
1

Motion Planning for Unlabeled Discs with
Optimality Guarantees

Kiril Solovey∗, Jingjin Yu†, Or Zamir∗ and Dan Halperin∗

Abstract—We study the problem of path planning for unla-
beled (indistinguishable) unit-disc robots in a planar environment
cluttered with polygonal obstacles. We introduce an algorithm
which minimizes the total path length, i.e., the sum of lengths
of the individual paths. Our algorithm is guaranteed to find a
solution if one exists, or report that none exists otherwise. It runs
in time Õ

(
m4 +m2n2

)
, where m is the number of robots and

n is the total complexity of the workspace. Moreover, the total
length of the returned solution is at most OPT+4m, where OPT
is the optimal solution cost. To the best of our knowledge this
is the first algorithm for the problem that has such guarantees.
The algorithm has been implemented in an exact manner and
we present experimental results that attest to its efficiency.

I. INTRODUCTION

We study the problem of path planning for unlabeled
(i.e., indistinguishable) unit-disc robots operating in a planar
environment cluttered with polygonal obstacles. The problem
consists of moving the robots from a set of start positions
to another set of goal positions. Throughout the movement,
each robot is required to avoid collisions with obstacles and
well as with its fellow robots. Since the robots are unlabeled,
we only demand that at the end of the motion each position
will be occupied by exactly one robot, but do not insist on
a specific assignment of robots to goals (in contrast to the
standard labeled setting of the problem).

Following the methodology of performing target assign-
ments and path planning concurrently [1, 2, 3] and adopting a
graph-based vertex ordering argument from [4], we develop
a complete combinatorial algorithm to the unlabeled prob-
lem described above. Our algorithm makes two simplifying
assumptions regarding the input. First, it assumes that each
start or goal position has a (Euclidean) distance of at least√

5 to any obstacle in the environment (recall that the robot
discs have unit radius) . Additionally, it requires that the
distance between each start or goal position to any other such
position will be at least 4 (see Figure 1). Given that the two
separation conditions are fulfilled, out algorithm is guaranteed
to generate a solution if one exists, or report that none exists

∗K. Solovey, O. Zamir and D. Halperin are with the Blavat-
nic School of Computer Science, Tel Aviv University, Israel; Email:
{kirilsol,danha}@post.tau.ac.il, orzamir@mail.tau.ac.il; The work of K.S.
and D.H. has been supported in part by the Israel Science Foundation (grant
no. 1102/11), by the German-Israeli Foundation (grant no. 1150-82.6/2011),
and by the Hermann Minkowski-Minerva Center for Geometry at Tel Aviv
University.
†J. Yu is with the Computer Science and Artificial Intelligence Lab at

the Massachusetts Institute of Technology; Email: jingjin@csail.mit.edu; His
work has been supported in part by ONR projects N00014-12-1-1000 and
N00014-09-1-1051.

otherwise. It has a running time1 of Õ
(
m4 +m2n2

)
, where m

is the number of robots, and n is the description complexity
of the workspace environment, i.e., the number of edges of
the polygons. Furthermore, the total length of the returned
solution, i.e., the sum of lengths of the individual paths, is at
most OPT + 4m, where OPT is the optimal solution cost.

This paper should be juxtaposed with another work by the
authors [5] in which we show that a slightly different setting
of the unlabeled problem is computationally intractable. In
particular, we show that the unlabeled problem of unit-square
robots translating amid polygonal obstacles is PSPACE-hard.
Our proof relies on a construction of gadgets in which start
and goal positions are very close to one another or to the
obstacles, i.e., no separation is assumed. This can be viewed
as a justification to the assumptions used in the current paper
which allow an efficient solution of the problem.

We make several novel contributions. To the best of our
knowledge, we are the first to describe a complete algorithm
that fully addresses the problem of planning minimum total-
distance paths for unlabeled discs. We mention that Turpin
et al. [3] describe a complete algorithm for unlabeled discs;
however their algorithm minimizes the maximal path length of
an individual robot. Furthermore, our algorithm makes more
natural assumptions on the input problem than the ones made
by Turpin et al. We also mention the work by Adler et al. [6]
in which a complete algorithm is described, but it does not
guarantee optimality. While the latter work makes the same
assumption as we make on a separation of 4 between starts and
goals, it does not assume separation from obstacles. However,
it requires that the workspace environment will consist of a
simple polygon. On the practical side, we provide an exact
and efficient implementation which does not rely on non-
deterministic procedures, unlike sampling-based algorithms.
The implementation will be made publicly available upon the
publication of this paper.

Our work is motivated by theoretical curiosity as well as po-
tential real world applications. From a theoretical standpoint,
we have seen great renewed interests in developing planning
algorithms for multi-robot systems in continuous domains (see,
e.g., [3, 7, 8, 9, 10]) and discrete settings (see, e.g., [2, 11]).
Whereas significant headway has been made in solving multi-
robot motion-planning problems, many challenges persist; the
problem studied in this paper—path planning for unlabeled
disc robots in a general environment with guarantees on total
distance optimality—remains unresolved (until now). On the

1For simplicity of presentation, we omit log factors when stating the
complexity of the algorithm, and hence use the Õ notation.

2

s t

‖s− t‖ > 4
1

o ‖s− o‖ >
√
5

Fig. 1: Illustration of the separation conditions assumed in this work. The green and purple discs represent two unit-disc robots
placed in s ∈ S, t ∈ T , respectively. The blue line represents the unit radius of the robot (for scale). The distance between
s and t is at least 4 units (see dashed orange line). The gray rectangle represents an obstacle, and the point o represents the
closest obstacle point to s. Notice that the distance between o and s is at least

√
5 units (see dashed red line).

application side, in the past few years, we have witnessed the
rapid development and adaptation of autonomous multi-robot
and multi-vehicle systems in a wide variety of application
domains. The most prominent example is arguably the success
of Kiva Systems, now part of Amazon, which developed a
warehousing system employing hundreds of mobile robots to
facilitate order assembly tasks [12]. More recently, Amazon,
DHL, and Google have demonstrated working prototypes of
aerial vehicles capable of automated package delivery. Since
the vehicles are intended to operate in an autonomous, swarm-
like setting, we can foresee in the near future the emerging
demand of efficient path planning algorithms designed for
such systems. We note that when the warehouse robots or the
delivery aerial vehicles do not carry loads, they are effectively
unlabeled robots. In such scenarios, planning collision-free,
total-distance near-optimal paths translates into allowing the
vehicles, as a whole, to travel with minimum energy consump-
tion.

The rest of the paper is organized as follows. In Sec-
tion II we review related work. In Section III we provide an
overview of our algorithm and necessary background material.
In Section IV we establish several basic properties of the
problem and describe the algorithm in Section V. We report
on experimental results in Section VI and conclude with a
discussion in Section VII.

II. RELATED WORK

The problem of multi-robot motion planning is notoriously
challenging as it often involves many degrees of freedom, and
consequently a vast search space [13, 14]. In general, each
additional robot introduces several more degrees of freedom
to the problem. Nevertheless, there is a rich body of work
dedicated to this problem. The earliest research efforts can be
traced back to the 1980s [15].

Approaches for solving the problem can be typically subdi-
vided into categories. Decoupled techniques (see, e.g., [16,
17, 18, 19, 20, 21]) reduce the size of the search space
by partitioning the problem into several subproblems, which
are solved separately, and then the different components are
combined. In contrast to that, centralized approaches (see,

e.g., [22, 23, 24, 25, 26, 27, 28]) usually work in the
combined high-dimensional configuration space, and thus tend
to be slower than decoupled techniques. However, centralized
algorithms often come with stronger theoretical guarantees,
such as completeness. Besides these, the multi-robot motion-
planning problem has also been attacked using methods based
on network flow [8] and mixed integer programming [29],
among others.

Multi-robot motion planning can also be considered as a
discrete problem on a graph [30]. In this case the robots are
pebbles placed on the vertices of the graph and are bound
to move from one set of vertices to another along edges.
Many aspects of the discrete case are well understood. In
particular, for the labeled setting of the problem there exist
efficient feasibility-test algorithms [31, 32, 33], as well as
complete planners ([9, 34, 35]). For the unlabeled case, there
even exist complete and efficient planners that generate the
optimal solution [4, 11, 36] under different metrics. While
there exists a fundamental difference between the discrete and
the continuous setting of the multi-robot problem, the con-
tinuous case being exceedingly more difficult, several recent
techniques in the continuous domain [3, 6, 37] have employed
concepts that were initially introduced in the discrete domain.

As mentioned above, the works by Adler et al. [6] and
Turpin et al. [3] solve very similar settings of the unlabeled
problem for disc robots to the one treated in this paper, only
with different assumptions and goal functions, and thus it is
important to elaborate on these two techniques. Adler et al. [6]
show that the unlabeled problem in the continuous domain
can be transformed into a discrete pebble-motion on graph
problem. Their construction guarantees that in case a solution
to the former exists, it can be generated by solving a discrete
pebble problem and adapted to the continuous domain. In
particular, a motion of a pebble along an edge is transformed
into a motion of a robot along a local path in the free space.
Turpin et al. [3] find an assignment between starts and goals
which minimize the longest path length traveled by any of
the robots. Given such an assignment a shortest path between
every start position to its assigned goal is generated. However,
such paths still may result in collisions between the robots.

3

The authors show that collisions can be elegantly avoided by
prioritizing the paths. Our current work follows to some extent
a similar approach, although in our case some of the robots
must slightly stray from the precomputed paths in order to
guarantee completeness—a thing which makes our technique
much more involved. This follows from the fact that we make
milder assumptions on the input. Another difference is that the
goal function of our algorithm is to minimize the total path
length, which requires very different machinery than the one
used by Turpin et al.

III. PRELIMINARIES AND ALGORITHM OVERVIEW

Our problem consists of moving m indistinguishable unit-
disc robots in a workspace W ⊂ R2 cluttered with polygonal
obstacles, whose overall number of edges is n. We define O :=
R2 \W to be the complement of the workspace, and we call
O the obstacle space. For given r ∈ R+, x ∈ R2, we define
Br(x) to be the open disc of radius r, centered at x. For given
r ∈ R+, X ⊂ R2 we also define Br(X) :=

⋃
x∈X Br(x).

We consider the unit-disc robots to be open sets. Thus a
robot avoids collision with the obstacle space if and only if
its center is at distance at least 1 from O. More formally, the
collection of all collision free configurations, termed the free
space, can be expressed as F :=

{
x ∈ R2 : B1(x) ∩ O = ∅

}
.

We also require the robots to avoid collisions with each other.
Thus for every given two configurations x, x′ ∈ F two distinct
robots can be placed in x and x′ only if ‖x − x′‖> 2.
Throughout this paper the notation ‖·‖ will indicate the L2

norm.
In addition to the workspace W we are given sets S =

{s1, s2, ..., sm} and T = {t1, t2, ..., tm} such that S, T ⊂ F .
These are respectively the sets of start and goal configurations
of our m indistinguishable disc robots. The problem is now
to plan a collision-free motion for m unit-disc robots such
that each of them starts at a configuration in S and ends at a
configuration in T . Since the robots are indistinguishable or
unlabeled, it does not matter which robot ends up at which
goal configuration, as longs as all the goal configurations are
occupied at the end of the motion. Formally, we wish to find
m paths πi : [0, 1]→ F , for 1 6 i 6 m, such that πi(0) = si
and

⋃m
i=1 πi(1) = T . Furthermore, we are interested in finding

a set of such paths which minimizes the expression
∑m

i=1|πi|,
where |πi| represents the length of πi in the L2 norm.

A. Simplifying assumptions

By making the following simplifying assumptions (see Fig-
ure 1) we are able to show that our algorithm is complete and
near-optimal. The first assumption that we make is identical
to the one used by Adler et al. [6]. It requires that every pair
of start or goal positions will be separated by a distance of at
least 4:

∀v, v′ ∈ S ∪ T, ‖v − v′‖> 4. (1)

The motivation for the above assumption is the ability to prove
the existence of a standalone goal—a goal position that does
not block other paths, assuming that the paths minimize the
total length of the solution.

We also need the following assumption in order to guarantee
that the robots will be able switch targets, in case that a given
assignment of robots to goals induces collision between the
robots:

∀v ∈ S ∪ T and ∀x ∈ O, ‖v − x‖>
√

5. (2)

B. Overview of algorithm

Here we provide an overview of our technique. Recall that
our problem consists of S, T , which specify the set of start
and goal positions for a collection of m unit-disc robots, and
a workspace environment W .

We describe the first iteration of our recursive algorithm. For
every si ∈ S, tj ∈ T we find the shortest path γji : [0, 1]→ F
from si to tj . Among these m2 paths we select a set of m
paths Γ = {γ1, . . . , γm}, where γi : [0, 1] → F for every
1 6 i 6 m, such that

⋃m
i=1{γi(0)} = S,

⋃m
i=1{γi(1)} =

T . Furthermore, we require that Γ will be the path set that
minimizes the total length of its paths under these conditions.
Note that at this point we only require that the robots will
not collide with obstacles, and do not worry about collisions
between the robots. The generation of Γ is described in detail
in Section V, Theorem 13.

In the next step we find a goal t ∈ T which does not block
paths in Γ that do not lead to t. We call such a t a standalone
goal. Next, we find a start s ∈ S from which a robot will be
able to move to t without colliding with other robots situated
in the rest of the start positions. We carefully select such a start
s and generate the respective path to t in order to minimize
the cost of the returned solution. We prepare the input to the
next iteration of the algorithm by assigning S := S\{s}, T :=
T \ {t}, and by treating the robot placed in t as an obstacle,
i.e., W :=W \ B1(t).

IV. THEORETICAL FOUNDATIONS

In this section we establish several basic properties of
the problem. Recall that our problem is defined for a
workspace W , whose free space for a single unit-disc robot is
F . Additionally, we have two sets of start and goal positions
S = {s1, . . . , sm}, T = {t1, . . . , tm}, respectively.

The following lemma implies that if a robot moving from
some start position s ∈ S along a given path collides with
a region B1(t), for some other goal t ∈ T , then there exists
another path γ ∈ F which moves the robot from s to t. In
the context of our algorithm this lemma implies that if a path
for a robot interferes with some other goal position, then the
path can be modified such that it will move the robot to the
interfering goal instead.

Lemma 1. Let v ∈ S∪T and x ∈ F such that B1(x)∩B1(v) 6=
∅. Then the straight-line path from x to v is contained in F ,
i.e., xv ⊂ F .

Proof: Here we use the fact that for every o ∈ O it holds
that ‖v − o‖>

√
5, which is the second separation assump-

tion. Without loss of generality, assume that the straight-line
segment from v to x is parallel to the x-axis. Denote by A
and B the bottom points of the unit discs around v and x,

4

respectively (see Figure 2). Similarly, denote by C and D the
top points of these discs. By definition of v, x, we know that
‖v − x‖< 2. Thus, ‖v −B‖= ‖v −D‖<

√
5 (see dashed red

segment). This implies that the rectangle defined by the points
A,B,C,D is entirely contained in W (see orange square).
Thus, the straight-line path xv is fully contained in F .

Definition 2. Let Γ be a set of m paths {γ1, . . . , γm} such that
for every 1 6 i 6 m, γi : [0, 1] → F , S =

⋃m
i=1{γi(0)}, T =⋃m

i=1{γi(1)}. We call Γ the optimal-assignment path set for
S, T,F , if it minimizes the expression |Γ|:= ∑m

i=1|γi|, over all
such path sets.

Note that Γ is not necessarily a feasible solution to our
problem since at this stage we still ignore possible colli-
sions between robots. Let Γ = {γ1, . . . , γm} be an optimal-
assignment path set for S, T,F . Without loss of generality,
assume that for every 1 6 i 6 m, γi(0) = si, γi(1) = ti.

Definition 3. Given an optimal-assignment path set Γ, we call
tk ∈ T a standalone goal, for some 1 6 k 6 m, if for every
γi ∈ Γ, i 6= k it holds that B1(tk) ∩ B1(γi) = ∅.

Standalone goals play a crucial role in our algorithm. We
first show that at least one such goal always exists.

Theorem 4. Let Γ be an optimal-assignment path set. Then
there exists a standalone goal.

Proof: Assume by contradiction that every goal ti inter-
feres with some path γj ∈ Γ, i 6= j. This implies that there
is a circular interference, i.e., there exist ` 6 m goals, which
we denote, for simplicity and without loss of generality, as
t1, . . . , t` such that for every 1 < i 6 `, B1(ti)∩B1(γi−1) 6= ∅,
and B1(t1) ∩ B1(γ`) 6= ∅. More formally, let I be a directed
graph vertices are T . For every ti which interferes with a path
γj , where j 6= i we draw an edge from ti to tj . If there exists
no standalone goal then I has a directed cycle of size greater
than one. This is due to the fact that if I were directed acyclic
then it should have had a node whose out degree is zero.

We show that in this case, the paths γ1, . . . , γ` do not
induce the minimal assignment for the starts and goals
{s1, . . . , s`}, {t1, . . . , t`}. This would imply that Γ is not the
optimal assignment path set. We claim that instead of assigning
si to ti we may assign si to ti+1 for 1 6 i < ` and from
s` to t1 and get a collection of paths γ′1, . . . , γ

′
`, such that

|γ′i|< |γi| for every 1 6 i 6 `. Denote by x ∈ γi the first
interference point with ti+1 along γi. Additionally, denote by

v x

A B

C D

Fig. 2: Illustration of the proof of Lemma 1.

γxi the subpath of γi that starts with si and ends with x. Define
γ′i to be the concatenation of γxi and xti+1.

We need to show first that γ′i ⊂ F and that |γ′i|< |γi|. The
subpath γxi is obstacle-collision free, and so is xti+1 according
to Lemma 1. Thus, γ′i is free as well. Now, note that ‖x −
ti+1‖< 2 and ‖ti+1− ti‖> 4. Thus, by the triangle inequality
‖x− ti‖> 2. This finishes our proof.

We introduce the notion of 0-hop and 1-hop paths. Infor-
mally, a 0-hop path is a path assigned to the standalone goal
which is not blocked by any start position.

Definition 5. Let tk be a standalone goal. The path γk is called
a 0-hop path if for every si ∈ S, i 6= k it follows that B1(si) ∩
B1(γk) = ∅.
Definition 6. Let tk be a standalone goal, and suppose that
γk is not 0-hop. Let x ∈ γk be the farthest point along γk for
which there exists si ∈ S such that B1(si) ∩ B1(x) 6= ∅. The
1-hop path, which is denoted by Hk

i , is a concatenation of the
straight-line path six and a subpath of γk that starts at x and
ends in tk.

Namelly, the 1-hop path moves the robot situated in si,
which interferes with γk, to tk (see Figure 3). The following
theorem shows that a robot situated in si that blocks the 0-
hop path can be moved to tk without inducing collisions with
other robots.

Theorem 7. Let tk be a standalone goal. Suppose that γk is not
0-hop and let Hk

i be the 1-hop path from si to tk. Then it holds
that for every sj ∈ S, j 6= i, k, B1(Hk

i) ∩ B1(sj) = ∅.
Proof: By separation of start positions, and by definition

of x (see Definition 6), there exists a single start position si for
which B1(x) ∩ B1(si) 6= ∅. By Lemma 1, and the separation
condition, the path six, does not induce collisions between
a robot moving along it and other robots placed in sj , for
1 6 j 6 m, j 6= i, k. Finally, by definition of x, the rest of
the path Hk

i , which is a subpath of γk, is free of collisions
with a robot situated in sj .

After moving a robot from si to tk we have to ensure that
some other robot can reach ti. We define the following switch
path (see Figure 3).

sk tk

si

ti

xH̃i
k Hk

i

Fig. 3: Example of 1-hop and switch paths. tk is a standalone
goal. The 1-hop path Hk

i is drawn as a dashed red curve, while
the switch path H̃i

k is drawn as a dashed blue curve.

5

Definition 8. Let tk be a standalone goal and suppose that
γk is not 0-hop. The switch path H̃i

k is a concatenation of the
following paths: (1) the subpath of γk that starts in sk and ends
in x; (2) xsi; (3) γi.

Lemma 9. Let H̃k
i be a switch path. Then B1(H̃k

i)∩B1(tk) =
∅.

Proof: H̃k
i can potentially interfere with tk only along

xsi, due to the definition of x. For any y ∈ xsi it follows that
‖y−si‖< 2. If ‖y− tk‖< 2 then it follows that ‖si− tk‖< 4,
which is a contradiction.

Corollary 10. Let Hk
i , H̃

i
k be the 1-hop and switch paths,

respectively. Then |Hk
i |+|H̃i

k|= |γi|+|γk|+4.

V. NEAR-OPTIMAL ALGORITHM FOR UNLABELED
PLANNING

In this section we describe our algorithm for the unlabeled
multi-robot motion planning problem of unit-disc robots mov-
ing amid polygonal obstacle and establish its completeness.
Additionally, we bound the cost of the returned solution.
Finally, we analyze the complexity of the algorithm.

A. The algorithm

We describe our recursive algorithm, which returns a set
of m paths Π. Recall that the input consists of S, T and a
workspaceW , which induces the free space F . The algorithm
first produces the optimal-assignment path set Γ. Let OPT be
the optimal solution cost and note that |Γ|6 OPT since |Γ| is
a lower bound on the actual cost, as interactions between the
robots might increase the traversed distance.

Let tk be a standalone goal, which exists according to
Theorem 4. Suppose that the 0-hop path γk is not blocked
by any other robot located in a start position. Then, γk is
added to Π and the algorithm is run recursively on the input
S′ := S \ {sk}, T ′ := T \ {tk}, with the workspace W ′ :=
W \B1(tk), which results in the free space F ′ := F \B2(tk).

Alternatively, in case that γk is blocked, i.e., in interference
with some si ∈ S, i 6= k, the algorithm produces the 1-
hop path Hk

i , as described in Theorem 7, and adds it to Π.
Then, the algorithm is run recursively on the input S′ :=
S\{si}, T ′ := T \{tk}, with the workspaceW ′ :=W\B1(tk),
and the free space F ′ := F \ B2(tk).

B. Completeness and near-optimality

We first show that the algorithm is guaranteed to find a
solution, if one exists, or report that none exists otherwise.

Theorem 11. Given an input S, T,W , which complies with
assumptions 1 ,2 (Section III-A), and for which the number of
start and goal positions for every connected component of F is
the same, the algorithm is guaranteed to find a solution for the
unlabeled multi-robot motion-planning problem.

Proof: Consider the first iteration of the algorithm. Let
Γ := {γ1, . . . , γm} be the optimal-assignment path set and let
tk be a standalone goal.

Suppose that γk is a 0-hop path. Then, for every j 6= k,
γj ⊂ F \ B2(tk), since tk is a standalone goal. Now suppose
that γk is not a 0-hop path. By Theorem 7 the 1-hop path Hk

i

from si to tk does not collide with any other start position.
By Lemma 9 H̃i

k ⊂ F \ B2(tk). Additionally, notice that for
every j 6= i, k, γj ⊂ F \ B2(tk).

Thus, in any of the two situations, the removal of the
standalone goal does not separate between start and goal
configurations that are in the same connected component of
F . Note that in the first level of the recursion the existence
of a standalone goal tk guarantees the existence of a path
to tk which does not collide with the other robots. This is
possible due to assumptions 1, 2. Thus, in order to ensure the
success of the following recursions, we need to show that these
assumptions are not violated. First, note that assumption 1 is
always maintained, since we do not move existing start and
goal positions. Secondly, when a robot situated in tk is treated
as an obstacle added to the set O := O∪B1(tk) (or conversely
removed from F , as described above), the first assumption
induces the second.

We proceed to prove the near-optimality of our solution.

Theorem 12. Let Π be the solution returned by our algorithm
and let Γ be the optimal-assignment path set for S, T,W . Then
|Π|6 OPT + 4m, where OPT is the optimal solution cost.

Proof: Let Γ := {γ1, . . . , γm} be the optimal-assignment
path set for the input S, T,W , and let tk be a standalone.
Additionally, assume that the algorithm generated the 1-hop
path Hk

i , since γk was blocked (the case when γk is not
blocked is simpler to analyze). Let H̃i

k be the switch path
from sk to ti. Similarly, denote by Γ′ the optimal-assignment
path set for S′ := S \ {si}, T ′ := T \ {tk} and the workspace
W ′ :=W \ B1(tk), which induces the free space F ′.

We will show that |Γ′|+|Hk
i |6 OPT + 4. As mentioned in

Theorem 11, for every j 6= i, k, it follows that for γj ∈ Γ
and γj ⊂ F ′. We also showed that the same holds for H̃i

k,
i.e., H̃i

k ⊂ F ′. Thus, the path set R := (Γ \ {γi, γk}) ∪ {H̃i
k}

represents a valid assignment for S′, T ′,F ′, even though it
might not be optimal. This means that |Γ′|6 |R|. Thus,

|Γ′|+|Hk
i | 6 |R|+|Hk

i |=
m∑

j 6=i,k

|γj |+|H̃i
k|+|Hk

i |

6
m∑

k=1

|γk|+4 = |Γ|+4 6 OPT + 4,

where the third step is due to Corollary 10. Thus, every
level of the recursion introduces and additive error factor
of 4. Repeating this process for the m iterations we obtain
|Π|6 OPT + 4m.

C. Complexity Analysis

We analyze the complexity of the algorithm. In order to
do so, we have to carefully consider the operations that are
performed in every iteration of the algorithm.

Theorem 13. Given m unlabeled unit-disc robots operating in
a polygonal workspace with n vertices, the algorithm described

6

above returns a solution, or reports that none exists otherwise,
with a running time of Õ

(
m4 +m2n2

)
.

Proof: Let us consider a specific iteration j. The input
of this iteration consists of m − j + 1 start positions Sj and
m − j + 1 goal positions Tj . The workspace region of this
iteration is defined to be Wj := W \ (B1(T \ Tj)), which
induces the free space Fj . Note that S1 ≡ S, T1 ≡ T,F1 ≡
F ,Γ1 ≡ Γ.

In order to find the optimal-assignment path set Γj for
Sj , Tj ,Fj one has to first find the shortest path in Fj for every
pair of start and goal positions s ∈ Sj , t ∈ Tj . Given the costs
of all those combinations, the Hungarian algorithm [38]2 finds
the optimal assignment, and so Γj is produced. In the next step,
a standalone goal tk is identified and it is checked whether the
0-hop path leading to tk is clear, in which case γk is added
to Π. If it is not, one needs to find the last start position that
interferes with this path and generate the respective 1-hop path,
which will be included in Π.

The complexity of finding a shortest path for a disc depends
on the complexity of the workspace, which in our case is
O(n + j). This task is equivalent to finding a shortest path
for a point robot in Fj . The generation of Fj can be done
in O

(
(n+ j) log2(n+ j)

)
time complexity, and the overall

complexity of this structure would be O(m + j) [39]. A
common approach for finding shortest paths in the plane is
to construct a visibility graph [40] which encapsulates infor-
mation between every pair of vertices of a given arrangement
of segments, while avoiding crossings with the segments.
In our case, the arrangement should include Fj as well as
all the points from Sj and Tj . Thus, we would need to
generate a visibility graph over a generalized polygon of total
complexity O(m+ n). This can be done in Õ

(
(m+ n)2

)
=

Õ(m2 + n2) [40]3. Given the visibility graph with O(m+ n)
vertices and O(m2 + n2) edges we find for each s ∈ Sj

the shortest path to every t ∈ Tj . For each s we run the
Dijkstra algorithm which requires O(m2 +n2) time, and finds
the shortest path from the given s to any t ∈ Tj . Since
|Sj |= m− j+ 1, the total running time of finding the shortest
path from every start to every goal is O((m− j)(m2 + n2)).

To find Γj we employ the Hungarian algorithm [38], which
runs in O

(
(m− j)3

)
time. Now, given Γj we wish to find a

standalone goal tk. We first note that the complexity of each
path in Γj is bounded by the complexity of Fj , which is
O(n+j). For every ti ∈ Tj , γi′ ∈ Γj , i 6= i′ we check whether
B1(ti)∩B1(γi′) 6= ∅. This step has a running time of Õ((m−
j)(m − j)(n + j)) = Õ((m − j)2(n + j)). Finding the last
closest blocking start from Sj of the path γk takes additional
O((m − j)(n + j)) time by going over all starts in Sj and
comparing the distance of their interference point with γk.

2Also known as the Kuhn-Munkres algorithm.
3We note that in our setting the arrangement consists not only of straight-

line segments, but also of circular arcs which are induced by robots situated
in target positions. Yet, the algorithm constructing the visibility graph can
treat such cases as well, while still guaranteeing the (near-)quadratic run-time
complexity mentioned above.

Thus, the overall complexity of a given iteration j is

Õ
(
(m−j)(m2+n2)+(m−j)3+(m−j)2(n+j)+(m−j)2

)
= Õ

(
(m− j)(m2 + n2)

)
.

Note that the cost of the different components is absorbed in
the cost of calculating the shortest paths. We conclude with
the running time of the entire algorithm:

Õ

 m∑
j=1

(m− j)(m2 + n2)

 = Õ
(
m4 +m2n2

)
.

VI. EXPERIMENTAL RESULTS

We implemented the algorithm and evaluated its perfor-
mance on various challenging scenarios.

A. Implementation details

First, we wish to emphasize that our implementation deals
with geometric primitives, e.g., polygons and discs, and does
not rely on any graph discretization of the problem. The
implementation relies on exact geometric methods that are
provided by CGAL [41]. As such, it is complete, robust
and deterministic. In addition to that, the implementation is
parameter-free.

We implemented the algorithm in C++ and relied heavily
on CGAL for geometric computing, and in particular on the
Arrangement_2 package [42]. Generation of the free space
was done using Minkowski sums, while shortest paths were
generated using visibility graphs [40]. In order to find the
optimal assignment, we used a C++ implementation of the
Hungarian algorithm [38], available at [43].

B. Test scenarios

We report in Table I on the running time of the algorithm
for the four scenarios depicted in Figure 4. The grid scenario
(Figure 4a) is used to illustrate the performance of the al-
gorithm in a sterile obstacles-free workspace. The triangles
and cross scenarios (Figure 4b,4d) include multiple obstacles,
which have a tremendous affect on the performance of the
algorithm. The maze scenario (Figure 4c), which also includes
multiple obstacles, has several narrow passages.

It is evident that the running time is dominated by shortest-
path calculations (see Theorem 13). The second largest con-
tributor to the running time of the algorithm, is the calculation
and maintenance of the configuration space, which includes
the update of the free space for every iteration. A interesting
relation is found between the overall complexity of finding
the optimal assignment (O(m4)) and its modest contribution
to the actual running time in practice, when compared to
the other components. This can be explained by the fact that
the implementation of the Hungarian algorithm [43] employs
floating-point arithmetic, while the geometric operations, e.g.,
shortest pathfinding, rely on exact geometric kernels, which
have unlimited precision [44]. It is noteworthy that the al-
gorithm produces solutions whose cost is very close to the
optimal cost.

7

(a) grid (b) triangles (c) maze (d) cross

Fig. 4: Test scenarios. Obstacles are represented as gray polygons. Discs represent robots placed in start (red) and goal (blue)
positions. (a) Grid scenario with 40 robots. (b) Triangles scenario with 32 robots and multiple triangular obstacles. (c) Maze
scenario with with 26 robots; robots need to pass through a collection of narrow passages in order to reach their goals. (d)
Cross scenario with 8 robots and several wall obstacles.

To gather a better understanding of the running time of the
algorithm, we also report on the running time of each iteration
for the triangles scenario (see Figure 5a). For every iteration
1 6 j 6 32 we report on the running time of maintaining the
configuration space, and finding shortest paths.

Another important aspect of the algorithm is the relation
between the number of robots and the performance. To test
this relation we performed the following experiment, which is
based on the triangles scenario as well. We report in Figure 5b
how the performance is affected by an increase or decrease in
the number of robots. In order to maintain a similar level of
density between the various tests we increase the radius of
the robots to the maximal allowed radius which abides by the
separation assumptions.

The algorithm and its current implementation can deal with
rather complex scenarios. However, it is clear that there is
a limit to the number of robots or workspace complexity
with which it can cope, due the relatively high degree of the
polynomial, in the running time complexity.

VII. DISCUSSION AND FUTURE WORK

A. Relaxing the separation conditions

The algorithm presented in this paper requires that two
conditions will hold. First it is assumed that every pair of
start or goal position will be separated by a distance of at
least 4. The second condition requires that every start or goal
positions will be separated from an obstacle by a distance of
at least

√
5 ≈ 2.236. We believe that the obstacles-separation

factor can be lowered to
√

13− 6
√

3 ≈ 1.614 using a tighter
mathematical analysis. While the proof for Lemma 1 would
change, the rest of the proofs will not require any special
modification. In the near future we aim to consider less strict
separation requirements such as reducing the robots separation
to 3 and removing the requirement that start positions will
be separated from goal positions. However, it seems that the
machinery described here will not suffice for the tighter setting
and different tools will be required.

We note that without adequate obstacle clearance, it is in
fact impossible for any algorithm to guarantee a maximum
O(m) deviation from the cost of an optimal-assignment path

set, regardless of the separation between start and goals.
For instance, see the gadget in Figure 6. The two pairs of
(blue) start and (red) goal positions satisfy the 4 separation
requirement. The disc starting at the bottom left, which we
call disc 1, is matched by the optimal assignment with the
goal on the top left of the figure, and the disc starting in the
middle, which we call disc 2, is matched with the goal on the
right. This is due to the fact that disc 1 and disc 2 reside in
two disjoint components of the free space. For disc 1 to go
through the lower tunnel, disc 2 must move non-trivially (e.g.,
to the location of the green discs). Let this nontrivial distance
be δ. Then, as disc 1 passes through the upper tunnel, another
nontrivial move of distance δ must be performed by disc 2 to
clear the way. Now, we remove disc 1 from the gadget and
stack m/2 of the resulting gadget vertically. If we require the
rest m/2 discs to pass through the stacked construction, a total
distance penalty of Ω(m2δ) is incurred.

Fig. 6: Illustration of a scenario in which every solution has a
deviation of Ω(m2) from the cost of the optimal-assignment
path set.

B. Improving the algorithm

It is evident from our experiments that most of the running
time of the algorithm in practice is devoted to finding shortest
paths. To be specific, in each iteration the algorithm performs
a shortest-path search between every pair of start and target
positions. This entire process is performed only for the sake
of finding a single standalone goal. It will be interesting to
investigate whether more information can be extracted from
the optimal assignment returned by the Hungarian algorithm.

8

(a) (b)

Fig. 5: Graphs depicting the running time of maintaining the configuration space, and finding shortest path, for the triangles
scenario (Figure 4b). (a) Running time is reported separately for every iteration of the algorithm. (b) The behavior of the
algorithm for a growing number of robots in the triangles scenario is depicted.

Scenarios
Grid Triangles Maze Cross

scenario properties
robots 40 32 26 8

workspace vertices 4 118 56 44
robot radius 0.05 0.034 0.035 0.09

running time (sec.)

configuration space 261 832 141 17
shortest paths 50 5532 658 1

optimal assignment 0.016 0.001 0.016 0
standalone goal 0.001 0.016 0.119 0

total 311 6394 800 19

cost lower bound 36.33 10.41 154.86 12.11
actual cost 37.16 10.69 155.21 12.4

algorithm’s behavior 0-hop paths 25 32 14 7
1-hop paths 1 0 12 1

TABLE I: Results of our algorithm for the scenarios depicted in Figure 4. We first describe the properties of each scenario,
which consist of the number of robots, the complexity of the workspace (n), and the robot’s radius (every scenario is bounded
by the [−1, 1]2 square). Then, we report the running time (in seconds) of the different components of the algorithm: construction
and maintenance of the configuration space; calculation of shortest paths; calculation of the optimal assignment; search for
a standalone goal. Then, we report the lower-bound cost of the solution and the cost of the actual solution returned by the
algorithm. Finally, we report the number of iterations for which the algorithm returned a 0-hop or a 1-hop path.

For instance, could there be two or more standalone goals to
which there are separate non-interfering paths?

C. Implementation in 3D

For simplicity of presentation, our algorithm is discussed for
the planar setting. Yet, its completeness and near-optimality
guarantees hold also for the three-dimensional case with ball
robots under the two separation assumptions used in this
paper. A main requirement for a correct implementation of
the algorithm is the ability to produce shortest paths for a
single robot moving amid static obstacles. While this task
does not pose particular challenges in the planar case, it
becomes extremely demanding in 3D. In particular, finding a
shortest path for a polyhedral robot translating amid polyhedral
obstacles is known to be NP-Hard [45]. It would be interesting
to investigate whether our algorithm can be extended to work
with approximate shortest paths.

REFERENCES

[1] G. Calinescu, A. Dumitrescu, and J. Pach, “Reconfigu-
rations in graphs and grids,” SIAM Journal on Discrete
Mathematics, vol. 22, no. 1, pp. 124–138, 2008.

[2] J. Yu and S. M. LaValle, “Multi-agent path planning
and network flow,” in Workshop on the Algorithmic
Foundations of Robotics (WAFR), MIT, Cambridge, Mas-
sachusetts, USA, 2012, pp. 157–173.

[3] M. Turpin, N. Michael, and V. Kumar, “Concurrent
assignment and planning of trajectories for large teams
of interchangeable robots,” in International Conference
on Robotics and Automation (ICRA), 2013.

[4] J. Yu and S. M. LaValle, “Distance optimal formation
control on graphs with a tight convergence time guar-
antee,” in Proceedings IEEE Conference on Decision &
Control, 2012, pp. 4023–4028.

[5] K. Solovey and D. Halperin, “On the hardness of unla-
beled multi-robot motion planning,” in Robotics: Science
and Systems (RSS), 2015, these proceedings.

9

[6] A. Adler, M. de Berg, D. Halperin, and K. Solovey, “Ef-
ficient multi-robot motion planning for unlabeled discs
in simple polygons,” in Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2014.

[7] M. Turpin, N. Michael, and V. Kumar, “Trajectory plan-
ning and assignment in multirobot systems,” in Workshop
on the Algorithmic Foundations of Robotics (WAFR),
MIT, Cambridge, Massachusetts, USA, 2012, pp. 175–
190.

[8] I. Karamouzas, R. Geraerts, and A. F. van der Stappen,
“Space-time group motion planning,” in Workshop on
the Algorithmic Foundations of Robotics (WAFR), MIT,
Cambridge, Massachusetts, USA, 2012, pp. 227–243.

[9] A. Krontiris, R. Luna, and K. E. Bekris, “From feasibility
tests to path planners for multi-agent pathfinding,” in
Symposium on Combinatorial Search, (SOCS), Leaven-
worth, Washington, USA, 2013.

[10] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal
assignment and trajectory planning for large teams of
aerial robots,” in Robotics: Science and Systems, 2013.

[11] J. Yu and S. M. LaValle, “Planning optimal paths for
multiple robots on graphs,” in International Conference
on Robotics and Automation (ICRA), 2013, pp. 3612–
3617.

[12] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coor-
dinating hundreds of cooperative, autonomous vehicles
in warehouses,” AI Magazine, vol. 29, no. 1, pp. 9–19,
2008.

[13] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the
complexity of motion planning for multiple indepen-
dent objects; PSPACE-hardness of the “Warehouseman’s
problem”,” International Journal of Robotics Research,
vol. 3, no. 4, pp. 76–88, 1984.

[14] P. G. Spirakis and C.-K. Yap, “Strong NP-hardness of
moving many discs,” Information Processing Letters,
vol. 19, no. 1, pp. 55–59, 1984.

[15] J. T. Schwartz and M. Sharir, “On the piano movers’
problem: III. coordinating the motion of several in-
dependent bodies: the special case of circular bodies
moving amidst polygonal barriers,” International Journal
of Robotics Research, vol. 2, no. 3, pp. 46–75, 1983.

[16] M. A. Erdmann and T. Lozano-Pérez, “On multiple
moving objects,” in International Conference on Robotics
and Automation (ICRA), 1986, pp. 1419–1424.

[17] S. M. LaValle and S. A. Hutchinson, “Optimal motion
planning for multiple robots having independent goals,”
IEEE Transactions on Robotics & Automation, vol. 14,
no. 6, pp. 912–925, 1998.

[18] J. Peng and S. Akella, “Coordinating multiple robots
with kinodynamic constraints along specified paths,” in
Algorithmic Foundations of Robotics V, J.-D. Boissonat,
J. Burdick, K. Goldberg, and S. Hutchinson, Eds. Berlin:
Springer-Verlag, 2002, pp. 221–237.

[19] J. van den Berg and M. H. Overmars, “Prioritized motion
planning for multiple robots,” in International Confer-
ence on Intelligent Robots and Systems (IROS), 2005,
pp. 430 – 435.

[20] R. Ghrist, J. M. O’Kane, and S. M. LaValle, “Computing

Pareto Optimal Coordinations on Roadmaps,” Interna-
tional Journal of Robotics Research, vol. 24, no. 11, pp.
997–1010, 2005.

[21] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha,
“Centralized path planning for multiple robots: Optimal
decoupling into sequential plans,” in Robotics: Science
and Systems, 2009.

[22] P. A. O’Donnell and T. Lozano-Pérez, “Deadlock-free
and collision-free coordination of two robot manipu-
lators,” in International Conference on Robotics and
Automation (ICRA), 1989, pp. 484–489.

[23] P. Švestka and M. H. Overmars, “Coordinated path
planning for multiple robots,” Robotics and Autonomous
Systems, vol. 23, no. 3, pp. 125–152, 1998.

[24] B. Aronov, M. de Berg, A. F. van der Stappen, P. Švestka,
and J. Vleugels, “Motion planning for multiple robots,”
Discrete & Computational Geometry, vol. 22, no. 4, pp.
505–525, 1999.

[25] S. Kloder and S. Hutchinson, “Path planning for
permutation-invariant multirobot formations,” IEEE
Transactions on Robotics, vol. 22, no. 4, pp. 650–665,
2006.

[26] O. Salzman, M. Hemmer, and D. Halperin, “On the
power of manifold samples in exploring configuration
spaces and the dimensionality of narrow passages,” in
Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2012, pp. 313–329.

[27] K. Solovey, O. Salzman, and D. Halperin, “Finding a
needle in an exponential haystack: Discrete RRT for
exploration of implicit roadmaps in multi-robot motion
planning,” in Workshop on the Algorithmic Foundations
of Robotics (WAFR), 2014.

[28] G. Wagner and H. Choset, “Subdimensional expansion
for multirobot path planning,” Artif. Intell., vol. 219, pp.
1–24, 2015.

[29] E. J. Griffith and S. Akella, “Coordinating multiple
droplets in planar array digital microfluidic systems,”
International Journal of Robotics Research, vol. 24,
no. 11, pp. 933–949, 2005.

[30] D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating
pebble motion on graphs, the diameter of permutation
groups, and applications,” in Foundations of Computer
Science (FOCS). IEEE Computer Society, 1984, pp.
241–250.

[31] V. Auletta, A. Monti, M. Parente, and P. Persiano, “A
linear time algorithm for the feasibility of pebble motion
on trees,” in Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT), 1996, pp. 259–270.

[32] G. Goraly and R. Hassin, “Multi-color pebble motion on
graphs,” Algorithmica, vol. 58, no. 3, pp. 610–636, 2010.

[33] J. Yu, “A linear time algorithm for the feasibility of
pebble motion on graphs,” CoRR, vol. abs/1301.2342,
2013.

[34] D. Kornhauser, “Coordinating pebble motion on graphs,
the diameter of permutation groups, and applications,”
M.Sc. Thesis, Department of Electrical Engineering and
Computer Scienec, Massachusetts Institute of Technol-
ogy, 1984.

10

[35] R. Luna and K. E. Bekris, “An efficient and complete
approach for cooperative path-finding,” in Conference on
Artificial Intelligence, San Francisco, California, USA,
2011.

[36] M. Katsev, J. Yu, and S. M. LaValle, “Efficient for-
mation path planning on large graphs,” in 2013 IEEE
International Conference on Robotics and Automation,
Karlsruhe, Germany, 2013, pp. 3606–3611.

[37] K. Solovey and D. Halperin, “k-Color multi-robot motion
planning,” International Journal of Robotic Research,
vol. 33, no. 1, pp. 82–97, 2014.

[38] E. L. Lawler, Combinatorial optimization: networks and
matroids. Courier Dover Publications, 1976.

[39] K. Kedem, R. Livne, J. Pach, and M. Sharir, “On the
union of jordan regions and collision-free translational
motion amidst polygonal obstacles,” Discrete & Compu-
tational Geometry, vol. 1, pp. 59–70, 1986.

[40] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars, Computational Geometry: Algorithms and Appli-
cations, 3rd ed. Springer-Verlag, 2008.

[41] “CGAL, Computational Geometry Algorithms Library,”
http://www.cgal.org.

[42] E. Fogel, D. Halperin, and R. Wein, CGAL Arrangements
and Their Applications - A Step-by-Step Guide, ser.
Geometry and computing. Springer, 2012, vol. 7.

[43] “Implementation of the Kuhn-Munkres algorithm,” https:
//github.com/saebyn/munkres-cpp.

[44] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap,
“Classroom examples of robustness problems in geomet-
ric computations,” Comput. Geom., vol. 40, no. 1, pp.
61–78, 2008.

[45] J. F. Canny and J. H. Reif, “New lower bound techniques
for robot motion planning problems,” in 28th Annual
Symposium on Foundations of Computer Science, Los
Angeles, California, USA, 1987, pp. 49–60.

[46] J. Ayala and H. Rubinstein, “A geometric approach
to shortest bounded curvature paths,” arXiv preprint
arXiv:1403.4899, 2014.

http://www.cgal.org
https://github.com/saebyn/munkres-cpp
https://github.com/saebyn/munkres-cpp

	Introduction
	Related work
	Preliminaries and algorithm overview
	Simplifying assumptions
	Overview of algorithm

	Theoretical foundations
	Near-optimal algorithm for unlabeled planning
	The algorithm
	Completeness and near-optimality
	Complexity Analysis

	Experimental results
	Implementation details
	Test scenarios

	Discussion and future work
	Relaxing the separation conditions
	Improving the algorithm
	Implementation in 3D

	Appendix

