
Multi-Heuristic A*
Sandip Aine∗, Siddharth Swaminathan†, Venkatraman Narayanan†, Victor Hwang† and Maxim Likhachev†

∗Indraprastha Institute of Information and Technology, New Delhi, India
†Carnegie Mellon University, Pittsburgh, PA, USA

Abstract—
The performance of heuristic search (such as A*) based
planners depends heavily on the quality of the heuristic
function used to focus the search. These algorithms
work fast and generate high-quality solutions, even
for high-dimensional problems, as long as they are
given a well-designed heuristic function. Consequently,
the research in developing an efficient planner for a
specific domain becomes the design of a good heuristic
function. However, for many domains, it is hard to
design a single heuristic function that captures all
the complexities of the problem. Furthermore, it is
hard to ensure that heuristics are admissible and
consistent, which is necessary for A* like searches
to provide guarantees on completeness and bounds
on suboptimality. In this paper, we develop a novel
heuristic search, called Multi-Heuristic A* (MHA*),
that takes in multiple, arbitrarily inadmissible heuristic
functions in addition to a single consistent heuristic,
and uses all of them simultaneously to search for
a complete and bounded suboptimal solution. This
simplifies the design of heuristics and enables the
search to effectively combine the guiding powers of
different heuristic functions. We support these claims
with experimental analysis on several domains ranging
from inherently continuous domains such as full-body
manipulation and navigation to inherently discrete
domains such as the sliding tile puzzle.

I. INTRODUCTION

A* search [10] has been used abundantly for low-
dimensional path planning in robotics since 1980s. Within
the last decade, it has also been shown that suboptimal
versions of A* such as Weighted A* (WA*) [24] and its
anytime variants [19, 31], can also be used quite effectively for
high-dimensional planning problems in robotics ranging from
motion planning for ground vehicles [20] and flight planning
for aerial vehicles [21] to planning for manipulation [7] and
footstep planning for humanoids [12] and quadrupeds [32].
All of these planners achieve faster speeds than A* search by
inflating the heuristic values with an inflation factor (w > 1)
to give the search a depth-first flavor. As such though, they
rely heavily on the guiding power of the heuristic function. In
fact, WA*’s performance can degrade severely in the presence
of heuristic depression regions, i.e., regions in the search space
where the correlation between the heuristic values and the
actual cost of the path to goal is weak [11, 30]. WA* can
easily get trapped in these regions as its depth-first greediness

This research was sponsored by the ONR DR-IRIS MURI grant N00014-
09-1-1052 and DARPA Computer Science Study Group (CSSG) grant
D11AP00275.

(a) Heuristics (b) Admissible Search (c) Inadmissible Search

Fig. 1: A full-body (11D: x,y,orientation for the base + spine + 7D arm) manipulation
planning (with PR2) example depicting the utility of multiple heuristics. Figure 1a shows
two heuristic paths that corresponds to greedily following two different heuristics, blue
(solid) curve for an admissible heuristic and red (dotted) curve for an inadmissible
heuristic. The admissible heuristic guides the search to a depression region where the
search gets stuck (Figure 1b). In contrast, the inadmissible heuristic guides the search
along a feasible path and therefore allows the planner to find a valid plan fast (Figure 1c).

is guided by the heuristic values, and may require expanding
most of the states belonging to a depression zone before
exiting. Designing a powerful heuristic function that is also
valid, namely admissible and consistent, is therefore difficult
for complex planning problems.

In contrast, for many domains, one can easily compute
different inadmissible heuristics, each of which can provide
complementary guiding power. For example, in Figure 1 we
include a full-body manipulation scenario where the admissi-
ble heuristic function (path shown by the blue solid curve,
Figure 1a) guides the search to a local minimum as the
robot cannot reach the object from the left side of the table
(Figure 1b). However, we can obtain multiple inadmissible
heuristics by computing the navigation (x, y) distance to
different points around the object to be grasped. In the example
(Figure 1a), we show one such additional heuristic function
that guides the search through a different route (shown by the
red dotted curve to the right side of the table). Using this
heuristic, the search does find a pose that allows the robot to
grasp the object, i.e., it computes a valid plan (Figure 1c).

When used in isolation, these additional heuristics provide
little value, because they can neither guarantee completeness
(because they can be arbitrarily inadmissible), nor guarantee
fast planning times (because each may have its own depression
region). We show in this paper that a search can consider
multiple such heuristics to explore different parts of the
search space while using a consistent heuristic to ensure
completeness. This may result in faster convergence, if any
of these heuristics (or their combination) can effectively guide
the search around the depression regions.

We present an algorithmic framework, called Multi-
Heuristic A* (MHA*), which works by running multiple
searches with different inadmissible heuristics in a manner that
preserves completeness and guarantees on the suboptimality
bounds. We propose two variants of MHA*: Independent



Multi-Heuristic A* (IMHA*) which uses independent g and
h values for each search, and Shared Multi-Heuristic A*
(SMHA*) which uses different h values but a single g value
for all the searches. We show that with this shared approach,
SMHA* can guarantee the suboptimality bounds with at most
two expansions per state. In addition, SMHA* is potentially
more powerful than IMHA* in avoiding depressions as it can
use a combination of partial paths found by different searches
to reach the goal. We discuss the theoretical properties of
MHA* algorithms stating their completeness, suboptimality
bounds and complexities (in terms of state expansions). We
present experimental results for the following robotics do-
mains: 12D mobile manipulation for PR2 (full-body) and
3D (x, y, orientation) navigation. These experiments demon-
strate the efficacy of MHA*, especially for cases where the
commonly used heuristics do not lead the search well. We
also include experimental results for large sliding tile puzzle
problems, highlighting the benefits of the proposed framework
outside robotics.

II. RELATED WORK

The utility of having multiple heuristics is noted in many
search applications including motion planning [20], searching
with pattern database heuristics [9, 17], AND/OR graphs [6]
etc. For example, in Likhachev and Ferguson [20] the maxi-
mum of two admissible heuristics (one mechanism-relative and
another environment-relative) was used, as it could guide the
planner better when compared to the individual heuristics. The
key difference between these approaches and ours is that while
these utilize multiple heuristics, the information is combined
to create a single best (often consistent) heuristic to guide the
search, whereas MHA* uses multiple heuristics independently
to explore different regions of the search space. Also, as we
derive the bounds using a consistent heuristic, the additional
heuristics can be arbitrarily inadmissible.

The idea of deriving the bounds based on a consistent
heuristic and using inadmissible estimates/constraints to guide
the search has also been used in several other search algorithms
[2, 5, 23, 27, 28]. For example, Explicit Estimation Search [27]
uses an inadmissible distance function to guide the search, but
derives the bounds using an admissible heuristic. While MHA*
follows a similar approach to derive the bounds, the concept of
simultaneous searching with different heuristics sets it apart.

In Röger and Helmert [25], an empirical examination was
performed on how to exploit multiple heuristics for satisficing
planning. Among the different benchmarked approaches, the
alternation method was shown to be the best. This approach
uses multiple heuristics independently (in contrast to combin-
ing them as sum, max etc) to explore the search space in a
greedy best-first manner [22] while sharing the g values. In
Isto [13], a robotics path planning algorithm was proposed that
utilizes multiple heuristics and attempts to share the resource
among individual searches. The basic philosophy of these
algorithms is close to the MHA* approach, however, they do
not provide any guarantees on completeness/suboptimality. In
contrast, MHA* guarantees a) completeness, b) suboptimality

and c) bounded expansions by using a consistent heuristic
search to anchor the explorations.

Valenzano et al. [29] proposed simultaneous searching
with different parameters (such as operator orders, heuristic
weights), as an alternative to fine tune the parameters. This
method was shown to be effective for several problems espe-
cially when resources are available for parallel exploration.
However, this framework also relies on a single heuristic
to guide the search (albeit with different parameters) and
therefore can suffer similarly in presence of large depression
regions.

A completely different approach to path planning is adopted
by the sampling based planners [15, 16, 18]. The fundamental
difference between the sampling and heuristic search based
planners is that the sampling based algorithms primarily
target continuous spaces whereas the search algorithms are
for planning in discrete spaces, independent of whether these
came as the result of discretizing the state-space or from an
inherently discrete system. Moreover, heuristic search based
planning methods often provide better cost minimization and
more consistent behavior compared to the sampling based
planners, but at the expense of higher planning times and need
for a well-designed heuristic function. Our work targets the
last issue as we try to alleviate the dependency on having a
single well-designed heuristic function by supporting multiple
heuristic functions that can be arbitrarily inadmissible.

III. MULTI-HEURISTIC A*

In this section, we describe two multi-heuristic search
algorithms and discuss their properties.

Notations and Assumptions : In the following, S denotes
the finite set of states of the domain. c(s, s′) denotes the cost
of the edge between s and s′, if there is no such edge, then
c(s, s′) = ∞. Succ(s) := {s′ ∈ S|c(s, s′) 6= ∞}, denotes
the set of all successors of s. c∗(s, s′) denotes the cost of the
optimal path from state s to s′. g∗(s) denotes the optimal path
cost from sstart to s. g(s) denotes the current best path cost
from sstart to s, and bp(s) denotes a backpointer which points
to the best predecessor of s (if computed).

We assume that we have n heuristics denoted by hi for
i = 1..n. These heuristics do not need to be consistent, in fact,
they can be arbitrarily inadmissible. We also require access to a
consistent (and thus admissible) heuristic (denoted by h0), i.e.,
h0 should satisfy, h0(sgoal) = 0 and h0(s) ≤ h0(s′)+c(s, s′),
∀s, s′ such that s′ ∈ Succ(s) and s 6= sgoal. MHA* uses
separate priority queues for each search (n+1 queues), denoted
by OPENi, for i = 0..n. Throughout the rest of the paper,
we will use the term anchor search to refer to the search that
uses h0. Other searches will be referred to as inadmissible
searches.

A. Independent Multi-Heuristic A* (IMHA*)

The algorithm IMHA* is presented in Figure 2. In IMHA*,
different heuristics are explored independently by simultane-
ously running n + 1 searches each using its own priority
queue. Therefore, in addition to the different h values, each



1 procedure key(s, i)
2 return gi(s) + w1 ∗ hi(s);
3 procedure Expand(s, i)
4 Remove s from OPENi;
5 for each s′ in Succ(s)
6 if s′ was never visited in the ith search
7 gi(s

′) =∞; bpi(s
′) = null;

8 if gi(s′) > gi(s) + c(s, s′)
9 gi(s

′) = gi(s) + c(s, s′); bpi(s
′) = s;

10 if s′ has not been expanded in the ith search
11 insert/update (s′) in OPENi with key(s′, i);
12 procedure IMHA*()
13 for i = 0 to n
14 gi(sgoal) =∞; bpi(sstart) = bpi(sgoal) = null;
15 gi(sstart) = 0; OPENi = ∅;
16 insert sstart into OPENi with key(sstart, i) as priority;
17 while OPEN0 not empty
18 for i = 1 to n
19 if OPENi.Minkey() ≤ w2 ∗OPEN0.Minkey()
20 if gi(sgoal) ≤ OPENi.Minkey()
21 terminate and return path pointed by bpi(sgoal);
22 s = OPENi.Top();
23 Expand(s, i);
24 else
25 if g0(sgoal) ≤ OPEN0.Minkey()
26 terminate and return path pointed by bp0(sgoal);
27 s = OPEN0.Top();
28 Expand(s, 0);

Fig. 2: Independent Multi-Heuristic A* (IMHA*)

state uses a different g (and bp) value for each search. We
use g0 to denote the g for the anchor search, and gi for the
other searches. The suboptimality bound is controlled using
two variables, namely, w1(≥ 1.0) which is used to inflate the
heuristic values for each of the searches, and w2(≥ 1.0) which
is used as a factor to prioritize the inadmissible searches over
the anchor search. IMHA* runs the inadmissible searches in a
round robin manner in a way that guarantees solution quality
within the suboptimality bound of w1 ∗ w2.

IMHA* starts with initializing search variables (lines 14-
16) for all the searches. It then performs best-first expansions
in a round robin fashion from queues OPENi i = 1..n, as
long as OPENi.Minkey() ≤ w2 ∗OPEN0.Minkey() (line
19). If the check is violated for a given search, it is suspended
and a state from OPEN0 is expanded in its place. This in
turn can increase OPEN0.Minkey() and thus re-activate the
suspended search. Expansion of a state is done in a similar
way as done in A*. Each state is expanded at most once for
each search (line 10) following the fact that WA* does not
need to reexpand states to guarantee the suboptimality bound
[19]. IMHA* terminates successfully, if any of the searches
have OPENi.Minkey() value greater than or equal to the g
value of sgoal (in that search), otherwise it terminates with no
solution when OPEN0 is empty.

1) IMHA* Properties: In [3], we present detailed proofs for
a number of properties of IMHA*. Here we briefly discuss
the most important of those theorems. First, we note that
the anchor search in IMHA* is a single shot WA* (without
reexpansions) with a consistent heuristic function h0. Thus, all
the results of such a WA* are equally applicable in case of the
anchor search in IMHA*. Next, we present two key theorems
for the anchor search which shall later be used to derive the
properties of IMHA*.

Theorem 1. At line 18, for any state s with key(s, 0) ≤
key(u, 0)∀u ∈ OPEN0, it holds that g0(s) ≤ w1 ∗ g∗(s).

Proof: We borrow this Theorem from the results de-

scribed in [19], which states that the g value (g0 here) for
any state to be expanded in WA* (anchor search here) is at
most w1-suboptimal.

Theorem 2. At line 18, for any state s with key(s, 0) ≤
key(u, 0)∀u ∈ OPEN0, it holds that key(s, 0) ≤ w1 ∗
g∗(sgoal).

Proof: We prove this by contradiction. Let us assume,
key(s, 0) = g0(s) + w1 ∗ h0(s) > w1 ∗ g∗(sgoal).

Let us consider a least cost path from sstart to sgoal given
as P = Π(s0 = sstart, ..., sk = sgoal). From this path, we
pick the first state si that has not yet been expanded by the
anchor search, but is part of OPEN0 (si ∈ OPEN0). Note
that we will always find such a state si ∈ OPEN0 because a)
s0 = sstart is put in OPEN0 at the initialization (line 16), b)
whenever any state sj ∈ P is expanded in the anchor search
sj+1 ∈ P is always inserted in OPEN0, and c) sk = sgoal
is never expanded in the anchor search, otherwise, whenever
sgoal has the least key in OPEN0 the search terminates
(line 25).

Now, let us examine g0(si). If i = 0, we have g0(si) =
g0(sstart) = 0 ≤ w1 ∗ g∗(si) (as, g∗(sstart) = g0(sstart) =
0). If i 6= 0, by the choice of si we know that si−1 has
already been expanded in the anchor search. When si−1 was
chosen for expansion, we had g0(si−1) ≤ w1 ∗ g∗(si−1) from
Theorem 1. Now, as si is a successor of si−1, we have

g0(si) ≤ g0(si−1) + c(si−1, si) (line 9, Figure 2)
≤ w1 ∗ g∗(si−1) + c(si−1, si)
≤ w1 ∗ (g∗(si−1) + c(si−1, si))
As si−1, si ∈ optimal path,

= w1 ∗ g∗(si)

(1)

Thus, we have g0(si) ≤ w1 ∗ g∗(si). Using this we obtain,

key(si, 0) = g0(si) + w1 ∗ h0(si)
≤ w1 ∗ g∗(si) + w1 ∗ h0(si)
≤ w1 ∗ g∗(si) + w1 ∗ c∗(si, sgoal)
h0 is consistent, thus admissible

= w1 ∗ g∗(sgoal)

(2)

Now, as si ∈ OPEN0 and key(si, 0) ≤ w1 ∗ g∗(sgoal) <
key(s, 0), we have a contradiction to our assumption that
key(s, 0) ≤ key(u, 0),∀u ∈ OPEN0.

Next, we present three theorems summarizing the main
properties of IMHA*.

Theorem 3. When IMHA* exits (in the ith search),
gi(sgoal) ≤ w1 ∗w2 ∗g∗(sgoal), i.e., the solution cost obtained
is bounded by w1 ∗ w2 suboptimality factor.

Proof: IMHA* can terminate successfully in lines 25
(anchor search) or 20 (inadmissible search), or it can terminate
without a solution in line 17.

If the anchor search terminates at line 25, i.e.,
key(sgoal, 0) ≤ key(u, 0), ∀u ∈ OPEN0, from Theorem 1
we have,

g0(sgoal) ≤ w1 ∗ g∗(sgoal)
≤ w1 ∗ w2 ∗ g∗(sgoal)
As w2 ≥ 1.0

(3)



If an inadmissible search (say ith) terminates in line 20, then
from lines 19 and 20, we have,

gi(sgoal) ≤ w2 ∗OPEN0.Minkey()
≤ w2 ∗ w1 ∗ g∗(sgoal)
From Theorem 2

(4)

Therefore, in both the above mentioned cases, we have the
solution cost to be within w1∗w2 factor of the optimal solution
cost. On the other hand, if the search terminates unsuccessfully
at line 17 (while condition is not satisfied), from Theorem 2
we know OPEN0.Minkey() ≤ w1 ∗g∗(sgoal). OPEN0 = ∅
denotes OPEN0.Minkey() = ∞ =⇒ g∗(sgoal) ≥ ∞, i.e.,
there is no finite cost solution.

Theorem 4. No state is expanded more than n+1 times during
the execution of the IMHA*.

Proof: In IMHA*, a state s can only be expanded when it
is selected as the top state of OPENi in either line 22 or 27.
In both the cases the very next call is to the function Expand,
which removes this selected state from OPENi (line 4). Now,
a state (other than sstart) can only be inserted in OPENi in
line 11. If a state s has already been expanded in the ith search,
the check at line 10 will ensure that s is not inserted again in
OPENi, and therefore cannot be expanded in the ith search
any more. In other words, a state s can only be expanded at
most once in every search, and the total number of searches
is n + 1 (anchor search and n inadmissible searches).

Theorem 5. In IMHA*, a state s is never expanded in the ith

inadmissible search if key(s, i) > w1 ∗ w2 ∗ g∗(sgoal).
Proof: This theorem can be proved using Theorem 2,

which states that OPEN0.Minkey() ≤ w1 ∗ g∗(sgoal). If a
state s is selected for expansion in the ith inadmissible search
at line 22, it has key(s, i) ≤ OPENi.Minkey() (from the
priority queue properties). Now, from the check at line 19,
we obtain OPENi.Minkey() ≤ w2 ∗ OPEN0.Minkey(),
otherwise the ith search will be suspended and the control
will not reach line 22. Therefore, if a state s is expanded in
the ith search, we have

key(s, i) ≤ OPENi.Minkey()
≤ w2 ∗OPEN0.Minkey()
≤ w2 ∗ w1 ∗ g∗(sgoal)

(5)

Theorem 3 guarantees the suboptimality bounds for IMHA*
while Theorems 4 and 5 provide the bounds on state expan-
sions by IMHA*. The efficiency of IMHA* stems from the
fact that it terminates as soon as any one of the n heuristics
leads the search to a solution within the suboptimality bound,
i.e., the total state expansions ≈ n × minimum of the
state expansions among all the searches. Thus, if any of the
inadmissible searches converges faster than the anchor search
by a factor better than n, IMHA* can outperform WA*.

B. Shared Multi-Heuristic A* (SMHA*)

The primary difference between SMHA* and IMHA* is that
in SMHA*, the current path for a given state is shared among

1 procedure key(s, i)
2 return g(s) + w1 ∗ hi(s);
3 procedure Expand(s)
4 Remove s from OPENi ∀i = 0..n;
5 for each s′ in Succ(s)
6 if s′ was never visited
7 g(s′) =∞; bp(s′) = null;
8 if g(s′) > g(s) + c(s, s′)
9 g(s′) = g(s) + c(s, s′); bp(s′) = s;
10 if s′ has not been expanded in the anchor search
11 insert/update (s′) in OPEN0 with key(s′, 0);
12 if s′ has not been expanded in any inadmissible search
13 for i = 1 to n
14 if key(s′, i) ≤ w2 ∗ key(s′, 0)
15 insert/update (s′) in OPENi with key(s′, i);
16 procedure SMHA*()
17 g(sgoal) =∞; bp(sstart) = bp(sgoal) = null;
18 g(sstart) = 0;
19 for i = 0 to n
20 OPENi = ∅;
21 insert sstart into OPENi with key(sstart, i) as priority;
22 while OPEN0 not empty
23 for i = 1 to n
24 if OPENi.Minkey() ≤ w2 ∗OPEN0.Minkey()
25 if g(sgoal) ≤ OPENi.Minkey()
26 terminate and return path pointed by bp(sgoal);
27 s = OPENi.Top();
28 Expand(s);
29 else
30 if g(sgoal) ≤ OPEN0.Minkey()
31 terminate and return path pointed by bp(sgoal);
32 s = OPEN0.Top();
33 Expand(s);

Fig. 3: Shared Multi-Heuristic A* (SMHA*)

all the searches, i.e., if a better path to a state is discovered
by any of the searches, the information is updated in all the
priority queues. As the paths are shared, SMHA* uses a single
g (and bp) value for each state, unlike IMHA* in which every
search maintains its own g value. Furthermore, path sharing
allows SMHA* to expand each state at most twice in contrast
to IMHA* which may expand a state up to n+ 1 times (once
in each search). We include the pseudocode for SMHA* in
Figure 3.

The key function and initialization part in SMHA* is same
as in IMHA* other than the fact that SMHA* uses a single
g (and bp) variable. After the initialization, SMHA* runs the
inadmissible searches in a round robin manner as long as the
check in line 24 is satisfied. If the check is violated for a given
search, it is suspended and a state is expanded from OPEN0.
The key difference between SMHA* and IMHA* lies in
the state expansion method (Expand routine). In SMHA*,
when a state s is expanded, its children (s′ ∈ Succ(s)) are
simultaneously updated in all the priority queues, if s′ has not
yet been expanded (lines 13-15). If s′ has been expanded in
any of the inadmissible searches but not in the anchor search
(check at line 10), it is inserted only in OPEN0. A state s′ that
has been expanded in the anchor search is never reexpanded
and thus, never put back to any of the priority queues. The only
exception to this simultaneous update (for a state s′ not yet
expanded) is the optimization at line 14 which ensures that s′

is not put into OPENi if key(s′, i) > w2∗key(s′, 0), because
such a state will never be expanded from OPENi anyway
(check at line 24). The Expand routine also removes s from
all OPENi (line 4) making sure that it is never reexpanded
again in any inadmissible search and not reexpanded in the
anchor search if its g is not lowered. If g(sgoal) becomes
the minimum key in any of the searches, SMHA* terminates
with a solution within w1 ∗w2 bound, otherwise no finite cost



solution exists.
1) SMHA* Properties: While discussing the analytical

properties for SMHA*, we should note that unlike IMHA*,
the anchor search in SMHA* is not a direct replica of a single
shot WA* with a consistent heuristic function. Thus, we cannot
directly use the results for WA* (Theorem 1 and 2) to derive
SMHA* properties. However, the next two theorems show
that although the anchor search here is different, it essentially
follows the same lower bound properties proved for IMHA*.

Theorem 6. At line 23, for any state s with key(s, 0) ≤
key(u, 0)∀u ∈ OPEN0, it holds that g(s) ≤ w1 ∗ g∗(s).

Theorem 7. At line 23, for any state s with key(s, 0) ≤
key(u, 0)∀u ∈ OPEN0, it holds that key(s, 0) ≤ w1 ∗
g∗(sgoal).

The complete proofs for these theorems are included in
[3]. At an intuitive level, we can see that the lower bound
results will be equivalent for IMHA* and SMHA* anchor
searches, as at a given point the OPEN0 in SMHA* can be
seen as a superset of OPEN0 in IMHA* (or WA* without
reexpansions). This is due to the fact that whenever a state s is
expanded in any of the searches of SMHA* its children are put
into OPEN0, thus it includes states from different searches.
On the other hand, although s is deleted from OPEN0 at this
point (line 4), it can be re-inserted later if a better path to it
is discovered (lowered g value), as long as it is not expanded
in the anchor search. Now, as both Theorems 6 and 7 relate
to the minimum key values in OPEN0 and minimum of a
superset is always less than or equal to the minimum of a
subset, these results are valid for the anchor search in SMHA*.
Next, we present three theorems characterizing the properties
of SMHA*.

Theorem 8. When SMHA* exits, g(sgoal) ≤ w1 ∗ w2 ∗
g∗(sgoal), i.e., the solution cost is bounded by w1 ∗ w2

suboptimality factor.
Proof: This theorem can be proved in a manner similar

to the proof for Theorem 3 using Theorems 6 and 7.

Theorem 9. During the execution of SMHA*, a) no state is
expanded more than twice, b) a state expanded in the anchor
search is never reexpanded, and c) a state expanded in an
inadmissible search can only be reexpanded in the anchor
search if its g value is lowered.

Proof: In SMHA*, a state s can only be expanded when
it is selected as the top state of OPENi in either line 27 or 32.
If s is selected for expansion in line 27, the very next call is
to the function Expand (line 28), which removes this selected
state from OPENi,∀i = 0..n (line 4). Now, a state (other than
sstart) can only be inserted in OPENi (i 6= 0) in line 15. If a
state s has already been expanded in any of the inadmissible
searches, the check at line 12 will ensure that s is not inserted
again in OPENi (i 6= 0).Therefore, a state can only be
expanded once in the inadmissible searches. Now, when a state
s is expanded in the anchor search, similar to the earlier case,
here also, s is removed from all OPENi (line 4). Thus, s

(a) Original Map (b) Heuristic 1 (c) Heuristic 2

(d) WA*(10.0) (e) IMHA*(10.0) (f) SMHA*(10.0)
Fig. 4: A 3D planning example with nested depression zones. The original map is
shown in 4a. We compute two additional heuristics by blocking one narrow passage in
the map as shown in 4b and 4c (using the PH procedure described in Section IV-B). As
each inadmissible heuristic leads the search to a separate depression zone, IMHA* can
not avoid any of them. However, SMHA* (4f) efficiently avoids both depression regions
by using the first heuristic to go around zone A and the second heuristic to go around
zone B and thus performs much better than WA* (4d) and IMHA* (4e).

can only be expanded again either in inadmissible searches or
in anchor search, if it is re-inserted in any of the OPENi,
which can only be done in lines 11 or 15. However, as s has
been expanded in the anchor search, the check at line 10 will
never be true, thus the control will never reach lines 11 or 15,
i.e., s will never be reexpanded. Therefore, statement b) is
true. Also, as s can be expanded at most once in the anchor
search and at most once in the inadmissible searches, s cannot
be expanded more than twice, proving statement a). Finally, a
state s that has been expanded in an inadmissible search, can
only be expanded in the anchor search later if it is re-inserted
in OPEN0. A state can only be inserted in OPEN0 (any
OPENi, for that matter) if the check at line 8 is true, i.e., if
its g value is less than its earlier g value. Thus, a state s whose
g has not been lowered after its expansion in any inadmissible
search will never satisfy the condition at line 8 and will not
be re-inserted in OPEN0 and thus, can never be expanded in
the anchor search. Therefore, statement c) is true.

Theorem 10. In SMHA*, a state s is never expanded in the
ith inadmissible search if key(s, i) > w1 ∗ w2 ∗ g∗(sgoal).

Proof: The proof is similar to Theorem 5, utilizing the
fact that OPEN0.Minkey() ≤ w1 ∗ g∗(sgoal) (Theorem 7).

Theorem 8 shows that SMHA* guarantees the same sub-
optimality bounds as IMHA* while Theorem 9 highlights the
difference in complexity between these two approaches. In
IMHA*, a state can be reexpanded at most n + 1 times as
each search is performed independently, whereas in SMHA*
the same bounds are attained with at most 1 reexpansion
per state. A more important distinction between SMHA* and
IMHA* arises from the fact that as SMHA* shares the best
path information among all the searches, it can potentially
use a combination of partial paths to exit from depression
regions, which is not possible in IMHA*. Therefore, if there
are nested depression regions in the state space that none of
the inadmissible heuristics can avoid independently, SMHA*



can outperform IMHA*. In Figure 4, we illustrate this phe-
nomenon with an example of a search space with nested
depression zones. On the other hand, IMHA* has the following
advantages over SMHA*, a) expansion of states in IMHA*
is cheaper than SMHA* as SMHA* may require n + 1
insertion/update/removal steps, b) in SMHA* all the searches
store a copy of each of the generated states, thus the memory
overhead is more1, and c) as IMHA* does not share paths, it
is more amenable to parallelization.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of the MHA* algorithms
for the following domains: 12D mobile manipulation plan-
ning for the PR2 robot, 3D (x, y, orientation) navigation,
and sliding tile puzzles. We primarily benchmarked MHA*s
against WA* without reexpansions (as in ARA* [19]). We
also compared with the sampling based planning algorithms
(PRM [16], RRT-Connect [14], and RRT* [15]), multiple
heuristic greedy best first search (MHGBFS) [25], multiple
parameter WA* (MPWA*) [29] and Explicit Estimation Search
(EES) [27] when applicable. For MHGBFS, we used the same
heuristics as used for SMHA*. For MPWA*, we used the
admissible heuristic with 5 different weights (0.2 × w to
1.0 × w, with 0.2 gap; where w ≥ 10.0). For EES, we used
an inadmissible distance measure, one inadmissible heuristic
function (from the set used for MHA*s) and the admissible
heuristic. We ran WA*, MPWA* and MHGBFS without state
reexpansions as reexpansions can degrade the planning time.
WA* and MPWA* can satisfy the quality bounds without
reexpansions, while MHGBFS does not guarantee any bounds.
We performed all the experiments on an Intel i7 − 3770
(3.40GHz) PC with 16GB RAM. As MHA*s use two
suboptimality bounds (w1 and w2) in comparison to one w
used by WA*/MPWA*/EES, we set w2 = min(2.0,

√
w) and

w1 = w/w2, for all our experiments (and the examples), so
that the solutions are guaranteed to be within w-suboptimality
bound.

A. Mobile Manipulation Planning for the PR2 (12D)

The PR2 mobile manipulation robot is a dual-arm robot
(7 degrees of freedom each) with an omni-directional base
and a prismatic spine. In our experiments, we used a state
space representation similar to Cohen et al. [8]. We represented
a robot state with 12 degrees of freedom: a 6 DOF object
pose, 2 redundant arm joints, 2D Cartesian coordinates for the
base, an orientation of the base, and the prismatic spine height.
The planner was provided the initial configuration of the robot
as the start state. The goal state contained only the 6 DOF
position of the object, which made it inherently under-specified
because it provided no constraints on the position of the robot
base or the redundant joint angles. The actions used to generate
successors for states were a set of motion primitives, which
are small, kinematically feasible motion sequences that move
the object in 3D Cartesian space, rotate the redundant joint,

1It may be noted that this memory overhead can be eliminated by using a
single open list and making the update/insertion/removal more informed.

(a) (b)
Fig. 5: Example of kitchen environments used for mobile manipulation planning.

or move the base in a typical lattice-type manner [20]. The
prismatic spine was also allowed to adjust its height in small
increments.

We computed the admissible heuristic by taking the max-
imum value between the end-effector heuristic and the base
heuristic described next. The end-effector heuristic was ob-
tained by a 3D Dijkstra search initialized with the (x,y,z)
coordinates of the goal and with all workspace obstacles
inflated by their inner radius. The base heuristic was obtained
using a 2D Dijkstra search for the robot base where the goal
region is defined by a circular region centered around the
(x,y) location of the 6 DOF goal. The purpose of this circular
region is to maintain an admissible heuristic despite having an
incomplete search goal. As the set of possible goal states must
have the robot base within arm’s reach of the goal, we ensure
that the heuristic always underestimates the actual cost to goal
by setting the radius of the circular region to be slightly larger
than the maximum reach of the robot arm.

WA* MHGBFS MPWA* EES IMHA* SMHA*
SR 31% 76% 36% 27% 70% 81%
SE 1.08 0.78 3.84 1.54 1.58 1.0
RT 0.99 0.91 2.82 1.54 1.41 1.0
SC 0.95 1.57 0.97 0.93 1.09 1.0

TABLE I: Comparison between WA*, MHGBFS, MPWA*, EES and MHA*s for
PR2 manipulation planning in kitchen environments. The first row (SR) shows the
percentage of total problem instances solved by each planner. The other rows include
the results as a ratio between the algorithm marked in the column heading and the
corresponding SMHA* numbers, when both of them solved an instance. Legend: SR -
Success Rate, SE - state expansion ratio, RT - runtime ratio, SC - solution cost ratio.

For IMHA*, we computed 2 additional heuristics in the
following way. We randomly selected 2 points (with valid IK
solutions for the arm to reach the goal) from the base circle
around the goal and ran 2D Dijkstra searches starting from
these 2 points to compute the inadmissible base distances.
We also computed an inadmissible orientation distance by
obtaining the Euclidean distance between the current base
orientation (at a given point) and the desired orientation,
which was to make the robot face the end-effector goal.
These inadmissible distances (base and orientation) were then
added to the end-effector to compute the final heuristic values.
Note that this informative heuristic is clearly inadmissible,
but can still be used in the MHA* framework. For SMHA*,
we augment this set by using the base (2D Dijkstra + ori-
entation) and the end-effector heuristics (3D Dijkstra) as two
additional heuristics, since SMHA* can share the paths among
the inadmissible searches, and hence, can potentially benefit
from not combining the two heuristics into a single one.
The test environment for this experiment was a kitchen-like



environment with randomly generated obstacles. In Figure 5a
(top view) and 5b (with robot and goal position), we include
an example of the test scenario with two large tables and a
few narrow passageways. For each trial of the experiment,
we randomly generated a full robot configuration anywhere
in the kitchen for the start state, while generating a valid
goal state that lies above the tabletops containing clutter. We
generated 15 such environments by randomly changing the
object positions and for each such environment we used 10
different start and goal configurations.

In Table I, we include the results comparing WA*, EES,
MPWA*, MHGBFS with the MHA*s. We used w = 50 for
all the algorithms. Each planner was given a maximum of
60 seconds to compute a plan. The results clearly show that
MHA*s (especially SMHA*) and MHGBFS perform much
better than WA*/MPWA*/EES, highlighting the efficacy of us-
ing multiple heuristics over a single heuristic function, which
often suffers from local minima due to robots orientation,
presence of obstacles, etc. MPWA* performs slightly better
than WA* indicating that the size of a local minimum can
depend on the weights used, however it still gets stuck in
most of the cases since it uses the same heuristic (albeit
with different weights) for each search. EES performs poorly
when the inadmissible distance function has a large depression.
Also, the inadmissible and admissible searches in EES do
not use weighted heuristics and thus, often get trapped in
some cost plateau. MHA*s (and MHGBFS) are less prone to
suffer from heuristic depression regions as they can converge
in time if any of the heuristics can lead the search to the
goal. SMHA* and MHGBFS perform better than IMHA*, as
they can use partial paths. For example, they can combine a
path obtained in the base heuristic search with the end-effector
heuristic search. MHGBFS performs comparably to SMHA*
in terms of number of instances solved and slightly better
in terms of convergence time. However, the solution costs
obtained for MHGBFS are significantly worse than SMHA*
(and IMHA*), as noted in Solution Cost ratio in Table I. This
highlights the utility of the anchor search, which ensures better
quality solution by intelligently controlling the inadmissible
expansions.

PRM RRT-Connect RRT*(First) RRT*(Final) IMHA* SMHA*
SR 74% 98% 100% 100% 70% 81%
RT 2.07 0.18 5.39 8.48 1.41 1.00
BD 1.93 1.88 1.36 1.34 1.02 1.00
ED 1.87 1.68 1.27 1.24 0.99 1.00

TABLE II: Comparison between MHA*s and sampling based planners for PR2
manipulation in kitchen environments. All the results are presented as a ratio between
the algorithm marked in the column heading and the corresponding SMHA* numbers. For
sampling based planners, the distances are obtained after post processing. Since RRT* is
an anytime algorithm, we include the results for the first solution reported (RRT*-First)
and the solution obtained at the end of 60 secs (RRT*-Final). Legend: SR - Success
Rate, RT - runtime ratio, BD - base distance ratio, ED - end effector distance ratio.

In Table II, we include the results comparing MHA*s with
3 sampling based algorithms, namely PRM, RRT-Connect
and RRT*, in terms of runtime and solution quality. For the
sampling based algorithms we used the standard OMPL [26]
implementation. Since the sampling-based planners do not
directly report the planning costs, in this table we include the

results in terms of base and end-effector distances covered
by the robots (after post processing). All the results are
presented as a ratio over the corresponding SMHA* numbers
(for episodes where both were successful). The results show
that SMHA* performs reasonably well when compared to the
sampling based planners, runtime-wise it is better than both
PRM and RRT* but worse than RRT-Connect. In terms of
solution quality, MHA*s are noticeably better than all the
sampling based planners. However, both RRT-Connect and
RRT* can solve more number of instances, mainly due to
the facts that a) they are not bound by discretization choices
and b) they do not use any heuristic function that may lead to
local minima.

B. 3D Path Planning (Navigation)

While high dimensional problems like full-body planning
for the PR2 are a true testbed for assessing the real life
applicability of MHA*s, finding close-to-optimal solutions in
such spaces is infeasible. Therefore, in order to get a better
idea of MHA*s’ behavior for close-to-optimal bounds, we
ran experiments in an easier 3D (x, y, orientation) navigation
domain. The search objective here is to plan smooth paths that
satisfy the constraints on the minimum turning radius. We used
two kinds of maps (1000×1000 dimensions): i) indoor maps,
that are composed of randomly placed narrow hallways and
large rooms with polygonal obstacles, and ii) outdoor maps,
that have large open spaces with random regular obstacles.We
computed the consistent heuristics (h0) by running a 16-
connected 2D Dijkstra search by inflating the objects using
the robot’s (PR2 base) in-radius. For generating the additional
heuristics, we used two strategies, i) dual heuristics: where
we generated an extra heuristic by performing another 2D
Dijkstra search by inflating the obstacles using the robot’s out-
radius, and ii) progressive heuristics: where the 2D Dijkstra
path obtained for h0 is investigated for possible bottlenecks,
if the path has narrow passages, those are blocked and a
new heuristic is computed. We used two progressive schemes,
PH where the above mentioned procedure is iterated until a
relatively wide 2D path is discovered and PG where the PH
heuristic set is augmented with an extra heuristic computed
by using a tunnel around the last 2D path.

Indoor Environments Outdoor Environments
IMHA* SMHA* IMHA* SMHA*

w RT SC RT SC RT SC RT SC
10.0 0.25 0.88 0.28 0.87 1.22 0.78 1.14 0.76
5.0 0.27 0.97 0.27 1.00 1.05 0.87 1.03 0.86
3.0 0.32 1.00 0.34 1.00 0.97 0.87 0.71 0.87
2.0 0.39 1.01 0.36 0.97 0.59 0.89 0.40 0.90
1.5 1.18 1.01 0.84 0.92 0.68 0.91 0.39 0.92

TABLE III: Comparison between WA* and MHA*s with dual heuristics for indoor
and outdoor maps. All the results are shown as a ratio between the algorithm marked in
the column heading and the corresponding WA* numbers. Legend: RT - runtime ratio,
SC - solution cost ratio.

In Tables III and IV, we include the results comparing
MHA*s with WA* for dual heuristics and progressive heuris-
tics, respectively. For indoor maps, the PH scheme generated
additional heuristics for 44 maps (out of 100), for outdoor
maps, it generated additional heuristics for 8 maps only.



Indoor Environments Outdoor Environments
IMHA* SMHA* IMHA* SMHA* IMHA* SMHA* IMHA* SMHA*

PH PH PG PG PH PH PG PG
w RT SC RT SC RT SC RT SC RT SC RT SC RT SC RT SC

10.0 0.16 0.81 0.13 0.87 0.14 0.73 0.05 0.73 1.46 0.83 1.38 0.75 1.38 0.79 1.38 0.55
5.0 0.18 0.79 0.13 0.88 0.15 0.64 0.07 0.64 1.50 0.81 1.22 0.73 1.17 0.85 1.06 0.59
3.0 0.19 0.93 0.21 0.88 0.24 0.93 0.12 0.81 1.07 0.92 1.04 0.80 1.21 0.93 0.82 0.81
2.0 0.82 0.88 0.40 0.87 0.83 0.91 0.19 0.89 1.06 0.97 0.96 0.80 1.09 0.91 0.74 0.88
1.5 1.15 0.92 0.79 0.83 1.13 0.91 0.52 0.89 1.20 0.97 0.89 0.94 1.16 0.96 0.87 0.94

TABLE IV: Comparison between WA* and MHA*s with PH and PG heuristics.
Runtime numbers include both planning and heuristic generation times. Legend: RT -
runtime ratio, SC - solution cost ratio.

The results show that for indoor maps, MHA*s generally
outperform WA* by a significant margin, whereas for outdoor
maps, all the algorithms perform similarly (MHA*s are a trifle
worse). This is because, in indoor maps, the presence of large
rooms and narrow corridors frequently creates big depres-
sion regions. MHA*s can utilize the additional inadmissible
heuristics to quickly get away from such depression zones, but
WA* cannot. In contrast, the outdoor maps are generally more
benign and large depression regions are rare, thus, WA* is very
efficient. However, even for outdoor environments, MHA*s
(especially SMHA*) perform better in case of low bounds.
The performance gap is more pronounced with the PH and
PG schemes as the number of heuristics increases.

MHGBFS MPWA* IMHA* SMHA*
IS 37 35 52 52
RT 2.39 3.38 1.35 1.00
SC 7.27 1.26 1.22 1.00

TABLE V: Comparison between MHGBFS, MPWA*, IMHA* and SMHA* for 3D
path planning (As a ratio over SMHA* results). All the planners were given maximum
5 secs to plan. Legend: IS - number of instances solved (out of 52), RT - runtime ratio,
SC - solution cost ratio.

Table V includes the results comparing MHA*s (PG) with
the MHGBFS and MPWA* on the combined set of 52 hard
instances (44 indoor + 8 outdoor), for which the PH scheme
generated extra heuristics. For MHA*s and MPWA*, we used
w = 10.0. Each algorithm was given a maximum of 5 seconds
to compute a plan. Comparison between MPWA* and MHA*s
show a similar trend as seen for the 12D planner. MHGBFS
performance degrades considerably for this domain as its
greedy approach at times drives the search deeper into a local
minimum. Unlike 12D planning, cost plateaus are rare here
and thus, the greedy approach hurts more often than it helps.

C. Sliding Tile Puzzle

For sliding tile puzzles, we used the Manhattan distance
(MD) plus linear conflicts (LC) [1] as the consistent heuristic
(h0). For MHA*s, we generated 4 additional heuristics by
computing the number of misplaced tiles (MT ), and adding
MD, LC and MT with random weights between 1.0 and 5.0,
i.e., we used hi = r1 ∗MD + r2 ∗LC + r3 ∗MT , where r1,
r2, r3 are random numbers ≥ 1.0 and ≤ 5.0. Clearly, these
heuristics are somewhat random and therefore, easy to design.
We tested the algorithms on 50 random instances (all solvable)
of 48, 63 and 80 puzzles.

In Table VI, we include the results in terms of the number
of problems solved by all the algorithms under two time
limits, 1 minute and 3 minutes. The results show that even
with such arbitrarily computed heuristics, MHA*s, especially

Size Bound WA* IMHA* SMHA* WA*(R) WA* IMHA* SMHA* WA*(R)
50 46 49 50 49 47 49 50 50
20 49 47 50 43 49 49 50 46

48 10 45 37 50 32 46 45 50 32
5 37 19 49 - 38 39 50 -
2 12 4 9 - 12 6 10 -
50 25 35 40 26 29 38 44 33
20 34 26 39 18 35 37 41 31

63 10 32 21 39 17 35 29 40 18
5 19 8 31 - 24 19 37 -
2 3 4 4 - 7 4 9 -
50 17 24 31 15 22 26 33 23
20 22 17 27 13 22 27 37 16

80 10 19 19 29 12 21 25 30 18
5 17 11 22 - 20 14 28 -
2 7 1 4 - 7 1 9 -

TABLE VI: Number of sliding tile puzzle instances solved by WA*, IMHA* and
SMHA* for different suboptimality bounds with time limit 1 minute (columns 3, 4 and
5) and 3 minutes (columns 7, 8 and 9). WA*(R) columns (6 and 10) show the results
obtained by WA* using the same randomized heuristic as used for MHA*.

SMHA*, can outperform WA*. The performance gap is more
pronounced for larger sized problems and higher w values.
We also include the results for WA* with the same heuristic
function hr = r1 ∗ MD + r2 ∗ LC + r3 ∗ MT (referred
to as WA*(R)). As hr ≤ 10 ∗ h0, we computed the results
for suboptimality bounds ≥ 10 only. From Table VI, we see
that the WA*(R) results are actually worse, indicating that
MHA*s’ improved performance is due to their multi-heuristic
exploration.

Size MHGBFS MPWA* IMHA* SMHA*
IS 50 44 38 50

48 RT 0.63 2.57 2.63 1.00
SC 3.59 1.02 0.96 1.00
IS 29 27 26 39

63 RT 1.06 1.46 1.13 1.00
SC 4.98 0.97 0.94 1.00
IS 21 16 17 27

80 RT 0.85 1.17 0.91 1.00
SC 3.92 0.94 0.99 1.00

TABLE VII: Comparison between MHGBFS, MPWA*, IMHA* and SMHA* for
sliding tile puzzle. The maximum runtime allowed was 1 minute. Legend: IS - number of
instances solved (out of 50), RT - runtime ratio, SC - solution cost ratio (over SMHA*).

In Table VII, we present the results obtained by comparing
MHA*s to MHGBFS and MPWA*. MHA*s and MPWA*
were run with w = 20.0. All the algorithms were given a
time limit of 1 minute. From the results, we observe that for
this domain, SMHA* consistently outperforms both MHG-
BFS/MPWA*. For each size, SMHA* solved more number of
instances than both MPWA*/MHGBFS. Although MHGBFS
had a better planning time in two scenarios, its solution quality
was markedly worse, as one would expect from the greedy
approach.

V. CONCLUSIONS AND FUTURE WORK

We presented a heuristic search framework that uses mul-
tiple inadmissible heuristics to simultaneously explore the
search space, while preserving guarantees of completeness
and suboptimality bounds using a consistent heuristic. Ex-
perimental results obtained on various domains demonstrate
the efficacy of the proposed framework, especially for search
spaces with large depression regions. While the initial results
with MHA*s are encouraging, we believe that there is scope
for major improvements/extensions. Possible future extensions
include anytime version of MHA*, dynamic recomputation of
heuristics, and parallel MHA*.



REFERENCES

[1] http://heuristicswiki.wikispaces.com/N+-+Puzzle.
[2] Sandip Aine, P. P. Chakrabarti, and Rajeev Kumar.

AWA* - A Window Constrained Anytime Heuristic
Search Algorithm. In Manuela M. Veloso, editor, IJCAI,
pages 2250–2255, 2007.

[3] Sandip Aine, Venkatraman Narayanan, Siddharth Swami-
nathan, Victor Hwang, and Maxim Likhachev. MHA*:
The Proofs. Technical Report TR-13-08, Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, 2014.

[4] Ronen I. Brafman, Hector Geffner, Jörg Hoffmann, and
Henry A. Kautz, editors. Proceedings of the 20th
International Conference on Automated Planning and
Scheduling, ICAPS 2010, Toronto, Ontario, Canada, May
12-16, 2010, 2010. AAAI.

[5] P. P. Chakrabarti, Sujoy Ghose, A. Pandey, and S. C. De
Sarkar. Increasing Search Efficiency Using Multiple
Heuristics. Inf. Process. Lett., 30(1):33–36, 1989.

[6] P. P. Chakrabarti, Sujoy Ghose, and S. C. De Sarkar.
Generalized best first search using single and multiple
heuristics. Inf. Sci., 60(1-2):145–175, 1992.

[7] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev.
Single- and dual-arm motion planning with heuristic
search. International Journal of Robotics Research
(IJRR), 2013.

[8] Benjamin J. Cohen, Sachin Chitta, and Maxim
Likhachev. Search-based planning for dual-arm manip-
ulation with upright orientation constraints. In ICRA,
pages 3784–3790. IEEE, 2012. ISBN 978-1-4673-1403-
9.

[9] A. Felner, R. E. Korf, and S. Hanan. Additive Pattern
Database Heuristics. J. Artif. Intell. Res. (JAIR), 22:279–
318, 2004.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, July 1968.

[11] C. Hernández and J. A. Baier. Avoiding and Escaping
Depressions in Real-Time Heuristic Search. J. Artif.
Intell. Res. (JAIR), 43:523–570, 2012.

[12] Armin Hornung, Daniel Maier, and Maren Bennewitz.
Search-based footstep planning. In Proc. of the ICRA
Workshop on Progress and Open Problems in Motion
Planning and Navigation for Humanoids, Karlsruhe,
Germany, May 2013.

[13] Pekka Isto. Path planning by multiheuristic search via
subgoals. In Proceedings of the 27th International
Symposium on Industrial Robots, CEU, pages 71272–6,
1996.

[14] James J. Kuffner Jr. and Steven M. LaValle. RRT-
Connect: An Efficient Approach to Single-Query Path
Planning. In ICRA, pages 995–1001. IEEE, 2000. ISBN
0-7803-5889-9.

[15] S. Karaman and E. Frazzoli. Incremental Sampling-based
Algorithms for Optimal Motion Planning. In Robotics:

Science and Systems, Zaragoza, Spain, June 2010. The
MIT Press.

[16] Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe,
and Mark H. Overmars. Probabilistic Roadmaps for Path
Planning in High-dimensional Configuration Spaces.
IEEE T. Robotics and Automation, 12(4):566–580, 1996.

[17] R. E. Korf and A. Felner. Disjoint pattern database
heuristics. Artif. Intell., 134(1-2):9–22, 2002.

[18] Steven M. Lavalle, James J. Kuffner, and Jr. Rapidly-
exploring random trees: Progress and prospects. In Al-
gorithmic and Computational Robotics: New Directions,
pages 293–308, 2000.

[19] M. Likhachev, G. J. Gordon, and S. Thrun. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality.
In Advances in Neural Information Processing Systems
16. MIT Press, Cambridge, MA, 2004.

[20] Maxim Likhachev and Dave Ferguson. Planning Long
Dynamically Feasible Maneuvers for Autonomous Vehi-
cles. I. J. Robotic Res., 28(8):933–945, 2009.

[21] Brian MacAllister, Jonathan Butzke, Aleksandr
Kushleyev, and Maxim Likhachev. Path Planning
for Non-Circular Micro Aerial Vehicles in Constrained
Environments. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages
3933–3940, 2013.

[22] J. Pearl. Heuristics: intelligent search strategies for
computer problem solving. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1984. ISBN
0-201-05594-5.

[23] Judea Pearl and Jin H. Kim. Studies in Semi-Admissible
Heuristics. IEEE Trans. Pattern Anal. Mach. Intell., 4
(4):392–399, 1982.

[24] I. Pohl. Heuristic Search Viewed as Path Finding in a
Graph. Artif. Intell., 1(3):193–204, 1970.

[25] Gabriele Röger and Malte Helmert. The More, the
Merrier: Combining Heuristic Estimators for Satisficing
Planning. In Brafman et al. [4], pages 246–249.

[26] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The
Open Motion Planning Library. IEEE Robotics & Au-
tomation Magazine, 19(4):72–82, December 2012.

[27] Jordan Tyler Thayer and Wheeler Ruml. Bounded Sub-
optimal Search: A Direct Approach Using Inadmissible
Estimates. In IJCAI, pages 674–679, 2011.

[28] Jordan Tyler Thayer, Roni Stern, Ariel Felner, and
Wheeler Ruml. Faster Bounded-Cost Search Using Inad-
missible Estimates. In Lee McCluskey, Brian Williams,
José Reinaldo Silva, and Blai Bonet, editors, ICAPS.
AAAI, 2012. ISBN 978-1-57735-562-5.

[29] Richard Anthony Valenzano, Nathan R. Sturtevant,
Jonathan Schaeffer, Karen Buro, and Akihiro Kishimoto.
Simultaneously Searching with Multiple Settings: An
Alternative to Parameter Tuning for Suboptimal Single-
Agent Search Algorithms. In Brafman et al. [4], pages
177–184.

[30] C. M. Wilt and W. Ruml. When Does Weighted A* Fail?
In SOCS. AAAI Press, 2012.

http://heuristicswiki.wikispaces.com/N+-+Puzzle
http://www.ijcai.org/papers07/Papers/IJCAI07-362.pdf
http://www.ijcai.org/papers07/Papers/IJCAI07-362.pdf
http://dx.doi.org/10.1016/0020-0190(89)90171-3
http://dx.doi.org/10.1016/0020-0190(89)90171-3
http://dx.doi.org/10.1016/0020-0255(92)90009-W
http://dx.doi.org/10.1016/0020-0255(92)90009-W
http://dx.doi.org/10.1109/ICRA.2012.6225008
http://dx.doi.org/10.1109/ICRA.2012.6225008
http://arxiv.org/abs/1107.0050
http://arxiv.org/abs/1107.0050
http://dx.doi.org/10.1613/jair.3590
http://dx.doi.org/10.1613/jair.3590
http://dx.doi.org/10.1109/ROBOT.2000.844730
http://dx.doi.org/10.1109/ROBOT.2000.844730
http://dx.doi.org/10.1109/ROBOT.2000.844730
http://www.roboticsproceedings.org/rss06/p34.html
http://www.roboticsproceedings.org/rss06/p34.html
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1016/S0004-3702(01)00092-3
http://dx.doi.org/10.1016/S0004-3702(01)00092-3
http://books.nips.cc/papers/files/nips16/NIPS2003_CN03.pdf
http://books.nips.cc/papers/files/nips16/NIPS2003_CN03.pdf
http://dx.doi.org/10.1177/0278364909340445
http://dx.doi.org/10.1177/0278364909340445
http://dx.doi.org/10.1177/0278364909340445
http://dx.doi.org/10.1109/ICRA.2013.6631131
http://dx.doi.org/10.1109/ICRA.2013.6631131
http://dx.doi.org/10.1109/ICRA.2013.6631131
http://dblp.uni-trier.de/db/journals/pami/pami4.html#PearlK82
http://dblp.uni-trier.de/db/journals/pami/pami4.html#PearlK82
http://dx.doi.org/10.1016/0004-3702(70)90007-X
http://dx.doi.org/10.1016/0004-3702(70)90007-X
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.8503&rep=rep1&type=pdf 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.8503&rep=rep1&type=pdf 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.8503&rep=rep1&type=pdf 
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2011.html#ThayerR11
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2011.html#ThayerR11
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2011.html#ThayerR11
http:////www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4706
http:////www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4706
http://aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2082
http://aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2082
http://aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2082
http://www.aaai.org/ocs/index.php/SOCS/SOCS12/paper/view/5413


[31] R. Zhou and E. A. Hansen. Multiple Sequence Alignment
Using Anytime A*. In Proceedings of 18th National
Conference on Artificial Intelligence AAAI’2002, pages
975–976, 2002.

[32] Matt Zucker, Nathan Ratliff, Martin Stole, Joel Chestnutt,
J. Andrew Bagnell, Christopher G. Atkeson, and James
Kuffner. Optimization and learning for rough terrain
legged locomotion. International Journal of Robotics
Research, 30(2):175–191, 2011.

http://www.aaai.org/Library/AAAI/2002/aaai02-155.php
http://www.aaai.org/Library/AAAI/2002/aaai02-155.php
http://dx.doi.org/10.1177/0278364910392608
http://dx.doi.org/10.1177/0278364910392608

	Introduction
	Related Work
	Multi-Heuristic A*
	Independent Multi-Heuristic A* (IMHA*)
	IMHA* Properties

	Shared Multi-Heuristic A* (SMHA*)
	SMHA* Properties


	Experimental Results
	Mobile Manipulation Planning for the PR2 (12D)
	3D Path Planning (Navigation)
	Sliding Tile Puzzle

	Conclusions and Future Work

