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Abstract—Inspired by ant navigation, we explore a method for
sky segmentation using ultraviolet (UV) light. A standard camera
is adapted to allow collection of outdoor images containing light
in the visible range, in UV only and in green only. Automatic
segmentation of the sky region using UV only is significantly more
accurate and far more consistent than visible wavelengths over
a wide range of locations, times and weather conditions, and can
be accomplished with a very low complexity algorithm. We apply
this method to obtain compact binary (sky vs non-sky) images
from panoramic UV images taken along a 2km route in an urban
environment. Using either sequence SLAM or a visual compass
on these images produces reliable localisation and orientation
on a subsequent traversal of the route under different weather
conditions.

I. INTRODUCTION

The recent success of autonomous robotic vehicles [26]
owes much to the availability of specific sensor technolo-
gies (LIDAR scanners, IMU, HD cameras, RADAR, GPS)
and the continued development of computational resources
capable of processing the data they generate. However, for
the wider deployment of robots, particularly into price and
energy critical markets, it is essential to bring down the
hardware, computational, and energy costs of navigation. With
this goal in mind, we take our inspiration from desert ants,
which provide proof of principle that low-power and low-
computation methods for navigation in natural environments
are possible. Desert ants forage individually and without the
use of chemical trails, yet can efficiently relocate their nest or
a food source over long distances using visual cues alone [29].
The ant’s compound eye provides very coarse resolution (on
the order of 4° per pixel), and thus is unlikely to be capable
of extracting and matching many distinct features, a capacity
which is fundamental to many current visual Simultaneous
localisation and mapping (SLAM) methods (e.g. [5]). Rather,
their visual system appears fine-tuned to extract a key global
feature – the panoramic skyline [16] – which behavioural
observations have shown is sufficient for guidance in their
complex visual habitat [7].

It has also been demonstrated that panoramic skylines
are sufficient for robot localisation in urban environments
[21, 14, 18]. The skyline (or more precisely, the horizon)
has also been investigated as a visual cue for stabilisation
in UAVs [19]. However, reliable visual segmentation of sky
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from terrain using conventional visual wavelength imaging
appears difficult [18] particularly in changing weather con-
ditions. Image parsing methods, e.g. [25], can be used to label
sky amongst other regions, but the most successful current
methods depend on advanced machine learning methods over
large numbers of sample images to estimate the characteristics
of sky. A range of approaches specific to detecting the sky
region only are summarised in [20]. These include combining
colour and texture characteristics, modelling the colour gra-
dient, using connectedness or picture region constraints, and
using alternative colour spaces and classification algorithms
such as support vector machines. Shen and Wang [20] propose
a greyscale method that uses gradient information and energy
function maximisation, combined with several picture region
assumptions, to obtain results on the order of 95-96% correct
classification.

Far-infrared (IR) has been used to extract skylines, even
after sundown [14], but is not robust for sky segmentation
across weather conditions [4]. Clouds and sky appear very
different in near-IR images (see supplementary material);
indeed IR is often used explicitly for cloud detection [8].

By contrast, desert ants show sensitivity solely in the
ultraviolet (UV) (∼ 350nm) and green (∼ 510nm) wave-
lengths [17, 11]. The effectiveness of these two wavelengths
for sky detection was investigated in [16] using a custom
sensor with one photodiode sensor for each. The results
suggested using UV and green as opponent channels would
be the most effective way to segment the sky under dynamic
illumination conditions. In a follow up study [9] using five
different wavelengths it was found that UV vs IR performed
slightly better. However, because UV-imaging is limited by
the filtering in standard camera optics, it has received little
further investigation in robotics. In [3] a UV-receiving camera
was paired with an omnidirectional mirror, but used to assess
the directional information available in the polarisation of UV-
light rather than to detect sky per se (sky segmentation by
measuring the degree of polarisation of light is suggested in
[19]). To our knowledge, there is only one recent investigation
[23, 24] involving use of a UV-passing filter with a camera
to enhance the difference between sky and ground regions, in
the context of horizon determination for stabilisation. Neither
the accuracy or consistency of UV vs visible wavelength
imaging for detecting sky was reported in this work. UV has
occasionally been used on robots for other purposes, including



object marking [10] and identification [28].
For proof of concept, we investigated the utility of UV

vs visible light cues for sky segmentation using an adapted
digital single-lens reflex (DSLR) camera system allowing wide
spectrum imaging in high resolution. We demonstrate a simple
thresholding algorithm applied to UV-only images is suffi-
cient for accurate (compared to ground truth) and repeatable
(comparing time-lapsed images across weather conditions)
segmentation, and that this can be used to create panoramic
segmented sky images that support navigation in an urban
environment. The key features could be rapidly realised using
off-the-shelf components (e.g. CCD without colour filters)
providing a new class of low-cost outdoor navigation system.

II. METHODOLOGY

The aims of this study were: first, to assess the relative
accuracy of sky segmentation using different wavelengths,
over a range of different locations and conditions; second
to assess the consistency of segmentation for UV vs visible
wavelengths in the same location but at different times of day
and weather conditions; and third to test the effectiveness of
the segmented sky shape as a cue for robot navigation. Here we
describe in detail the imaging device, the data sets collected
for each test, and the segmentation and navigation methods
used.

A. Full Spectrum Imaging

To sample images in both UV and visible spectra the
internal cut filter of a standard DSLR camera (Nikon D600)
was replaced by a fused quartz window (Advanced Camera
Services Ltd, UK), and fitted with a high UV transmission
wide angle lens (Novoflex Noflexar 3.5/35mm). Images could
then be recorded with different filters: Thor Labs FGB37
bandpass filter (335 - 610 nm) to sample only visible light;
Baader U-Filter (350 nm, half-width 50 nm) to approximate
the ant’s UV photoreceptor; and Knight Optical 520FCS5050
bandpass filter (515nm) to approximate the ant’s green pho-
toreceptor profile. The camera aperture was set to f /16, sensor
sensitivity (ISO) to 200 and for each image an appropriate
shutter speed was automatically selected to provide proper
exposure given the chosen aperture. All images were saved
using the uncompressed 14 bit Nikon Electronic Format (NEF)
file format and subsequently demosaiced to a true colour 16 bit
Tagged Image File Format (TIFF). Visible light images were
stored in RGB format, the CMOS red channel only used for
UV images, and a greyscale conversion of all three channels
for green filtered images. To mimic the bichromaticity of
the ant visual system, UV-green (UV-G) images were created
by combining separate UV and Green intensity images into
a 2 dimensional false colour space. All images were then
scaled down by a factor of 10 along each dimension to give
a resolution of 604× 403 pixels prior to analysis.

B. Diverse Image Database

In July 2013, we took around 750 photographs in a vari-
ety of locations, including the natural habitat of desert ants

(Seville, Spain) and wood ants (Sussex, UK) and a series of
urban settings. UV-passing, green-passing and visible light-
passing filters were used in turn. We selected a subset of
18 images representing a wide diversity of environments and
conditions (see table I for example images) for which ground-
truth sky segmentation was established. These included images
expected to be difficult to segment due to surfaces reflecting
the sky, such as water and windows. We used semi-automated
labelling of sky and ground pixels through iterative appli-
cations of the GrowCut algorithm with user-correction [27].
We note that it was not possible to use existing ‘benchmark’
labelled datasets as these do not include UV information.

C. Timelapse Database

A time-lapsed image database was gathered from a single
vantage point in January 2014 by mounting the camera on
a secure platform and taking images across 4 days at 10
minute intervals in varying weather conditions (15:35-17:55
low light, 10:25-11:55 overcast, 10:50-11:00 sunny and 10:50-
11:10 partial cloud). As before, all three filter types were used
at each time point.

D. Urban Route Database

To allow the entire panorama to be recorded in a single im-
age, the full spectrum camera was mounted above a panoramic
mirror (Kugler, GmbH), fixed via a UV-passing quartz cylinder
with 2mm wall (Fig. 1a), and images recorded using the UV-
passing filter. A Sony Bloggie MHS-PM5, fitted with Bloggie
360 video lens kit attachment, was used to simultaneously
capture panoramic images in the visible light spectrum. The
combined system was mounted on a pole to elevate the
horizon above a human carrier, with an approximate height
of recording of 200 cm. Both cameras recorded video while
the carrier walked a 2 km route that included narrow streets,
city parks and squares, with moving traffic and pedestrians.
True position was logged once per second using a GPS watch
(Suunto Ambit). For testing navigation we used two videos
of the route that were sampled on different days, at different
times of year (January and April, introducing a change in
the foliage), under different weather conditions (overcast and
blue sky with clouds), and with different sun positions (11:40
and 16:47). Each video was converted to JPG images at 1
fps, providing two sets, consisting of 1337 and 1452 images
respectively.

E. Sky Segmentation

To remove any distortion effects caused by camera move-
ment when changing filters, images were aligned prior to
segmentation by mutual information based image registration
[13, 1]. K-means (K = 2, r = 7, sq. Euclidean distance) and
Gaussian mixture model (GMM) clustering algorithms were
implemented to assess both the accuracy and computational
ease with which the sky could be automatically segmented
from terrain. Pixels were clustered using image intensity only,
ignoring any spatial connectivity information. These methods
allowed comparison of performance despite the three image



(a) (b)

Fig. 1: The panoramic camera set-up used for the urban
route database. (a) DSLR fitted with UV filter, quartz tube
and parabolic mirror, with Sony Bloggie mounted on top. (b)
Example of UV-segmented binary sky shape images used by
our navigation algorithms. For each image the sky is shifted so
that the centre of gravity of the shape is central in the image,
to remove effects of tilt.

types having differing dimensions: UV=1D; UV-G=2D; and
visible=3D (RGB).

We also tested a simpler segmentation algorithm tailored
to the 1D UV intensity images. A histogram is computed
from the intensity image, excluding the darkest and brightest
2 percent of pixels, and the adapted-watershed algorithm
described in [30] is applied until only two segments of the
histogram remain. The intensity value midway between the
closest points of the two histogram segments is then set as
the threshold for ground/sky segmentation. This method is
robust to multiple maxima caused by a visible sun and ground
reflectance, which were problematic for alternative algorithms.

F. Navigation Tests

OpenSeqSLAM [22], an open source Matlab implementa-
tion of SeqSLAM [15] , was used to test whether panoramic
UV-segmented images contain sufficient information for lo-
calisation. Images were preprocessed by applying a mask
to disregard sectors of the image that were not parts of
the panorama in the parabolic mirror. The simple watershed
segmentation algorithm described above was then applied to
produce 90 × 90 binary images (sky vs non-sky). The sky
region was isolated by boundary tracing from the centre of
the image, and shifted by centralising the centre of gravity
to reduce effects of tilt (Fig. 1b). Performance of our UV-
segmented image set was compared to regular SeqSLAM using
a set of visible light panoramic images recorded at the same
locations and with a similar number of bits per image (16×16,
8 bit greyscale).

We tested localisation on the April route with the January
reference images and vice versa. To distribute effects caused
by the two sequences being particularly in or out of sync,
we compared a reference set starting at the first frame of
the route and sampled every 10 seconds against 10 test sets,
starting with the first, second, third etc. frame of the other
route and sampled every 10 seconds thereafter. SeqSLAM
was run in both directions for each of the resulting 19 route
pairs. SeqSLAM first performs an image difference function
on the current image and all training images, stores the
results in a matrix, and uses contrast enhancement to find
the local best matches. A familiar sequence is then found by
scoring trajectories across the matrix to look for those with the
combined best match. The trajectory with the lowest score is
considered a match if it is significantly smaller than all other
scores outside a sliding window (Rwindow = 10).

We also tested an alternative navigation method that has
been suggested as a possible mechanism used by ants, the
visual compass algorithm [6, 12]. The basic assumption of this
algorithm is that rotating a test image until the difference from
a training image is minimised will indicate an approximately
correct heading, under the assumption that captured training
images are generally oriented in the direction of forward travel
along the route. Although some versions of this algorithm
require knowledge of the sequence to constrain which images
to compare [12] it has also been shown to work effectively by
taking the minimum over all rotations over all training images
[2], i.e., assuming no sequence memory. This implicitly also
returns a location estimate: the training image most similar to
the test image after rotation.

Using the extracted skyline image sets at full resolution
(691× 691 pixels) a sub-sample of 1 image every 10 seconds
from the test set was compared at 90 4° rotations against every
image in the full 1fps training set, by summing the output
of an XOR function. The location and rotation producing
the smallest overall difference was chosen as best match. A
comparison was made to both greyscale and colour visible
light images, unwrapped and scaled to a similar number of
bits; 180× 28 and 90× 14 pixels respectively.

III. RESULTS

A. Automatic Segmentation of Sky is Best Using UV Intensity
Images

Table I shows the results of automatic sky segmentation,
compared to manually labelled ground-truth, in the first image-
database. Twelve example images are shown; the mean ac-
curacy is based on 18 images. Segmentation using K-means
clustering is most accurate using UV intensity images, with
a mean accuracy of 96.8%. This is significantly better than
visible light (mean accuracy 89.9%, paired Wilcox test p =
0.0018) and UV-G (mean accuracy 93.2%, paired Wilcox text
p = 0.025). The accuracy for UV is also significantly less
variable (standard deviation 3.6) than either visible light (s.d.
12.3, F-ratio test p < .0001) or UV-G (s.d. 9.5, F-ratio test
p = 0.0002). Segmentation in the visible spectrum was not



TABLE I: Accuracy of sky segmentation across locations. A subset of our hand labelled image database is shown below
to illustrate the diversity of images collected. Image triplets (Visible, UV-G and UV) were sampled locations chosen to assess
the performance of sky segmentation in diverse surroundings. The percentage of correctly labelled pixels, when compared to a
user defined ground truth, is shown for each image set. Mean scores (final row) are for the full database. Overall, for clustering
methods performance is best using k-means on UV images, however similar results can be achieved with the computationally
simpler adapted-watershed algorithm.

K-means, O(kDN) GMM, O(iND2) Watershed, O(N)

Image Feature Visible UV UVG Visible UV UVG UV

Desert scrub, Seville 80.283 89.102 89.035 76.742 82.745 78.141 91.107

Forest floor, Sussex 92.251 93.058 86.255 71.17 83.814 72.851 93.28

Pond reflecting sky 93.245 97.15 95.459 95.63 92.911 90.489 93.686

Landscape with dark clouds 52.42 97.731 59.771 99.058 98.198 58.491 98.563

Building hidden by trees 98.137 97.817 98.126 91.452 94.665 92.284 97.689

Minaret with dark clouds 75.549 97.75 90.272 98.796 98.155 98.538 98.511

Minaret with white clouds 75.889 99.001 97.083 71.201 99.076 99.171 99.084

White building on overcast
day 99.53 99.353 99.336 91.805 91.334 99.33 99.512

City street with grey sky 99.047 99.123 98.987 98.865 98.878 96.581 99.263

Building with metallic roof 85.348 86.32 87.298 76.967 84.599 81.364 84.687

Building with metal wall 96.366 98.595 98.218 61.211 98.722 91.661 98.901

Buildings with reflective win-
dows 97.612 98.068 97.662 71.548 81.109 76.985 97.754

Mean accuracy (n=18) 89.867 96.778 93.229 85.962 92.36 87.448 96.939

std. dev. 12.245 3.631 9.497 12.021 7.514 11.682 3.883
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Fig. 2: Typical example of conditions in which UV-intensity segmentation outperforms both visible and UV-G images.
Performance is worst using visible light as sky and ground are not easily separable when clouds are present. In
contrast, sky and ground naturally separate along the UV dimension giving robust segmentation in UV and UV-G
images. Raw images are shown in the left column. The central column shows the spread of image pixels plotted in their
respective colour space, coloured with respect to the attempted automatic k-means segmentation (blue=sky, red=ground). In
each scatter plot a random subsample of 200 pixel values was used. The right column shows the resulting segmented images
with white representing sky and black representing ground. Note that the black marks in the corners of the the UV pictures
are the result of vignetting due to an overlapping lens hood that is part of the Baader U-filter.

improved using the more robust Gaussian mixture model clas-
sifier (mean accuracy 86.0%). Visible light sky segmentation
was also tested in other colour spaces, such as the A and B
dimensions of LAB space, however no notable improvements
were observed over RGB for any of our clustering algorithms.
The simple watershed algorithm for UV performs just as well
as K-means clustering (mean accuracy 96.9%) but at less
computational cost (O(N) instead of O(kDN)), where k is
the number of clusters, D the dimensionality of our pixel space
and N the number of pixels). The level of accuracy obtained
is comparable with that reported in other state of the art sky
segmentation methods, e.g. 96.05% reported in [20]. In fact a
proportion of our remaining error was simply due to vignetting
of the overlapping lens hood (see Fig. 2 middle row). We also
note that the ‘ground truth’ labelling was performed on the
visible images and so was if anything biased against UV.

Fig. 2 shows the underlying reasons for better performance
of UV. In the visible light image (top left), the bright white
clouds form a cluster. As the classifier is constrained to two
groups, the blue sky is incorrectly labelled the same as the
ground. This is the most common cause of error when using
visible light, but reflectance from buildings and sun flare also
cause segmentation irregularities. In contrast, in the UV-G
image the clouds are labelled with the sky, and only reflection
from the buildings causes some segmentation issues. The
pixel-plot shows that the successful separation is attributable
mostly to the UV channel, and in fact the segmentation is
improved by using the UV channel only, which does not
classify strong lighting on the buildings as sky.

The second image-database allows us to test both the
accuracy (vs ground truth), and the reliability (vs images from
the same location) of sky segmentation across weather and



lighting conditions. This is important as it may be acceptable
for a navigating robot to misclassify some portion of the
ground as sky (or vice versa) provided the classification re-
mains consistent over time. Accuracy is compared against user
labelled ground truth, and here again we find that segmentation
is more accurate using UV intensity images (mean=99.5%,
s.d=0.084 ) than visible (mean=95.2%, s.d.=5.327 ). Reliability
was assessed by measuring the mean entropy and Pearson cor-
relation coefficients of the binary labelled images. Specifically,
the mean entropy per pixel location, H2(xi), in labelled UV
and visible images was calculated as

p(xi) ≈
∑T

t=1(xit)

T
(1)

H2(xi) = −p(xi) log2 p(xi)− (1− p(xi)) log2 (1− p(xi)) ,
(2)

where xit is the intensity value of a pixel at location i at time
t, and T is the number of images in the set. The Pearson
correlation is given by

r(x,y) =
cov∗(x,y)

var∗(x)var∗(y)
, (3)

where cov∗(·, ·) indicates the sample covariance between two
images x and y and var∗(·) the sample variance of an image.
Fig. 3 presents the resultant entropy and correlation plots for
visible and UV image sets. It is clear that pixels in the visible
domain are highly variable (mean entropy=0.1877) particularly
in the crucial area where buildings meet the sky. There is also
significant interference from sunlight on buildings and street
lights. This variance results in low correlation coefficients
between images throughout the data-set. Labelled images that
correlate poorly in the heat map in Fig. 3c (images 5, 15 and
20) corresponded to the 3 images shown in the left column of
the Fig. 3a, where cloud, sunlit buildings and low lighting
caused discrepancies in segmentation. The causes of these
problems are clearly visualised by viewing the plot showing
average entropy per pixel (Fig. 3b). In contrast, UV images
have a low mean entropy per pixel (0.0048), producing a
highly correlated and thus reliable dataset across conditions,
even at low light levels.

B. UV Sky Segmented Images Are Sufficient For Navigating
Cities

A set of images recorded along a route can be used
in several ways for subsequent navigation. We first tested
whether binary sky/non-sky images derived from panoramic
UV images recorded along a 2km urban route (see supple-
mentary video) could be used for localisation (or loop-closing)
using SeqSLAM as described in section II-F. Overall, using
a window length of 10 images, we can obtain a matching
precision of 100% (no false positives) with a recall of 81%;
at 100% recall, the precision is 94%; these values compare
well to previous results for this algorithm [15]. Fig. 4a shows
where matching is unsuccessful, which appears to correspond
to locations under trees, where the sky is either obscured or its
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Fig. 3: Reliability of sky segmentation across weather
conditions. (a) Time-lapse images sampled under differing
weather conditions (note that the UV pixel intensities have
been increased 5× to make image more visible, but are still
extremely low in the third example). (b) Pixel-wise entropy
and (c) Pearson correlation coefficients computed across the
image dataset. Both indicate high variance in visible light
images but consistent labelling using UV images.



segmented shape changing too rapidly for the sparse temporal
sampling used here. Our result for binary UV images is only
a few percent below that obtained using standard SeqSLAM
on the equivalent panoramic greyscale visible light images
(precision 97%), which deals better with situations where there
is little or rapidly changing sky shape information (under trees)
as it can still exploit information in the ground region. On
the other hand standard SeqSLAM tended to fail in areas
where the ground region is relatively featureless but there are
substantial changes in the sky region (clouds) between training
and test sets.

While SeqSLAM is highly effective for localisation if
following the same route, it does not provide a mechanism
to stay on the route. Hence we also test the visual compass
algorithm, as described in II-F which produces both a location
match and an estimate of the heading direction needed to stay
on route. The obtained precision using binary UV images was
84.7%. Fig. 4c shows the heading direction suggested by the
visual compass at each point on the route; it can be seen
that these align well with the required direction to stay on
the route. Using the equivalent visible light images produced
a significantly worse performance with a precision of only
44.1% and many heading direction choices that would lead
away from the route (Fig. 4d) .

IV. CONCLUSIONS

It has been suggested that UV light sensing in desert ants
is a specialisation that supports their impressive navigation by
enhancing sky-ground contrast. We have demonstrated here
that UV images are highly effective for sky segmentation,
that the segmented sky shape is robust to changing light and
weather conditions, and that the resulting binary sky/non-sky
images can support effective navigation.

For a wide range of locations and light conditions, auto-
mated sky segmentation is significantly more effective for UV
than visible light. Although only a limited set of images were
hand-segmented for ground truth evaluation, visual inspection
of UV segmentation in our larger collection of images suggests
broad reliability, in particular, robustness against all kinds
of cloud cover. The unidimensional signal also allows the
application of a computationally cheap segmentation algorithm
that is just as effective as K-means clustering.

There were a few cases where ground objects, such as
particular kinds of metal roofing, had high UV reflectivity.
However, for navigation, it is less important to find the
skyline exactly than it is to find it consistently. By testing
sky-ground segmentation for images taken from the same
location on different days, at different times of day, and under
different weather conditions, we found that UV images have
an extremely high consistency in pixel classification, around
40 times better than visible light.

The navigation potential of a panoramic UV camera sys-
tem was demonstrated by recording 2km routes in an urban
environment on two different days with different weather con-
ditions. Using either SeqSLAM or a visual compass, matching
of UV-segmented binary images of the sky contour from one

day against another supported successful localisation. For the
visual compass a reliable indication of the correct heading
direction to continue along the route was also obtained. Using
non-segmented visible light images of a similar file size,
SeqSLAM was still effective for localisation, but determining
location or heading direction from the visual compass was far
less effective. Failure of the visual compass is generally due to
mismatch or aliasing, i.e., a training image far from the current
location provides, at some arbitrary rotation, a closer match
than the nearest image. This suggests its effectiveness could
be improved (and its application sped up) by using SeqSLAM
as a preprocessing step to find the best match, then finding the
minimum over image rotations for this image only.

We note that the skyline is a particularly consistent aspect of
urban (and some other) environments. Many changing features
such as traffic and pedestrians, fall entirely below the skyline,
and different lighting conditions such as sun falling on one or
the other side of street make little difference to the segmented
shape. Weather changes occur above the skyline. Consequently
it appears that a substantial amount of information is retained
by reducing images to binary sky vs non-sky: SeqSLAM
performs almost as well on such images as on full grey
scale images. The few situations in which the system failed
were in locations where very little sky was visible (under
scaffolding, or under trees). The considerable difference in
foliage between our two datasets, and the 10 second time
intervals between frames could cause a notable difference in
sky shape directly above the camera between training and
test sets in this situation. This could perhaps be rectified
by smoothing over recent frames to filter out fast moving
shapes. Alternatively, rather than using binary images, the UV
threshold could be used to mask out the sky region (including
uninformative features such as clouds) but information below
the skyline, possibly from visible light channels, could be
retained to improve robustness.

There are a number of potential applications for this ap-
proach. It could be used effectively in urban environments
where GPS can be unreliable. The nature of the segmented
image also makes it trivial to perform corrections to tilt by
simply offsetting the image depending on the centre of gravity
of the sky pixels. It could therefore also be potentially useful
for robots in rugged environments, where SLAM needs to be
reliably carried out on uneven terrain. Sensitivity to UV light
at low light levels could be improved by using a CCD chip
without colour filters, rather than the converted visible light
camera used in these tests. The relatively simple computation
to segment sky could be implemented in hardware, providing
a compact and low-power sky detection sensor, which could
offer cheap high precision localisation in many outdoor au-
tonomous robot applications.
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(a) UV sky segmented SeqSLAM (b) Visible light full image SeqSLAM

(c) UV sky segmented Visual Compass (d) Visible light full image Visual Compass

Fig. 4: Using sky-segmented images to navigate a city. (a) and (b) plot the example results of the SeqSLAM localisation
trial taken from the worst test set for UV (left) and the worst for visible light (right). Green dots represent locations that were
correctly recognised and red dots those that were not. Yellow dots are at the beginning and end of the route, where the sequence
was too short to localise. In the top right corner of these figures the estimated location index of the training set is plotted
against the location indices of this test set. In the bottom left corner an example panoramic image is shown, corresponding
to an incorrectly localised image in this test set. Branches (for UV) and clouds (for visible light) were typical features that
caused the algorithm to fail.
(c) and (d) show the heading direction that the visual compass algorithm would select in order to retrace the route (left for
UV, right for visible light), with all headings corresponding to a correctly matched location coloured green. Performance is
better for UV.
Map data: Google, Infoterra Ltd & Bluesky.
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