
Fully Decentralized Task Swaps with Optimized Local Searching

Lantao Liu
Robotics Institute

Carnegie Mellon University
lantao@cmu.edu

Nathan Michael
Robotics Institute

Carnegie Mellon University
nmichael@cmu.edu

Dylan A. Shell
Dept. of Computer Science and Engineering

Texas A&M University
dshell@cse.tamu.edu

Abstract—Communication constraints dictated by hardware
often require a multi-robot system to make decisions and take
actions locally. Unfortunately, local knowledge may impose limits
that run against global optimality in a decentralized optimization
problem. This paper redesigns the task-swap mechanism recently
introduced in an anytime assignment algorithm to tackle the
problem of decentralized task allocation for large scale multi-
robot systems. We propose a fully decentralized approach that
allows local search processes to execute concurrently while
minimizing interactions amongst the processes, needing neither
global broadcast nor a multi-hop communication protocol. The
formulation is analyzed in a novel way using tools from group
theory and the optimization duality theory to show that the
convergence of local searching processes is related to a shortest
path routing problem on a graph subject to the network topology.
Simulation results show that this fully decentralized method
converges quickly while sacrificing little optimality.

I. INTRODUCTION

Multi-robot task allocation or assignment aims at finding
the best matching between a set of robots and a set of tasks
in order to optimize the team’s performance. It is one of
the most popular optimization formulations for coordination
problems in multi-robot systems. Solutions to general task
allocation problems have also lead to specialized methods for
applications of particular importance in robotics research, e.g.,
by strategically setting the tasks as goal locations, the methods
efficiently deploy robots as part of path planning [25, 26]
and formation control problems [17, 15]. Ultimately, a fun-
damental understanding of distributed assignment problems
may also benefit other decentralized systems/missions such as
automated transportation systems, large-scale swarm systems,
unmanned planetary exploration, etc.

A multi-robot team may adapt to circumstances and demon-
strate fluid coordination by allocating tasks to robots repeat-
edly. The responsiveness of the team depends on fast solution
of the underlying assignment problem relative to the environ-
ment dynamics. But many envisioned scenarios involve multi-
ple robots being dispatched in a large workspace where each
robot may only be able to communicate with comparatively
few nearby neighbors. Consequently, long message relays may
hinder the system responsiveness. Also, the optimality of
an assignment solution becomes moot if the system’s state
evolves so rapidly that the decision was made with outdated
inputs. Naturally both prohibitive communication delays and
bandwidth limits may preclude the use of a centralized task
allocation strategy.

Several researchers have attempted to decentralize existing
classical optimal assignment algorithms in order to apply

them to distributed systems [28, 10]. Because the computation
exploits the logical structure of these optimization problems
rather than the situational and spatial structure of the group,
the computational procedures remain strongly coupled. Many
methods ignore the communication network topology, neces-
sitating complex multi-hop communication protocols which
involve the ability to route between arbitrary agents in the
network. One major challenge lies in the fact that these algo-
rithms tend to involve multiple phases or stages and there is a
dependence between stages where one stage may rely on the
outputs of those that precedes it (similar but different from the
scheduling dependence [13]). While this coupling facilitates
efficiency (the computation halts within strongly polynomial
time/steps) it imposes strong informational synchrony which
is inimical to decentralization. An alternate framework, called
distributed constraint optimization (DCOP) [12, 18], considers
a group of distributed agents which manipulate a set of
variables such that the cost associated with a set of constraints
over the variables is minimized. DCOP is NP-complete [4],
and many DCOP algorithms rely on pre-constructed (global
and static) tree structures, thereby failing to be robust against
failures [18, 19].

The multi-robot research community has also developed its
own inherently decentralized approaches. An important set
of these methods employ market-based [6, 23] or auction-
based mechanisms [8, 14], that emulate financial interactions
between humans. These methods employ a form of localized,
light-weight coordination similar in some regards to that
advocated by [21]. Although some theoretical upper and lower
performance bounds are known for very basic auction based
strategies [14], analysis of solution quality is generally rare
for such methods.

Also important are opportunistic methods where pairs of
robots within communication range adjust their workload by
redistributing or exchanging tasks [11, 24]. Strategies using
task switching [20, 27, 22] or task exchanges [3, 7] typically
transfer tasks between pairs of robots whenever the operation
improves the team’s performance. The task swap mechanism
generalizes the idea of pairwise task switches to larger cliques
and has begun to be explored recently [16, 29]. In these
algorithms each robot has an assigned task at any moment;
an important feature is that algorithm may be interrupted
at any time. Our recent work [16] showed that strategic
choice of task swaps also leads to optimal solutions, thereby
bridging decentralized suboptimal task allocation methods and
the classical optimal assignment algorithms. Yet, despite its

decentralized nature (lack of any global controller and that
only subparts of the system are involved at any moment) the
algorithm still depends on the ability to communicate globally.

In this paper, we propose a fully decentralized task allo-
cation algorithm with no stage dependencies that minimizes
interactions between robots so that computation occurs only
among local cliques. This is achieved by carefully analyzing
and redefining the interactions between the search procedures
that assess which tasks should be swapped. Although the algo-
rithm may produce suboptimal solutions, an inherent limitation
arising from the fact that local information may be intrinsically
inadequate, this new algorithm optimizes the search subject to
the communication constraints and always produces the step
with maximum convergence toward the optimal solution. Since
local communication may impose limits that run against global
optimality, we first formulate a local optimality property,
and then analyze it with duality theory and graph relaxation
techniques. Proof of the decentralized nature of the method is
proved using group theory.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

We consider the multi-robot task assignment problem where
the solution is an association of each robot to exactly one
task, denoted SR-ST-IA by [9]. More formally, given a set
of n available robots R = {r1, r2, · · · , rn} and a set of n
available tasks T = {t1, t2, · · · , tn}, and let C = (cij)n×n
be the cost matrix, where cij represents the cost of having
robot i to perform task j, then the goal is to find a one-to-one
mapping ψ : T → R that minimizes the overall cost. (Note,
here we assume that the number of robots and number of tasks
are equal; dummy robots or tasks can be added otherwise.)

A. Assignment Matrix and Permutation Matrix
Let binary variable xij denote the assignment between robot

task pair (i, j) so that xij is equal to 1 if assigned and 0
if unassigned, then an assignment matrix can be denoted as
X =

(
xij
)
n×n. Since our assignment is a one-to-one mapping,

in each row and each column of X there must be only one
entry with value 1 and all others 0s.

Let ek denote the vector of length n with 1 in the kth

position and 0 in every other positions, then we define the
permutation matrix P as

P =


ek1
ek2

...
ekn

 , ki 6= kj if i 6= j. (1)

Left (right) multiplying X by P reorders/permutes the rows
(columns) of the assignment matrix. If only matrix entries are
permuted while the row indices are fixed as 1, 2, · · · , n, the
assignment solution is changed accordingly. For instance,

PX =

 0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


 1 0 0 0

0 0 0 1
0 1 0 0
0 0 1 0



=

 0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 = X′.

(2)

(a) (b) (c)

Fig. 1. Illustration for Eq. (2)–(5). (a) A permutation cycle in the
permutation matrix P. The rows with dark entries that are off the diagonal
shall be permuted. Diagonal dark entries represent identity maps; (b) A new
assignment solution substitutes the old one. The dot-textured entries denote
old assignment X, whereas the solid dark entries are the new candidates
obtained by X

′
= PX. (c) Robots r1, r4 and r2 exchanged their tasks

along a closed cycle (142), e.g., r1 switches to r4’s task after permutation.

Equivalently, if we simplify the assignment matrix X to be
a vector

π = [π(1), π(2), · · · , π(n)]T (3)

where π(i) is the assigned task for robot i (i.e., the index of
elements in π). Then the example in Eq. (2) becomes

Pπ =

 0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


 1

4
2
3

 =

 3
1
2
4

 = π
′. (4)

Eq. (4) clearly reveals the change of assignment. Comparing
π and π′, we can observe that the allocated task π(1) for robot
r1 (row index 1) is changed from 1 to 3 (i.e., t1 to t3), where
3 is π(4) in π. We write this adjustment as π(1) 7→ π(4);
similarly, for robot r4, we have π(4) 7→ π(2); and for robot
r2, we have π(2) 7→ π(1). Robot r3 keeps task t2, having no
change. For the three robots that have changed tasks, a cycle
is formed among them:

π(1) 7→ π(4) 7→ π(2) 7→ π(1). (5)

Definition 2.1: A Permutation Cycle with length K is an
ordered chain of K distinct elements

i1 7→ i2 7→ · · · 7→ iK 7→ i1, (6)

where ik denotes the index of the elements. A permutation
represents the switching from one element to its successor
along the permutation cycle:

π(ik) = π(i(k+1)%K), k = 1, · · · ,K. (7)

We write the cycle in Eq. (5) as (142)(3) or simply
(142) since the single-element cycle (3) is an identity map.
Additionally, a cycle of length 2 is termed a transposition (two
robots exchanging tasks).

Definition 2.2: Disjoint Cycles are different cycles that do
not share a common element.

Note that a cycle is directed and the element positions are
not commutative, but the cycle notation is not unique since any
form connecting the head and tail represents the same cycle,
e.g., (142) = (421) = (214) but (142) 6= (124).

B. Assignment Optimization

This classic assignment problem can be formulated with a
pair of linear programs. One is a minimization formulation
called the primal program P(R, T):

minimize f(R, T) =
∑

i∈R,j∈T

cijxij ,

subject to
∑
j∈T

xij = 1, ∀i ∈ R,∑
i∈R

xij = 1, ∀j ∈ T,

xij ≥ 0, ∀i ∈ R, j ∈ T.

(8)

where each xij represents a primal variable. The problem turns
into an integer problem if it is solved via some combinatorial
optimization algorithm and eventually each xij will equal 0 or
1 in the solution. The constraints

∑
j xij = 1 and

∑
i xij = 1

guarantee that no two robots are assigned with the same task
and no two tasks are allocated to the same robot. There are
corresponding dual vectors u = {ui} and v = {vj} in the
dual program D(R, T):

maximize h(R, T) =
∑
i∈R

ui +
∑
j∈T

vj ,

subject to ui + vj ≤ cij , ∀i ∈ R, j ∈ T.
(9)

Theorem 2.1: (The Duality Theorem [5]) If two programs
P(R, T) and D(R, T) are feasible, then f(R, T) ≥ h(R, T).
If either program has a finite optimal value, then so does the
other, and the optimal values satisfy f∗(R, T) = h∗(R, T).

Remark: Given finite cost values, our assignment problem
always produces a finite optimal value. Then the theorem
points to three requirements for the existence of the optimal
solution: (i) feasibility of P(R, T); (ii) feasibility of D(R, T);
(iii) f(R, T) = h(R, T).

Maintaining (i) and (ii) is easy, but directly reaching the
condition of (iii) is not. In fact, by assuming f(R, T) =
h(R, T), and adjusting P(R, T) and D(R, T), the following
result can be derived:

Theorem 2.2: (The Complementary Slackness Theorem [5])
The optimal solution exists if and only if xij are feasible for
P(R, T) and u, v are feasible for D(R, T), and

xij(cij − ui − vj) = 0, ∀i ∈ R, j ∈ T . (10)

Remark: Eq. (10) reveals the property of orthogonality be-
tween the primal variables and reduced costs. It also indicates
that, if a robot-task pair (i, j) is assigned, i.e., xij = 1, then
the corresponding reduced cost c̄ij must be equal to 0, where

Definition 2.3: Reduced costs are defined as

c̄ij = cij − ui − vj , ∀i ∈ R, j ∈ T . (11)

The constraint in Program (9) implies that only if c̄ij ≥ 0 will
the robot-task pair (i, j) be feasible .

III. PERMUTATION GROUP AND TASK SWAPS

The formulation of the assignment problem as a matching
problem is well known [2]. Unlike those popular treatments,
we show that the assignment may also be formulated using
group theoretic concepts, which is convenient for understand-
ing and analyzing aspects of its decentralization.

A. Permutation Group

Definition 3.1: A group (G, ∗) consists of a nonempty set
G together with a binary operation ∗ on G satisfying the
following conditions:
1) (Closure): a ∗ b ∈ G, ∀a, b ∈ G;
2) (Associativity): (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀a, b, c ∈ G;
3) (Identity element): ∃e ∈ G, a ∗ e = a = e ∗ a, ∀a ∈ G;
4) (Inverse element): ∃a′ ∈ G, a ∗ a′ = e = a′ ∗ a, ∀a ∈ G.

In our assignment problem, the composition of two bi-
jections always gives another bijection, the product of two
permutations is again a permutation. Consequently, the set
Sn of all permutations of R = T = {1, 2, ..., n} (for
simplicity, we denote the robot and task IDs with numerical
symbols) forms a permutation group with operation given by
composition, viewing permutations as functions from R(= T)
to itself.

Let Sn = (G, ∗) denote the permutation group with

G = {g1, g2, · · · , gm} (12)

where gi is a cyclic permutation and operator ∗ is multiplica-
tive. Then a series of permutations on assignment π can be
written as

(gi(gj(· · · (gkπ))) = (gigj · · · gk)π = g′π, g′ ∈ G, (13)

where multiplicative binary operator ∗ is omitted.
Proposition 3.1: Every permutation in Sn can be written

as a product of disjoint cycles. Disjoint cyclic permutations
are subject to the commutative law.

Remark: The commutative property indicates that disjoint
permutation cycles can be executed in an arbitrary order,
which, in a sense, expresses the orderless and executional
independence within a decentralized implementation.

Proposition 3.2: Any permutation cycle can be written as
a product of transpositions (cycles of length 2).

(i1i2 · · · ik) = (i1i2)(i2i3) · · · (ik−1ik) (14)

However, the transpositions are not disjoint and thus not
commutative.

Remark: This can be understood by considering the permu-
tation as a bubble sorting algorithm which swaps positions of
two elements each time. With these observations, we have:

Lemma 3.1: Any permutation cycle with length greater
than or equal to three can be decomposed into non-disjoint
permutations of shorter lengths.

Proof: Given an arbitrary permutation g with length
k ≥ 3, one can decompose it into two smaller cycles at element

ip in the original cycle,

g = (i1i2 · · · ik)

= (i1i2) · · · (ip−1ip)(ipip+1) · · · (ik−1ik)

=
(
(i1i2) · · · (ip−1ip)

)(
(ipip+1) · · · (ik−1ik)

)
= (i1i2 · · · ip)(ip · · · ik).

(15)

Such a decomposition can occur on any element in the cycle
so long as 1 < p < k.

Note that the smaller cycles obtained in Eq. (15) do not
commute because the element ip is involved in two resulting
non-disjoint cycles, which must be executed in order if one is
to get a result identical to the original cycle. To mitigate this
strong ordering dependence, we have the following theorem.

Theorem 3.1: Two non-disjoint cycles sharing a common
element can be further decomposed into three cycles, among
which two cycles become disjoint depending on an appropriate
adjustment of the remaining cycle of length 3 (termed 3-cycle).

Proof: Following the notation in Lemma 3.1, assume we
have two cycles with a common element ip. First, we need to
reorder the cycles so that element ip appears notationally at
the end of the cycle, then

(i1 · · · ip−1ip)(ipip+1 · · · ik)

=(i1 · · · ip−1)(ip−1ip)(ipip+1)(ip+1 · · · ik)

=(i1 · · · ip−1)(ip−1ipip+1)(ip+1 · · · ik).

(16)

It shows that two cycles become three cycles where the middle
one (ip−1ipip+1) is the 3-cycle. Neither of the other two
ending cycles (i1 · · · ip−1) and (ip+1 · · · ik) contain ip and are
thus disjoint.

The ending cycles (i1 · · · ip−1) and (ip+1 · · · ik) can com-
mute and switch order only if the 3-cycle is adjusted from
(ip−1ipip+1) to g̃ = (ip+1ip)gtgh(ipip−1), where gt and gh
denote the operation of swapping two elements at the tail and
head in the cycle notation, respectively. More formally, after
the adjustment we have

(ip+1 · · · ik)g̃(i1 · · · ip−1)

=(ip+2 · · · ikip+1)(ip+1ip)gtgh(ipip−1)(ip−1i1 · · · ip−2)

=(ip+2 · · · ikip+1ip)gtgh(ipip−1i1 · · · ip−2)

=(ip+2 · · · ikipip+1)(ip−1ipi1 · · · ip−2)

=(ip · · · ik)(i1 · · · ip),
(17)

which switches the operation order of Eq. (16).
Conversely, one may regard the 3-cycle manipulation

as the operation of stitching smaller non-disjoint cycles—
which reflect operations that can be computed locally and
concurrently—into a larger one, involving a larger number of
simultaneously acting robots. This operation leads to a greater
degree of centralization for a potentially better solution.

B. Cyclic Permutation vs. Strategic Task Swaps

The task swaps in our previous work [16] can be regarded
as cyclic permutations. The permutation cycle is termed the
swap loop or swap cycle in the task allocation context. A swap
loop differs from a permutation cycle in that the swap loop is

associated with two types of objects (robots and tasks), and are
generated in a more crucially strategic way. Fig. 1(a) shows
a permutation cycle whereas the cycle in Fig. 1(b) is a swap
loop that involves two types of dark entries. A swap loop can
be transformed to a permutation cycle by dropping all even
number entries on the loop (such that only the information of
robots/rows remains in the cycle notation). Each robot on a
swap loop substitutes its task with its successor’s along the
closed orbit to update the assignment.

The task-swap assignment algorithm is essentially a primal-
based algorithm [1], which maintains a feasible primal (re-
quirement (i) in the Duality Theorem) and the complementary
slackness (equivalent to requirement (iii)), and iteratively
adjusts the dual program (requirement (ii)), and the optimal
solution exists when the dual also becomes feasible. It is
shown that with a time complexity of O(n3lgn) and a max-
imum number of O(n) swap loops, the optimal assignment
solution is guaranteed to be found in the centralized context.
The main steps are pseudo-coded in Algorithm III.1.

Algorithm III.1 Centralized Task Swap Algorithm
1: /* i, j are indices of rows and columns, respectively. π−1(·)

denotes the inverse of an assignment.*/
2: Initialize: u = 0,v = diag(C)
3: for j = 1→ n do
4: Get the smallest entry: (i0, j0) = argmini{c̄ij}; if c̄i0j0 > 0,

break for loop
5: Queue Q← (i0, j0)
6: while Q is not empty do
7: Q pops the top node, assuming entry (it, jt); locate a new

row i′ = π−1(jt)
8: Q← {(i′, j′)|c̄i′j′ = 0, ∀j′ ∈ T \ Tv}
9: Update sets Rv , Tv for i′ via Eq. (18)

10: if i′ == i0 then a swap loop is formed, terminate
11: if Q is empty and loop is not formed then
12: Adjust u,v via Eq. (19), new entries with c̄i′j′ = 0,

i′ ∈ R \Rv , j′ ∈ T \ Tv must exist
13: Go to Step 8

A spanning tree-like data structure in the reduced cost
matrix is used to search for swap loops. Searching starts from
an entry (i0, j0) with infeasible reduced cost (c̄i0j0 < 0)
and new entries are added as tree nodes correspondingly by
establishing traversal edges (links). Specifically, if the current
leaf node is an assigned entry with xij = 1, it is expanded to
new leaf nodes that are unvisited unassigned entries satisfying
c̄ij = 0 in the same row; otherwise if the current leaf node is
unassigned, it is expanded to the unique assigned entry in the
column that it resides in. Two sets Rv , Tv are used to record
the expanded/visited rows and columns, respectively. Let i′ be
the row of an assigned leaf node, then

Update Rv, Tv for i′ :

Rv = Rv ∪ {i′},
Tv = Tv ∪ {j′ | c̄i′j′ = 0, ∀j′ ∈ T \ Tv}.

(18)

This searching procedure repeats until a loop is found — when
a leaf node hits the starting row i0. (Note that, i0 /∈ Rv .)

However, if no entry with 0-valued reduced cost can be
found before a loop is formed, the dual variables are then
adjusted to introduce new entries with a reduced cost of 0.

Adjust u,v :

δ = min {c̄ij | i ∈ Rv, j ∈ T \ Tv}
ui = ui + δ, ∀i ∈ Rv,
vj = vj − δ, ∀j ∈ Tv.

(19)

Therefore, a swap loop can also be thought of as a chain
of entries alternatively satisfying xij = 1 and xi′j′ = 0, and
all entries on the loop must satisfy c̄ij = 0 except the starting
infeasible entry (i0, j0). A task swap operation is a substitution
of xij by xi′j′ . We compare the old and new solutions:

f(X′)− f(X)

=
∑

i∈R,j∈T

x′ijc
′
ij −

∑
i∈R,j∈T

xijcij =
∑

(i,j)∈L

c′ij −
∑

(i,j)∈L

cij

=
∑

(i,j)∈L

(
c′ij − (ui + δ)− (vj − δ)

)
−
∑

(i,j)∈L

(cij − ui − vj)

=
∑

(i,j)∈L

c̄′ij −
∑

(i,j)∈L

c̄ij =
∑

(i,j)∈L

c̄′ij = c̄′i0j0

(20)

The new solution is improved if c̄′i0j0 < 0, and the overall
cost is reduced by an amount of |c̄′i0j0 | after swapping tasks
along the loop.

IV. DECENTRALIZED TASK SWAPS

The preceding formulation has much potential for a decen-
tralized implementations because each stage is likely to involve
only a subset of the robots. But some challenges must still be
overcome. Firstly, there is the issue of stage dependencies. A
robot cannot be involved in two spanning trees simultaneously
because the iterative dual updates must proceed sequentially.
Secondly, there is the question of robots gaining access to
the required information. To reach the optimal solution, the
algorithm requires that all robots in the spanning tree to
be able to reach one another. Unfortunately this is often an
unrealistic assumption in multi-robot systems with limited
communication capabilities.

The proposed decentralized method aims at addressing the
above problems:
(A.) The swap loop is searched by spanning a tree directly on

the network topology rather than the reduced cost matrix so
that the dual variables (stage dependence) are eliminated;

(B.) The algorithm searches in a local solution space com-
prised of only its directly reachable neighbors. Each swap
loop maximizes the cost reduction given the local informa-
tion, which is subject to the network topology.

These aspects are detailed in the following subsections.

A. Spanning Tree on the Transformed Graph

Lemma 4.1: Let c̄ij be the reduced costs of the unassigned
entries (i, j) with xij = 0 on the swap loop L, and define the
sum cL as

cL =
∑

(i,j)∈L,xij=0

c̄ij , (21)

then cL is the difference between the new and old solutions:

cL = f(X′)− f(X). (22)

Proof: Proof proceeds from the right side to the left side.
From Eq. (20), we have

f(X′)− f(X) = c̄′i0j0 = ci0j0 − u
′
i0 − v

′
j0 . (23)

Since j0 ∈ Tv but i0 /∈ Rv , Eq. (19) implies that u′i0 is never
updated. Assuming the searching carries out a sequence of
dual updates δ = {δ1, δ2, · · · , δl}, then,

f(X′)− f(X) = ci0j0 − ui0 − vj′0
=ci0j0 − ui0 − (vj0 − (δ1 + δ2 + · · ·+ δl))

=c̄i0j0 + (δ1 + δ2 + · · ·+ δl),

(24)

where {δ1, δ2, · · · , δl} are exactly those unassigned c̄ij (ex-
cept the starting entry) on the swap loop. Let cP = δ1 + δ2 +
· · ·+ δl, then we have

f(X′)− f(X) = c̄i0j0 + cP

=c̄i0j0 +
∑

(i,j)∈L\{(i0,j0)},xij=0

c̄ij

=
∑

(i,j)∈L,xij=0

c̄ij = cL.

(25)

Lemma 4.1 reveals that it is only unassigned reduced costs
that effect improvements to the solution and, except c̄i0j0 ,
all other reduced costs on the loop are positive. With this
observation, we construct a graph G = (V,E) where we
collect each robot and its assigned task into a super node
vα = (rα ↔ π(rα)) ∈ V , and we reinterpret those feasible
(positive valued) unassigned entries as edges∗ e = (vα, vβ) ∈
E with the corresponding reduced costs as edge weights
w(vα, vβ) = c̄rαπ(rβ). Note, w(vα, vβ) 6= w(vβ , vα) thus
e(vα, vβ) 6= e(vβ , vα). This model immediately leads to the
following theorem.

Theorem 4.1: The task swap loop searching problem is
transformed to searching for a cycle on a standard directed
graph G = (V,E), and the total cycle weight cL is exactly
the cost reduction between new and old assignment solutions.

Fig. 2 illustrates an example. The solid edges in the figures
represent the connectivity of the network with edge weights
as the corresponding feasible reduced costs. The dashed edges
connecting to the starting node c̄r1t1 at the leftmost represent
the infeasible entries which actually are not on the graph (they
will be used to close the loop). The spanning tree grows by
adding new edges with the least weight, and cP is the path
cost between the root and a leaf node on the tree. Finally,
an infeasible dashed edge with weight −7 closes the loop
consisting of r1, r2, r3. The overall cost is reduced by −cL =
−(−7 + cP) = 2 after task swaps.

Theorem 4.2: Spanning tree of Algorithm III.1 is a greedy
searching method, and the swap loop found by it does not
guarantee the maximal reduction in the cost, i.e., the conver-
gence step size might be suboptimal.

∗The symbols v, u are reused as vertices and edges in the remainder of the
paper. They are not to be confused their use earlier as dual variables.

(a) (b) (c)

(d) (e) (f)
Fig. 2. A swap loop is found on the transformed graph built on the
network topology. Solid edges with w(vα, vβ) = c̄rαπ(rβ) > 0 represent
the connectivity of the network. The dashed edges connecting to the leftmost
node (the starting node) are not actually part of the graph, but represent
infeasible entries. (a)—(e) The spanning tree, shown with thick edges, grows.
(e) An infeasible edge closes the loop with cP = 2 + 3 = 5 and
cL = −7 + cP = −2. (f) After task swaps, the assigned robot-task pairs in
super nodes are changed. The connectivity of graph is also updated.

Proof: In each iteration of Algorithm III.1, only nodes
that are connected to the tree but not yet on the tree will be
considered, and those nodes (there may be more than one)
with minimum connecting edge weight will be added as new
leaf nodes. Thus, the tree always exploits the locally optimal
choice first and spans in a way analogous to a breath-first-
search (BFS). Therefore the searching process is greedy. A
path from root to a leaf node on a spanning tree (even a
minimum spanning tree) need not necessarily be the shortest
path, which would be the path that reduces the cost maximally.

B. Refining Swap Loop via Relaxation
Theorem 4.2 indicates a direction for improvement of the

(local) search. Lemma 4.1 shows that improvement of the
assignment solution is essentially determined by the path cost
cP . We can improve the path quality using the relaxation
technique popularly employed in single-source-shortest-path
algorithms such as Dijkstra’s algorithm.

Algorithm IV.1 Swap Loop with Relaxation
1: /* Let v.d be the distance from node v to root; v.d is ∞ by

default.*/
2: Initialize the root node v0 s.t. v0.d = 0
3: Set S = ∅, min priority Qp ← v0
4: while Loop is not found do
5: Qp pops the top node, assuming v; S = S ∪ {v}
6: for each node u on an outgoing edge of v do
7: if u.d > v.d+ w(u, v) then
8: u.d = v.d+ w(u, v), set u’s predecessor as v
9: If between the root and a leaf node there exists a path

P with cP + c̄i0j0 < 0, a swap loop is formed

Relaxation aims at decreasing the cost of reaching a node
by using another node adjacent to it. Unlike a spanning tree
method, the edges among leaf nodes can be used which enrich
the searching information. When a node is relaxed (Step 6–8),
the path to it is shorter and its predecessor is also modified
so that a smaller number of nodes/robots may be involved in
the path. Also, a swap loop with cL < 0 might appear earlier
after paths are refined, which reduces the communication load
due to an earlier termination.

Additionally, since the relaxation is carried out through
comparing nodes in set S and those outside S. Once a node is
in S, the path from it to the root must be the shortest. However,
Step 9 implies that a loop can be detected even before the
relaxation is finished. This can be regarded as an anytime
feature since the algorithm can stop at any point in time after
a swap loop is detected. Additional relaxation iterations allow
the loop to be refined toward better quality. Once all the nodes
on the loop are in set S, the swap loop converges to that which
reduces the cost the most.

The time complexity for searching for a swap loop is
improved over Algorithm III.1. Specifically, given a total
number of n nodes/robots (n can be the size of either the
whole system in the centralized version, or partial system
in the decentralized version), building a spanning tree with
Algorithm IV.1 requires only O(|E| + |V |lg|V |), which is
O(n2) in the worse case (analysis is analogous to the Dijkstra’s
algorithm); in contrast, Algorithm III.1 needs O(n2lgn) to
finish the spanning tree starting from the same root [16].
C. Decentralized Algorithm

Thus far, the two aforementioned hurdles for decentraliza-
tion — stage dependence and requirement of global communi-
cation — have been eliminated. Consequently, multiple swap
loops can be searched concurrently and any robot is allowed
to participate in multiple searching processes simultaneously.
Robots communicate with neighbors by passing messages
containing the latest spanning tree information. A loop closure
can always be detected by the last robot on the chain and the
task swaps can be done via backtracking along the loop.

But both Algorithm III.1 and IV.1 assume that during the
searching procedure the task assignment information remains
unchanged. This assumption can be violated if a robot is
involved in multiple spanning trees because executing a loop
formed earlier inevitably assigns this robot a new task, pos-
sibly causing later loops to be invalid (i.e., cL > 0 and no
longer improving the assignment solution).

Algorithm IV.2 Decentralized Implementation
1: /* Each robot i maintains a record of neighbors N(i) and their

assignment information. */
2: Select the root: e.g., root i′ can be voted among neighbors by

(i′, j′) = argmin(i,j)c̄ij , ∀i ∈ N(i), j ∈ T
3: Each root starts spanning tree on the transformed graph
4: for each robot i do
5: if robot i is root of some tree then
6: if A (optimal) loop is formed then
7: Revisit those in-loop robots to check loop validity
8: if loop is valid then
9: Notify other robots on the same tree to stop

10: Execute task swaps following the loop
11: Execute assignment of 3-cycles
12: else
13: if i receives a message then
14: Span and relax the tree following Algorithm IV.1
15: if the path Pi to i satisfies c̄i′j′ + cPi > 0 then
16: Stop spanning from this node

Analysis of the decomposition of permutation cycles in
Theorem 3.1 shows that non-disjoint cycles can be decom-

(a) (b)

Fig. 3. Concurrent searching for swap loops. (a) The light-green circles
represent robots and the smaller square dots denote tasks, where tasks can be
mobile targets. (b) Permutation cycles in the reduced cost matrix. A dark entry
(i, j) represents the allocation of robot i to task j. The initial assignment is
arbitrary: a robot is assigned to the tasks with the same ID.

posed into two disjoint cycles with a remainder of a 3-
cycle. We use this observation to coordinate multiple non-
disjoint task swap loops. Assume task swapping along a loop
L′ : (· · · i′p−1ipi′p+1 · · ·) is executed first, and a common
robot ip is also involved in the loop formed thereafter L :
(· · · ip−1ipip+1 · · ·), then the 3-cycle is (i′p−1ipip+1). We first
check the validity of the later loop L by comparing the changes
in reduced costs that are associated with the 3-cycle. Let jp
denote the original task for ip before L′ is executed, and
j′p = π(i′p) denote its updated task due to L′, then loop L
is still valid if and only if

c̄ipj′p − c̄ipjp < cL, (26)

where cL is the total cost of loop L as defined before.
More generally, if two loops share multiple common robots,

the changes in reduced costs associated with these common
robots are summed up and compared with cL. Swapping of
the tasks in an invalid loop is aborted. Otherwise, if the loop
is valid, following Theorem 3.1, an extra assignment can be
computed among the robots of the 3-cycle to further refine
the assignment (the 3 robots are easily located since they are
adjacent in the loop and are neighbors in the network).

In the decentralized implementation, each robot carries out
Algorithm IV.1 to maximize the local solution quality. The
whole algorithm appears in Algorithm IV.2.

Finally, it is the constraints imposed by the network connec-
tivity which are responsible for any resulting suboptimality:

Theorem 4.3: Algorithm III.1 yields a result that is optimal
when executed on robots with a communication network that
is a complete graph.

Proof: Since the optimization problem solved (in either
primal or dual form) is convex, when any pair of robots
can communicate with one another, the problem does not
involve any local minima. Lemma 4.1 implies that when the
relaxation runs to completeness the largest cost reduction is
found (otherwise Dijkstra’s algorithm would be suboptimal).
This means that if some progress toward a solution can be
made then it must be found by the search and, without local
minima, optimality must result.

(a) (b)

Fig. 4. Local searching with optimized steps. With the relaxation described
in Algorithm IV.1, (a) the practical running time is improved; (b) the step size
is optimized .

V. EXPERIMENTS

We tested the proposed algorithm in simulation to validate
our claims of improved local searching, fast convergence, and
low communication load.

Data were generated via a dispatching scenario: a group
of robots in the plane must visit a set of destination way-
points. Costs are computed as the Euclidean distances between
the pair-wise robots and destination points. This setting was
selected for its straightforward comprehension and in order to
introduce as few domain specific complexities as possible.

Fig. 3 illustrates an example configuration generated with 50
robots and 50 target points randomly distributed in a 100m×
100m square. Light line segments denote the spanning tree
edges, swap loops are drawn with thicker lines. Note that the
searching process requires the underlying graph to be static.
This strong assumption is exactly the motivation for designing
a decentralized method with local searching, fast convergence,
and anytime output. Fig. 3(a) also shows that in order to find
a swap loop, only a subset of robots (and their tasks) need to
be involved. Fig. 3(b) shows the corresponding swap loops in
the reduced cost matrix.

A. Optimized Local Searching
Local searching with relaxation improves the greedy BFS

search described in [16]. Fig. 4(a) shows the practical running
time in order to search for a swap loop. We can see that the
time required for our relaxation method is much less than
that of the BFS approach especially when the system is large.
(Experiments were run on a standard laptop of dual-core CPU
(2GHz×2) and 2GB memory, and all statistics are the mean
values of 100 sets of data.)

Fig. 4(b) is a representative example showing that the
assignment solution evolves faster with relaxation. The stairs
in Fig. 4(b) show the decreasing objective value f(X), where
each decrement results from task swaps along a swap loop.
This difference manifests itself as a larger downward step in
cost reduction for the relaxation method.

B. Solution Convergence
We next compared the convergence performance of the

decentralized implementation with our recent task-swap based
optimal assignment algorithm [16] that also allows interrup-
tions at any time. We define each time step as an interval
that allows a message to be sent or received, and assume
that a robot is able to duplicate messages when necessary and

(a)

(b) (c)
Fig. 5. Solution convergence analysis. (a) The trade-off between the
convergence and the optimality for centralized, greedy BFS and relaxation
methods of different communication radii (100 robots); (b) Our method:
performance under different numbers of searching processes (5–20); (c)
DCOP: performance under different numbers of static search trees (1–4).

broadcast them to multiple receivers in a time step (similar to
the communication strategy of MURDOCH architecture [8]).

The trade-off between the optimality and decentralization is
revealed in Fig. 5(a), where we observe that the optimal algo-
rithm with stage dependence and global communication has a
linear trend toward reaching the optimality, whereas the de-
centralized approaches with limited communication produced
inferior results. We note that owing to the local search being
concurrent, the convergence rate of the decentralized is much
faster than that of the centralized method. Specifically, under
the same communication radius (20m), both the relaxation
and greedy BFS converge rapidly, but the relaxation method
has a solution quality significantly improved over the greedy
BFS strategy. Then for the relaxation method, we enlarged
the communication radius to 30m, and observed that its
convergence rate decreases whereas the solution (Relaxation+)
is even closer to the optimum, which validates Theorem 4.3.

The number of processes used while searching was also
varied in order to investigate its impact. Fig. 5(b) shows that
with increased concurrency, convergence is quicker and the
solution quality is better. It also shows that the margin of
improvement diminishes as the number grows. We opted to use
a DCOP algorithm for further comparison: since our method
dynamically constructs search trees, the asynchronous dis-
tributed constraint optimization (ADOPT) [18] method, which
also utilizes a search tree structure, was selected. ADOPT
requires that a global search tree is constructed wherein the
agents each form tree nodes. Each agent i holds and controls
a unique assignment variable xi where xi = 1, · · · , n maps
to the assigned task (randomly chosen at first). To avoid
global communication, we assume that xi can exchange the
values/tasks with only those agents in the same sub-tree.
Then ADOPT controls the messages similar to the branching
technique in the Branch and Bound method, but in a distributed
fashion [18]. Fig. 5(c) shows that DCOP can converge to
global optimal solution when the tree is maintained throughout

(a) (b)
Fig. 6. Communication comparison in terms of (a) the total number of
messages and (b) the average longest hopping distance under different number
of concurrent processes.

the whole process (i.e., it remains static). However, if the
global tree is broken into multiple smaller trees (e.g., owing
to the agent failures), then the performance deteriorates dras-
tically. Our method does not suffer from this issue because
trees are created and destroyed dynamically and locally.

C. Communication Analysis

Performance in terms of communication costs for the de-
centralized implementations was also assessed and compared.
A measure of communication load is constructed by counting
the total number of messages transmitted across the whole
system. Since different methods converge at different rates
and eventually reach different qualities, we thus define the
communication load as the total number of messages that are
used to decrease f(X) by a fixed amount. Fig. 6(a) plots
the communication needed to reduce f(X) by 1000 from the
initial (random) solution. We can see that the communication
load is reduced significantly when the relaxation is employed
instead of the greedy BFS. It also shows that the DCOP ap-
proach requires the least communication since all its messages
flow on a global search tree which remains static.

Finally we investigated properties of the spanning trees,
where the tree depth reflects the longest message passing
(hopping) distance needed to find a swap loop. Longer hopping
distances may cause longer time delays and are likely to in-
volve more distant robots, both of which reflect a deterioration
of the decentralization. Fig. 6(b) shows that the relaxation
reduces the tree depth by more than half when compared with
greedy BFS; in contrast, the DCOP also needs more total hops
since the global tree has long branches.

VI. CONCLUSION

We propose a new fully decentralized task swap based
multi-robot task allocation method that respects single-hop
communication constraints. The approach allows concurrent
searching processes to proceed locally on a transformed graph
built over the network topology, and the interactions among
local processes are minimized. Our formulation of the prob-
lem draws on techniques from group theoretic concepts and
optimization duality theory to gain insight into the process
of searching within a local subspace of a global optimization
problem. We are able to connect the optimization convergence
step size to the quality of a shortest path problem on a
graph. Our simulation results show that this fully decentralized
method converges quickly without sacrificing much optimality.

REFERENCES

[1] M. L. Balinski and R. E. Gomory. A primal method for the
assignment and transportation problems. Management Science,
10(3):578–593, 1964.

[2] R. E. Burkard, M. Dell’Amico, and S. Martello. Assignment
problems. Society for Industrial and Applied Mathematics, New
York, NY, 2009.

[3] Luiz Chaimowicz, Mario F. M. Campos, and Vijay Kumar.
Dynamic role assignment for cooperative robots. In Proc. of
the IEEE Intl. Conf. on Robotics and Automation, pages 293–
298, 2002.

[4] Anton Chechetka and Katia Sycara. No-commitment branch
and bound search for distributed constraint optimization. In Pro-
ceedings of Fifth International Joint Conference on Autonomous
Agents and Multi-Agent Systems, pages 1427 – 1429, May 2006.

[5] George Dantzig. Linear Programming and Extensions. Prince-
ton University Press, August 1963.

[6] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-Based
Multirobot Coordination: A Survey and Analysis. Proceedings
of the IEEE, 94(7):1257–1270, 2006.

[7] A. Farinelli, L. Iocchi, D. Nardi, and V. A. Ziparo. Assignment
of dynamically perceived tasks by token passing in multi-robot
systems. In Proc. of the IEEE, Special Issue on Multi-robot
Systems, 2006.

[8] B. P. Gerkey and M. J. Mataric. Sold!: auction methods for
multirobot coordination. IEEE Trans. on Robotics and Autom.,
18(5), 2002.

[9] Brian P. Gerkey and Maja J. Matarić. A formal analysis and tax-
onomy of task allocation in multi-robot systems. International
Journal of Robotics Research, 23(9):939–954, September 2004.

[10] Stefano Giordani, Marin Lujak, and Francesco Martinelli. A
Distributed Algorithm for the Multi-Robot Task Allocation
Problem. LNCS: Trends in Applied Intelligent Systems, 6096:
721–730, 2010.

[11] M. Golfarelli, D. Maio, and S. Rizzi. Multi-agent path planning
based on task-swap negotiation. In Proc. UK Planning and
Scheduling Special Interest Group Workshop, pages 69–82,
1997.

[12] Katsutoshi Hirayama and Makoto Yokoo. Distributed partial
constraint satisfaction problem. In Principles and Practice of
Constraint Programming, pages 222–236, 1997.

[13] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias.
A comprehensive taxonomy for multi-robot task allocation.
International Journal of Robotics Research, 32(12):1495–1512,
2013.

[14] Michail G. Lagoudakis, Evangelos Markakis, David Kempe,
Pinar Keskinocak, Anton Kleywegt, Sven Koenig, Craig Tovey,
Adam Meyerson, and Sonal Jain. Auction-based multi-robot
routing. In Robotics: Science and Systems, 2005.

[15] Lantao Liu and Dylan A. Shell. Multi-robot formation mor-
phing through matching graph. In International Symposium on
Distributed Autonomous Robotic Systems (DARS), 2012.

[16] Lantao Liu and Dylan A. Shell. A distributable and
computation-flexible assignment algorithm: From local task
swapping to global optimality. In Proceedings of Robotics:
Science and Systems, 2012.

[17] Nathan Michael, Michael M. Zavlanos, Vijay Kumar, and
George J. Pappas. Distributed multi-robot task assignment
and formation control. In IEEE Intl. Conf on Robotics and
Automation, pages 128–133, 2008.

[18] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto
Yokoo. Adopt: Asynchronous distributed constraint optimiza-
tion with quality guarantees. Artificial Intelligence, 161:149–
180, 2006.

[19] Adrian Petcu and Boi Faltings. A scalable method for multia-
gent constraint optimization. In Proceedings of the 19th Inter-

national Joint Conference on Artificial Intelligence, IJCAI’05,
pages 266–271, 2005.

[20] Sanem Sariel and Tucker Balch. A distributed multi-robot
cooperation framework for real time task achievement. In
Proceedings of Distributed Autonomous Robotic Systems, 2006.

[21] P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein.
Ad Hoc Autonomous Agent Teams: Collaboration without Pre-
Coordination. In Proc. AAAI, 2010.

[22] Cynthia Sung, Nora Ayanian, and Daniela Rus. Improving the
performance of multi-robot systems by task switching. In IEEE
International Conference on Robotics and Automation, pages
2984 – 2991, 2013.

[23] F. Tang and L. E. Parker. A Complete Methodology for
Generating Multi-robot Task Solutions Using ASyMTRe-D and
Market-based Task Allocation. In Proc. of IEEE International
Conference on Robotics and Automation (ICRA’93), pages
3351–3358, 2007.

[24] L. Thomas, A. Rachid, and L. Simon. A distributed tasks
allocation scheme in multi-UAV context. In Proc. ICRA, pages
3622–3627, 2004.

[25] Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijay
Kumar. Goal assignment and trajectory planning for large
teams of aerial robots. In Proceedings of Robotics: Science
and Systems, Berlin, Germany, June 2013.

[26] Matthew Turpin, Nathan Michael, and Vijay Kumar. CAPT:
Concurrent assignment and planning of trajectories for multiple
robots. International Journal of Robotics Research, 33(1):98–
112, 2014.

[27] Jens Wawerla and Richard T. Vaughan. Robot task switching
under diminishing returns. In Proceedings of the 2009 IEEE/RSJ
international conference on Intelligent robots and systems,
IROS’09, pages 5033–5038, 2009.

[28] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas. A Distributed
Auction Algorithm for the Assignment Problem. In Proceedings
of the IEEE Conference on Decision and Control, pages 1212–
1217, Cancun, Mexico, December 2008.

[29] X. Zheng and S. Koenig. K-swaps: cooperative negotiation for
solving task-allocation problems. In Proc. IJCAI, pages 373–
378, 2009.

	Introduction
	Problem Description and Preliminaries
	Assignment Matrix and Permutation Matrix
	Assignment Optimization

	Permutation Group and Task Swaps
	Permutation Group
	Cyclic Permutation vs. Strategic Task Swaps

	Decentralized Task Swaps
	Spanning Tree on the Transformed Graph
	Refining Swap Loop via Relaxation
	Decentralized Algorithm

	Experiments
	Optimized Local Searching
	Solution Convergence
	Communication Analysis

	Conclusion

