pixels. At each IMU noise

level, we collectively corrupt the roll, pitch and yaw angles

with noise. We can see that the error from the linear 17-point

algorithm is significantly higher than our 3-point algorithm

despite the fact that the relative rotation measurement from

the IMU is corrupted with noise. Note that the IMU used

on our MAV has a maximum error of 0.1 degrees over two

consecutive frames.

We also look at how each algorithm performs when we al-

low relative motion along the z-axis, and here, the Ackermann

motion constraint is violated. Figures 3(e) and 3(f) show the

translation and rotation errors as we set the z-component of

the relative translation from 0 to 0.6 m with a step of 0.1 m.

The pixel noise is kept fixed at 0.5 pixels. We can see that the

errors from the 2-point algorithm increase as the Ackermann

constraint is increasingly violated. In contrast, the errors from

our 3-point algorithm remain relatively constant, and at the

same time, they are significantly lower than the errors from

the linear 17-point algorithm.

2) Indoor Experiment: In this indoor experiment, the MAV

flies 3 loops over a distance of 45.48 m, starting each loop

at an increasing height. Figure 4 shows the state of the

keyframe graph at the end of the flight. In this figure, the

keyframes belonging to the inner and outer windows are

marked with red and blue spheres respectively. Green lines

between keyframe pairs indicate loop closures. Green points

represent 3D scene points in the map while yellow points

represent 3D scene points observed in the inner window. A

blue line traces the keyframe positions as estimated by our

vSLAM implementation. A red line traces the corresponding

Vicon-measured keyframe positions.

Based on Vicon measurements, the average error of the 110

keyframe positions is 6.34 cm. We observe that the errors

associated with the keyframes not belonging to either the inner

or outer windows, and especially at the boundary of the outer

window, are higher as these keyframes are not included in the

optimization.

We re-run the vSLAM implementation with real-time play-

back of the data logged from this experiment, and make

one change to the double-window optimization such that the
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Fig. 3. Comparisons of translation (no units) and rotation (rad) errors from the Ackermann 2-pt, linear 17-point, and our 3-point algorithms in simulation
over (a)-(b) image pixel noise, (c)-(d) IMU noise with pixel noise fixed at 0.5 pixels, and (e)-(f) off Ackermann motion along the z-axis with pixel noise fixed
at 0.5 pixels.

Fig. 5. We increase the size of the outer window to include all keyframes
except those in the inner window. As a result, the keyframe position accuracy
increases, but the running time of the double-window optimization now scales
with the number of keyframes instead of being constant.

outer window includes all keyframes except those in the inner

window. Figure 5 shows the state of the keyframe graph

at the end of the flight. As expected, the average error of

the keyframe positions decreases to 4.57 cm. However, with

this outer window setting, the double-window optimization no

longer runs in constant time, and thus, is not capable of real-

time performance.

The results show that by switching from optimization over

all keyframes to optimization with fixed-size inner and outer

windows, the accuracy of the keyframe positions slightly

decreases. However, the keyframe poses are still reasonably

accurate for tasks such as mapping and path planning.

3) Outdoor Experiment: In this outdoor experiment, we

disable the loop closure detection as we want to evaluate the

pose drift in the absence of loop closures. Here, the MAV

flies one large loop on hilly terrain, and both the start and end

points are the same. The flight time is 185 seconds, and the

travelled distance is 112.98 m. At the end of the flight, the

resulting keyframe graph has 820 keyframes. Figure 6 shows

the MAV’s path estimated by our vSLAM implementation. In

this figure, a purple square and red circle mark the start and

end points of the flight. The distance between the start and

Fig. 6. In an outdoor experiment, we plot the (x, y) positions of the MAV
estimated by our vSLAM implementation. A purple square and red circle
mark the start and end points which are the same. Green dots represent 3D
scene points.

end point is 3.31 m, and thus, the loop closure error is 2.93%.

VII. CONCLUSIONS

Our vSLAM-based self-calibration method produces accu-

rate extrinsic calibration parameters with metric scale for a

MAV with multiple stereo cameras as long as there is a

sufficient number of inter-camera feature correspondences, and

a majority of scene points are close to the cameras. Through

real-world experiments in indoor and outdoor environments,

we demonstrate real-time on-board vSLAM with loop closures

on a MAV with multiple cameras. The MAV is able to perform

autonomous flight based on the pose estimates from vSLAM.

Future work will focus on adding capabilities such as dense

mapping and 3D exploration to our MAV platform.

ACKNOWLEDGMENTS

The first author is funded by the DSO National Laboratories

Postgraduate Scholarship. This work is partially supported by

the SNSF V-MAV grant (DACH framework).



REFERENCES

[1] S. Agarwal, K. Mierle, and Others. Ceres solver, 2013.

https://code.google.com/p/ceres-solver/.

[2] M. Agrawal, K. Konolige, and M. Blas. Censure: Center

surround extremas for realtime feature detection and

matching. In Computer Vision ECCV 2008, volume

5305 of Lecture Notes in Computer Science, pages 102–

115. Springer Berlin Heidelberg, 2008. doi: 10.1007/

978-3-540-88693-8 8. URL http://dx.doi.org/10.1007/

978-3-540-88693-8 8.

[3] H. Strasdat amd A. Davison, J. Montiel, and K. Kono-

lige. Double window optimisation for constant time

visual slam. In IEEE International Conference on

Computer Vision (ICCV), 2011. doi: 10.1109/ICCV.

2011.6126517. URL http://ieeexplore.ieee.org/xpls/abs

all.jsp?arnumber=6126517.

[4] J. Brookshire and S. Teller. Extrinsic calibration from

per-sensor egomotion. In Robotics: Science and Systems

(RSS), 2012. URL http://www.roboticsproceedings.org/

rss08/p04.html.

[5] G. Carrera, A. Angeli, and A. Davidson. Lightweight

slam and navigation with a multi-camera rig. In Euro-

pean Conference on Mobile Robots (ECMR), 2011. URL

http://www.doc.ic.ac.uk/∼gcarrera/ecmr2011.pdf.

[6] G. Carrera, A. Angeli, and A. Davison. Slam-based

automatic extrinsic calibration of a multi-camera rig.

In IEEE International Conference on Robotics and

Automation (ICRA), 2011. doi: 10.1109/ICRA.2011.

5980294. URL http://ieeexplore.ieee.org/xpls/abs all.

jsp?arnumber=5980294.

[7] K. Daniilidis. Hand-eye calibration using dual

quaternions. International Journal of Robotics Re-

search (IJRR), 18(3):286–298, 1999. doi: 10.1177/

02783649922066213. URL http://ijr.sagepub.com/

content/18/3/286.refs.

[8] P. Furgale, J. Rehder, and R. Siegwart. Unified temporal

and spatial calibration for multi-sensor systems. In

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2013. doi: 10.1109/IROS.2013.

6696514. URL http://ieeexplore.ieee.org/xpls/abs all.

jsp?arnumber=6696514.

[9] P. Furgale, U. Schwesinger, M. Rufli, W. Derendarz,

H. Grimmett, P. Muhlfellner, S. Wonneberger, J. Timp-

ner, S. Rottmann, Bo Li, B. Schmidt, T.N. Nguyen,

E. Cardarelli, S. Cattani, S. Bruning, S. Horstmann,

M. Stellmacher, H. Mielenz, K. Koser, M. Beermann,

C. Hane, L. Heng, G. H. Lee, F. Fraundorfer, R. Iser,

R. Triebel, I. Posner, P. Newman, L. Wolf, M. Polle-

feys, S. Brosig, J. Effertz, C. Pradalier, and R. Sieg-

wart. Toward automated driving in cities using close-

to-market sensors: An overview of the v-charge project.

In IEEE Intelligent Vehicles Symposium (IV), 2013. doi:

10.1109/IVS.2013.6629566. URL http://ieeexplore.ieee.

org/xpls/abs all.jsp?arnumber=6629566.

[10] D. Galvez-Lopez and J. Tardos. Bags of binary words for

fast place recognition in image sequences. IEEE Trans-

actions on Robotics (T-RO), 28(5):1188–1197, 2012. doi:

10.1109/TRO.2012.2197158. URL http://ieeexplore.ieee.

org/xpls/abs all.jsp?arnumber=6202705.

[11] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and

M. Pollefeys. Autonomous obstacle avoidance and ma-

neuvering on a vision-guided mav using on-board pro-

cessing. In IEEE International Conference on Robotics

and Automation (ICRA), 2011. doi: 10.1109/ICRA.

2011.5980095. URL http://ieeexplore.ieee.org/xpls/abs

all.jsp?arnumber=5980095.

[12] L. Heng, B. Li, and M. Pollefeys. Camodocal: Au-

tomatic intrinsic and extrinsic calibration of a rig

with multiple generic cameras and odometry. In

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2013. doi: 10.1109/IROS.2013.

6696592. URL http://ieeexplore.ieee.org/xpls/abs all.

jsp?arnumber=6696592.

[13] M. Kaess and F. Dellaert. Visual slam with a multi-

camera rig. Technical report, 2006. URL http://www.cc.

gatech.edu/∼kaess/pub/Kaess06tr.pdf.

[14] J. Kelly and G. Sukhatme. Visual-inertial sensor fu-

sion: Localization, mapping and sensor-to-sensor self-

calibration. International Journal of Robotics Re-

search (IJRR), 30(1):56–79, 2011. doi: 10.1177/

0278364910382802. URL http://ijr.sagepub.com/content/

30/1/56.refs.

[15] J. Kim, M. Hwangbo, and T. Kanade. Motion estima-

tion using multiple non-overlapping cameras for small

unmanned aerial vehicles. In IEEE International Con-

ference on Robotics and Automation (ICRA), 2008. doi:

10.1109/ROBOT.2008.4543678. URL http://ieeexplore.

ieee.org/xpls/abs all.jsp?arnumber=4543678.

[16] G. Klein and D. Murray. Parallel tracking and mapping

for small ar workspaces. In IEEE and ACM International

Symposium on Mixed and Augmented Reality (ISMAR),

2007. doi: 10.1109/ISMAR.2007.4538852. URL http://

ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4538852.

[17] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel

parametrization of the perspective-three-point problem

for a direct computation of absolute camera position

and orientation. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2011. doi:

10.1109/CVPR.2011.5995464. URL http://ieeexplore.

ieee.org/xpls/abs all.jsp?arnumber=5995464.

[18] G.H. Lee, F. Fraundorfer, and M. Pollefeys. Robust pose-

graph loop-closures with expectation-maximization. In

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2013. doi: 10.1109/IROS.2013.

6696406. URL http://ieeexplore.ieee.org/xpls/abs all.

jsp?arnumber=6696406.

[19] G.H. Lee, F. Fraundorfer, and M. Pollefeys. Motion

estimation for self-driving cars with a generalized cam-

era. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2013. doi: 10.1109/CVPR.

2013.354. URL http://ieeexplore.ieee.org/xpls/abs all.

https://code.google.com/p/ceres-solver/
http://dx.doi.org/10.1007/978-3-540-88693-8_8
http://dx.doi.org/10.1007/978-3-540-88693-8_8
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6126517
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6126517
http://www.roboticsproceedings.org/rss08/p04.html
http://www.roboticsproceedings.org/rss08/p04.html
http://www.doc.ic.ac.uk/~gcarrera/ecmr2011.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980294
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980294
http://ijr.sagepub.com/content/18/3/286.refs
http://ijr.sagepub.com/content/18/3/286.refs
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6696514
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6696514
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6629566
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6629566
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6202705
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6202705
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980095
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980095
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6696592
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6696592
http://www.cc.gatech.edu/~kaess/pub/Kaess06tr.pdf
http://www.cc.gatech.edu/~kaess/pub/Kaess06tr.pdf
http://ijr.sagepub.com/content/30/1/56.refs
http://ijr.sagepub.com/content/30/1/56.refs
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4543678
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4543678
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4538852
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4538852
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5995464
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5995464
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6696406
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6696406
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6619198


jsp?arnumber=6619198.

[20] G.H. Lee, F. Fraundorfer, and M. Pollefeys. Minimal so-

lutions for pose estimation of a multi-camera system. In

International Symposium on Robotics Research (ISRR),

2013. URL http://www.inf.ethz.ch/personal/glee/papers/

MultiCamPose ISRR2013.pdf.

[21] H. Li, R. Hartley, and J. Kim. A linear approach

to motion estimation using generalized camera models.

In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2008. doi: 10.1109/CVPR.2008.

4587545. URL http://ieeexplore.ieee.org/xpls/abs all.

jsp?arnumber=4587545.

[22] C. Mei and P. Rives. Single view point omnidirectional

camera calibration from planar grids. In IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

2007. doi: 10.1109/ROBOT.2007.364084. URL http://

ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4209702.

[23] R. Pless. Using many cameras as one. In

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2003. doi: 10.1109/CVPR.2003.

1211520. URL http://ieeexplore.ieee.org/xpls/abs all.

jsp?arnumber=1211520.

[24] S. Prentice and N. Roy. The belief roadmap: Efficient

planning in belief space by factoring the covariance. In-

ternational Journal of Robotics Research (IJRR), 28(11-

12):1448–1465, 2009. doi: 10.1177/0278364909341659.

URL http://ijr.sagepub.com/content/28/11-12/1448.refs.

[25] L. Quan and Z. D. Lan. Linear n-point camera pose

determination. In IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), volume 21, pages

774–780, 1999. doi: 10.1109/34.784291. URL http://

ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=784291.

[26] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski.

Orb: an efficient alternative to sift or surf. In IEEE

International Conference on Computer Vision (ICCV),

2011. doi: 10.1109/ICCV.2011.6126544. URL http://

ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6126544.

[27] K. Schauwecker and A. Zell. On-board dual-stereo-

vision for the navigation of an autonomous mav. Journal

of Intelligent and Robotic Systems, 74(1-2):1–16, 2014.

doi: 10.1007/s10846-013-9907-6. URL http://dx.doi.org/

10.1007/s10846-013-9907-6.

[28] K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and

M. Suppa. Stereo vision based indoor/outdoor nav-

igation for flying robots. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

2013. doi: 10.1109/IROS.2013.6696922. URL http://

ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6696922.

[29] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar.

Vision-based state estimation and trajectory control to-

wards high-speed flight with a quadrotor. In Robotics:

Science and Systems (RSS), 2013. URL http://www.

roboticsproceedings.org/rss09/p32.html.

[30] H. Stewénius, D. Nistér, M. Oskarsson, and K. Åström.
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