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Abstract—Unmanned aerial vehicle (UAV) capability is cur-
rently limited by the amount of energy that can be stored
onboard. Airborne docking, for mid-air refueling, is a viable
solution that has been implemented with manned aircraft for
decades, but has yet to be achieved with their unmanned
counterparts. The prohibitive challenge is the highly accurate
and reliable relative positioning performance that is necessary to
dock with a small target, in the air, amidst external disturbances.

This paper presents a complete solution to airborne docking,
which includes vision-aided unscented Kalman filters for leader-
relative navigation and docking appendage motion estimation;
and guidance that is suitable for all phases of the mission. The
work concludes by demonstrating the proposed algorithms in
what is thought to be the first UAV airborne docking.

I. INTRODUCTION

Currently, unmanned aerial vehicles (UAV) are limited
by the energy they can store onboard or gather from the
environment. Airborne docking offers a solution by enabling
in-flight refueling [22| 24]], recharging and payload transfer.
In addition to extended range and endurance, fuel savings of
30-40 % have been suggested for haulage flights, through the
elimination of refueling stopovers [17)]. But despite the clear
value, the state-of-the-art in industry is still NASA/DARPA’s
automated approach to docking with manned aircraft, in 2006
[8l], and more recently, close formation with two Global Hawk
UAVs in experiments by Northrop Grumman/DARPA [/7]].

Our work considers two small UAVs, flying in leader-
follower formation, as shown in Figs. E] and @ The leader is
towing a docking appendage, which is a cone shaped drogue,
and the follower is tasked with docking its nose within the
drogue. The vehicles communicate sensor and state data in
real-time, but the leader’s intent is unknown. Knowledge of
the intent would allow a more optimal and predictable path
to rendezvous, as investigated in the author’s previous work
[25], and allow faster leader dynamics, at closer separation.
However, these advantages were considered insufficient to
justify the additional communication and complexity.

Multiple phases of the mission exist, including a) ren-
dezvous to a formation position to obtain visual observations,
b) transition to a pre-contact position to obtain observations
of the drogue and c) a final approach to docking. Although
the techniques for autonomous docking are applicable to both
large and small UAVs, the operational environment is very dif-
ferent. Larger vehicles operate in the benign upper atmosphere
where wake turbulence is the main disturbance, whereas small
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Fig. 1: The terminal approach to docking with a towed drogue.

UAVs must contend with wind and low altitude turbulence,
which they are particularly susceptible to. Consequently, we
adopt the rationale that scaling a solution up to larger vehicles
is more feasible than the reverse.

The prohibitive challenge in airborne docking, is the highly
accurate and reliable relative positioning performance that is
necessary to dock with a small target, in the air, and amidst
external disturbances. This paper contributes a complete so-
lution to this challenge, which is experimentally verified in
airborne docking experiments.

A. Related Work

Airborne docking is a large, multifaceted problem, so a
plethora of research exists. This review will examine the key
work on relative navigation, drogue estimation and formation
guidance, but, a more in-depth discussion can be found in
[21]]. Pioneering work at Georgia Tech [12} 23] demonstrated
the first vision-only formation flight, using line of sight (LOS)
measurements to a leader, from a monocular camera. Marker
based, vision-only methods are also popular [6, (16, 22],
but reliance on a field of view constrained sensor can be
unreliable. Of particularly note is the work by Darling [6]
which demonstrated formation flight at 20 m separation, using
a vision-only pose estimation algorithm. Various forms of
the Kalman filter have been used to fuse onboard sensor
data with vision-only pose estimates [4, [14] and with raw
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Fig. 2: Leader-follower problem setup and coordinate frames.

marker observations [10} 24]]. Our work has similarities with
the latter but differs by estimating the relative state directly,
rather than a concatenated individual vehicle states. Further,
vehicle attitudes are estimated separately, then formulated as
inputs with process noise, to reduce dimensionality and avoid
convergence to an ambiguous state.

Previous work on docking appendage estimation also suf-
fers from unreliability due to the exclusive use of vision.
Examples in [19, [29] tracked a drogue in manned refueling
footage using a priori knowledge of the drogue characteristics.
Monocular template matching and feature-based methods were
demonstrated in [15] using a high-fidelity hardware-in-the-
loop simulation. Our approach differs by using vision as an
aid to correct the state of a derived dynamic model. Drogue
aerodynamic parameters are also estimated to improve the
open-loop accuracy when vision is unavailable.

The formation guidance literature focuses on pursuit based
strategies such as proportional navigation [2]] and LOS guid-
ance [6, 20]. An implementation of vision-based LOS guid-
ance for rendezvous with a towed drogue occurred in [18]],
where the authors report near misses of only a few metres.
However, as noted in [18], these techniques become unstable
at close range. Instead, we aim to minimise the error between
the current state and a setpoint state, similarly to [3, [11].
Our approach differs by compensating for leader dynamics
and proposing a terminal docking strategy that satisfies the
physical constraints of the drogue.

As expected, the state-of-the-art resides within industry,
where the most successful effort thus far is the NASA/DARPA
Autonomous Airborne Refueling Demonstration project [8]].
Although the aircraft were manned, they performed the final
stage of docking automatically, using a relative GPS/INS
system and a separate vision system to observe the drogue. So
far, this is the only program to have demonstrated autonomous
physical connection using refueling apparatus [21]].

B. System Architecture

The diagram in Fig. |3| provides an overview of the algo-
rithm architecture, the information flow between the high-level
modules, and section where each module appears in the paper.
Each layer, indicated by the dashed line, builds upon the layer
below. The level of the layer is analogous to the nonlinearity
of the system dynamics, where higher layers have faster, more
nonlinear dynamics.

The bottom layer addresses navigation and control for a
single UAV, relative to the world frame, but is not addressed
in this paper. The middle layer adds a second UAV and
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Fig. 3: The algorithm architecture and information flow.

is concerned with autonomous positioning, relative to the
other aircraft. The relative navigation module in Section
estimates the relative state by aiding sensor and state data from
both aircraft, with precise air-to-air LOS measurements. The
formation setpoint algorithm in Section augments the
commanded formation configuration to compensate for leader
dynamics. The guidance in Section[[V-C|completes the loop by
generating low level commands to minimise the error between
the desired relative state and the estimated relative state.

The top layer adds a tethered drogue which has its own
dynamics, relative to the leader. The state of the drogue is esti-
mated in Section [[II} using the sensor and state data from each
aircraft, a dynamic model and air-to-air LOS measurements.
Using this estimate, the terminal setpoint algorithm in Sec-
tion generates guidance setpoints that satisfy the physical
constraints of the drogue, to guide the follower to docking. A
state machine supervises the mission and determines which
setpoints are used within the guidance module.

The complete solution is verified in airborne docking experi-
ments in Section [V} then conclusions are offered in Section[VI

II. RELATIVE NAVIGATION

A vision-aided, relative navigation UKF estimates the rela-
tive state between two dynamic vehicles, operating in an out-
door environment with dynamic lighting and IR interference.
In contrast to previous work, our approach employs vision as
an aid for the onboard sensors, rather than as the primary
sensor. This architecture allows accuracy to be maintained
during momentary visual outages and to degrade gracefully
during extended outages.

The relative state, x;; in Eq. (I) comprises the relative
position Pyj; = [X;; Yiis Zys]" . the relative velocity Vi,
a pressure altitude bias hp and attitude error quaternions q;,,
and qy,, for the leader and follower respectively. Py and Vy
are expressed as the leader with respect to the follower, in the
navigation frame. hp is estimated to account for biases in the
barometric sensing. q;, accounts for misalignment between
the IMU and the vehicle marker model. qy, estimates the
misalignment between the follower’s IMU and the IR camera.
Simulation and flight testing have shown that misalignment of
even a few degrees onboard either aircraft creates a steady state
position error that is significant enough to prevent docking.

T
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The downside to a quaternion parametrisation within an
UKF is that the unit norm cannot be guaranteed when cal-
culating the mean. To overcome this, quaternions are replaced
by generalised Rodrigues parameters that represent the local
rotation error, when constructing the sigma points and com-
puting the UKF prediction and update equations. The details
are omitted for brevity but can be found in [5]. Even with the
additional computation required to accommodate quaternions,
execution is faster than a Euler angle parametrisation because
trigonometric functions are avoided.

The inputs to the system uy¢, are the separately estimated
leader and follower attitude quaternion q; and qy; bias cor-
rected leader and follower acceleration measurements a; and
ar; and the Gaussian noise process mean of the pressure
altitude bias, wy,,, leader alignment error Wq,, and follower
alignment error wq, .
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The augmented form of the unscented transform is imple-
mented by concatenating X;; and uy; and their respective
covariance matrices. The augmented form with concatenated
process noise has been shown to yield improved performance
compared to the non-augmented form [28]], at the expense of
additional computation. The matrix of sigma points, xx_1, 1S
formed by perturbing concatenated copies of the augmented
state vector by the root of the augmented covariance, scaled
by k. k is chosen such that K = A — Dga where Dga is the
dimension of the augmented state. We set \ to 3 as per [13].
Each of the sigma points are propagated by
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where ® denotes quaternion multiplication, q;, = q;®q; B,
and qf, = qr ® q fs,- The notation Cq is the direction
cosine matrix (DCM) for the quaternion q. The equivalent
DCM for Euler angles is C(, , ) and a rotation about the z-
axis only is denoted C, = C(g,-). The relative position and
velocity are propagated by a first-order Euler integration while
the pressure altitude bias and attitude error quaternions are
modelled as random walks. The predicted mean and covariance
are computed using the UKF equations in [5} [13].

A. Update

GPS, barometric and vision data are used, when available,
to sequentially update the relative state. For each measurement
update, each sigmas point is transformed through the obser-
vation model to obtain the expected measurements 5 as per

Eq. (©). For this step, we may use the existing propagated
sigma point matrix ) or resample the sigma points using the
predicted mean. Our own empirical analysis did not show a
significant performance difference so we shall proceed with

Xk-

When new GPS data is available, the observation model in
Eq. (6) is used which is simply the current estimated relative
position and velocity. The corresponding GPS measurements
are calculated by transforming each of the position measure-
ments to the navigation frame, then subtracting the follower
position and velocity from the leader. GPS time of week
is used within a queue based algorithm to synchronise the
measurements and account for communication latency.
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A barometric pressure update occurs at each timestep using
Eq. (7) which is the estimated vertical displacement, corrected
for an estimated altitude sensor bias. The corresponding sensor
measurement is the follower’s barometric altitude, subtracted
from the leader’s.

WP [y k] = —Zyy, — ha, @)

A vision update occurs when IR marker centroid obser-
vations are available. Each marker in the model le‘, j =
1,2,...,n, is de-rotated by the leader’s alignment corrected
attitude, offset by the estimated relative position then rotated
to the follower’s body frame as shown in Eq. (8a). Camera
extrinsic parameters transform ( Jf to the camera frame using
Eq. @ where Pf|c and C’Jcc are the translation and rotation
from the followers body frame to the camera frame. Cf§
includes camera mounting orientation and the axes transfor-
mation.

¢/ =y, (€3, G+ Pyy,) (8a)
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Finally, the expected centroid locations are calculated in
Eq. (@), using the camera intrinsic matrix K.

(8b)
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Before an update can occur, correct correspondence between
the projected set of markers 5]-, and the observed set must be
determined. Our approach uses mutual-nearest-neighbour to
determine the number of unique point pairs within a threshold,
for every model-point hypotheses. In this way, outliers are
rejected and correct correspondence is the hypothesis with the
highest number of unique point pairs. Update uses the standard
UKEF equations [3} [13].



III. APPENDAGE ESTIMATION

An accurate estimate of the leader-follower relative state
is now known, but this alone is insufficient for docking with
a drogue. To address this, another UKF is formulated with
the state vector x, that describes the state of the drogue
with respect to the leader. It comprises the orientation of
an assumed rigid cable, # and f; their time derivatives 0
and f3; the product of the drogue cross-sectional area and
the aerodynamic drag coefficient in the longitudinal direction,
7)z; the same quantity in the lateral-vertical plane 7,,.; an air-
relative velocity heading bias 15 and the length of the cable,
L, as shown in Fig. 2] Estimating the drogue aerodynamic
characteristics when vision is available improves the open-
loop accuracy when vision is unavailable. More in-depth
experimental validation of the drogue estimation algorithm
can be found in author’s previous work in [27], which is an
extension of [26].

T
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The system inputs u, are defined in Eq. and comprise
the leader airspeed Vj,, leader vertical velocity Vyz,, leader
vertical acceleration ¢; and the mean of each Gaussian noise
processes than govern 7, 1y, ¥ and L.
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A. Prediction

The system propagation begins by rotating the current
estimate of the cable length through the current estimate of
the cable orientation to obtain the the position of the drogue
P,=[X,Y, Za]T in the leader’s horizontal body frame.

|
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The air-relative velocity v,, is found by adding the motion
due to a change in cable orientation, and the air-relative
velocity of the frame due to the leader’s motion.
. . T T
Vo =1[0 01 Br1] X Pat[Va 0 Vz] 13)
The aerodynamic drag force F'p, is calculated using the air
density p, the current estimate of the aerodynamic parameters
and the air-relative velocity vector v,. The notation z°2
represents the element-wise square of  and & is the unit vector
of z.

1
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The moment M is the cross product of P, and the sum of
the forces due to drag, gravity and leader vertical acceleration.
Angular acceleration of the cable is calculated in Eq. (I6)
using the inertia and mass of the drogue m.

02 =
Vo2 Uy

(14)
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Fig. 4: An approach to docking in RGB on the left and IR on
the right. IR marker detections are indicated by yellow squares
and the extracted ellipse in cyan.
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B. Update

Visual measurements of the drogue-mounted IR markers
update the state. Rather than using the raw marker centroid
coordinates as in Section an ellipse is fit to the data
using the algorithm in [26]. The ellipse centre, semi-major
axis, semi-minor axis and rotation form a pseudo sensor mea-
surement. This technique avoids marker model correspondence
determination, it is robust to partial occlusion and tolerant
to symmetry. These characteristics are particularly important
during the approach to docking as shown in Fig. ] where the
drogue is partially occluded and two of the markers return
multiple centroids due to the close proximity. The ellipse
fitting strategy simply requires at least five markers, located
at the circumference of the drogue entry.

The expected ellipse parameters are determined by calculat-
ing five evenly spaced points in a circle of radius r, about the
origin, translating by the estimated cable length and rotating
by the estimated cable orientation to generate a leader relative
marker model ¢ in Eq. (T8).

2m .
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The marker model can now be transformed to the camera’s
pixel frame using Eqgs. () and (9), taking care to only
transform the leader by ¢/; only, rather than the full attitude.
Finally, an ellipse is fit to the marker pixel coordinates using
the algorithm in [9]. The result is the vector of expected ellipse
parameters in Eq. (T9).

hellipse [ﬁak , k‘] _ [H a b SD} T (19)

where p is the centre of the ellipse, a and b are the semi-
major and semi-minor axes and ¢ is the rotation. Care should



Fig. 5: The setpoint state to compensate for a leader turn.

be taken to ensure (¢ > 0 in Eq. (9). This problem occurred
during the first docking where the marker and focal planes
became collinear, yielding (¢ ~ 0 and diverging the filter.

IV. RELATIVE GUIDANCE

Once an estimate of the leader relative state and appendage
motion is known, actions must be undertaken to transition
from the initial position, to close formation flight and then to
docking. A deterministic relative guidance algorithm has been
developed for this purpose, where the inputs are individual
vehicle, relative and appendage state estimates and the output
are low level controller commands. Within this algorithm is a
formation setpoint augmentation algorithm that compensates
for leader dynamics; a terminal setpoint algorithm that guides
the follower into the drogue; and a guidance algorithm that
minimises the error between the setpoint state and the esti-
mated state.

A. Formation Setpoint

The commanded formation configuration Fppg
[Xemd Yema Zcmd]T, is a position in the leader’s horizontal
body frame and may represent a loose formation or close
formation configuration. This section augments F,q to
compensate for leader turn dynamics. The output is a desired
or setpoint position, relative to the leader P;); and a setpoint
velocity Vi, that shall be maintained at Pg);. First, Pomg is
rotated to be in the direction of Vj, i.e. Poypg = C’tflf‘l,chmd.
During straight and level flight, the rotation rate of the
leader’s inertial velocity \ill, is zero so Py, = P and
Vs = V;. However, when \i/l #0, P,); lies on an arc as shown
in Fig. E} The direction of V; is the tangent to the arc at P
and the magnitude of V, changes when Y 4 # 0. Rather
than differentiating ¥; to obtain \i'l, an analytical solution is
provided in Eq. (20). Here, 1/}1 is calculated using the leader
gyro measurements and a transformation in Section 3.2 of
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Fig. 6: The 4th-order terminal setpoint algorithm.

The radius r, central angle a and chord length R that form
the arc are then calculated.

7de

Vi
\I/l r

21b) R=2r sin% Qlc)

The setpoint position P,); can now be calculated by rotating
the chord R by a/2, adding the lateral component of Py
rotated by «, then rotating the result by ;.

Py =Cu, (Capp [R 0 Zena) +Ca 0 Yena 0]7)
(22)
Exploiting the fact that the rotation rate of V; and V; are
equal, and combining with Eq. we obtain an expression
for the magnitude of V.

¥, = VAl _ [l 23a)
r _}/cmd r
Vsl = Vil = Yema ¥y (23b)

The setpoint velocity is then calculated by rotating the unit
vector of V; by a and scaling by the magnitude of V.

Vi = |[Vi|| CuVi (24)

B. Terminal Setpoint

The terminal approach from the pre-contact formation po-
sition to docking occurs by commanding a setpoint position
that pulls the nose of the follower through the entrance to
the drogue. The algorithm is depicted in Fig. [6| where the
setpoint position P,); is situated along the longitudinal axis
of the drogue, passing through P,. The position along the
longitudinal axis is a function of the scalar lateral-vertical
position error 5Payz, between the nose of the follower P,
and P, as per Eq. (23). The error is saturated to the range
[0P,,. 0P, ] which corresponds to the radii of the smaller

Qmin @max

and large funnel entries.

5P, = Cy, (Pl\f - Cgf PN) + P, + Peable (25a)
6P,,. =\ 0Y2+622,{0P,,, <OP,, <6P,,} (25b)



When the error is small, the nose is lined up with the
entrance to the drogue so FP;; is situated further through
the drogue entrance. The fourth-order function to calculate
the longitudinal position X, relative to P, is provided in
Eq.(26). The final setpoint position is calculated in Eq. (27).

Xs\a = Xgock — ( v SP

@max

5P —6RMJ(Xﬁy+d+X®wf]4

(26)

T
Ps\l = Py + Peable + [0 0 Xs\a} (27)

Pictorially, Ps|; lies on the drogue’s longitudinal axis, in
the same lateral-vertical plane as the intersection of the funnel
surface with a line that passes through Py, parallel to the
longitudinal axis. The position along the axis is saturated by
Xpre and Xgock, Which are the pre-contact standoff distance
and a docked offset, that assures connection is made.

To compensate for the high dynamics, § P, can also be
predicted, based on the estimated time to contact, which is
computed using 0P, and 6P,. The predicted 6P, is then
calculated by propagating P, by the time to contact using
Egs. (12)-(T7); adding 6 P,; and adding a first-order integration
of the relative velocity.

01" 01"
5Pa:0¢1‘/l\f+ 9 X-Pa+ O X(Pa+Pcable) (28)
B i

C. Guidance

Deterministic formation guidance was developed to min-
imise the error between the setpoint state P,;, and the
estimated relative state Py that was determined in Section
As depicted in Fig. the fundamental strategy is to
define a commanded velocity vector V., that incorporates
a closing velocity to minimise the position error and the
setpoint velocity that we wish to maintain when we reach
the desired formation configuration. The commanded rota-
tion rate of the commanded velocity vector is also defined,
to maintain the formation configuration during turns. Low
level commands are formulated to align the magnitude and
direction of the vehicle’s air-relative velocity vector with the
commanded air-relative velocity vector. The algorithm could
also be formulated in terms of inertial velocity, however this
would introduce latency in the feedback. In the context of
fixed-wing UAVs, the low level commands are bank angle,
@cmd, airspeed V, . and vertical velocity V. First, the
position error P ; is calculated and used to define a closing
velocity Viese, using separate horizontal and vertical gains
Kxy and Kz respectively. The operator o denotes element-
wise multiplication.

Py =Py + Pyy (29)

1" (30)

Viose = Psjpo [Kxy Kxy Kz

Fig. 7: The formation guidance strategy used to transition to
and maintain a commanded formation configuration.

The commanded air-relative velocity vector V. is cal-
culated in Eq. by combining the closing velocity, the
setpoint velocity and the estimated relative velocity, then
correcting for wind V,, where V,, = V; =V, ;o It is worth
noting that wind is estimated onboard each UAV and used
to infer the vehicles airspeed. This is important because the
squared relationship between airspeed and dynamic pressure
lowers the resolution of the directly measured airspeed. The
commanded vertical velocity V_,, is the vertical component

cmd ?
of V,

Qyec *

V.

Qyec

= ‘/Close+‘/s+‘/l\f —Vu (31
The commanded airspeed, V,
of V4, in the direction of V,,.

Qyec

is then the scalar projection

cmd

v

Gemd — Vavcc hd ‘7@_7" (32)

The lateral guidance aims to minimise the angle |0v)],
between the X-Y component of the desired air-relative velocity
vector Vg, . and the vehicle’s current air-relative velocity
vector Vafxy.

5¢:tm11<V%WyX‘@ky> (33)
Vav“xy ° Vafxy

First, the rotation rate 1/Je of V,

e 18 calculated in Eq. (34),
in a similar way to Eq. (20).

h ] ‘/:9 _Vw .Va
Ys =Py (V—o)Vm (34)

Qvec Qvec

Then a commanded heading rate 1/')Cmd, is computed using a
lateral gain K.

Yema = OP Ky + 1bs (35)

The bank angle command ¢.nq is then calculated using the
commanded heading rate, follower airspeed and gravity g.

fema = ten™ (llvnw>

9

(36)
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V. AIRBORNE DOCKING EXPERIMENTS

Sustained close formation flight and repeatable docking was
demonstrated in a series of flight tests. This section describes
the dual-UAV system that was used in the experiments, then
presents results from the tests. To the best of the author’s
knowledge, these are the closest autonomous formation flights
to date and the first demonstration of UAV airborne docking.

A. Dual-UAV Testbed

The dual-UAV system in Fig. [§] consisted of two fixed-
wing aircraft, each equipped with a purpose built autopilot to
handle low level guidance, navigation and control. A separate
formation flight computer (FFC) implemented the relative
navigation, appendage estimation and relative guidance al-
gorithms. Sensor and state data was exchanged wirelessly
between the FFCs and autopilot-to-ground communications
allowed telemetry downlink and configuration upload.

The vision system consisted of a follower mounted camera
with a narrow bandpass filter; a quad-core ARM computer
to process the images; five IR LED markers positioned at
the extremities of the leader, and seven IR markers mounted
around the circumference of the drogue, as shown in Fig.
Camera exposure, brightness and contrast were tuned in worst-
case environmental IR conditions to optimise interference
rejection and marker sensitivity.

Marker centroid extraction was implemented by converting
the image to grayscale; thresholding; calculating image con-
tours; approximating these with a polynomial; then returning
the centre of the minimum enclosing rectangles. The vision
system is able to process 720p frames at 20 FPS with com-
putational capacity to spare.

B. Flight Test Results

During the flights, the leader was commanded to track a
760160 m racetrack pattern, at an altitude of 80 m AGL and
a constant airspeed of 16 m/s, while transmitting its current
state and sensor data to the follower. Leader autonomy was not
necessary but ensured a consistent and predictable path. When
initiated, the follower was commanded to a) rendezvous to
Py, =[-100 1]T and obtain vision measurements b) transi-
tion to a pre-contact position X, =3 m to observe the drogue,
then ¢) dock with the 0.17 m radius drogue.

Figure 9a] shows relative position data from a close for-
mation flight and compares the vision-aided estimate with an
unaided estimate, through three circuits of a racetrack pattern.

Assuming the vision-aided estimate is close to the truth, errors
in the unaided estimate are often in excess of 5 m which
motivates the use of vision. During the two visual dropouts
at 140 s and 220 s, the horizontal component of the aided
estimate gracefully degraded to the accuracy of the unaided
estimate. The vertical component maintained a constant offset
which was equal to hg. The dropouts also show a retreat from
close formation to avoid a collision and to regain vision.

Docking was demonstrated repeatedly in multiple flights,
including five successful docking manoeuvres in less than
seven minutes of a single flight. This seven minute segment
is shown in Fig. [0b] where D1-5 indicate each docking and
C1-2 indicate instances where the drogue made brief contact
with follower, but docking did not occur. Due to the scale
of the aircraft, the drag created by the drogue represents a
large portion of the leader’s total drag. When docking occurs,
the extra drag is instantaneously eliminated, so the leader
experiences a longitudinal and vertical acceleration, until the
controllers adjust. This is shown by sharp spikes in the leader’s
altitude and airspeed in Fig. [Ob] The docking indicators are
further magnified by passing the 3D airspeed through a high-
pass filter and squaring the result to obtain the trace at the
bottom of Fig. [9b]

The terminal position error J P, between the drogue and
the follower’s nose is shown for each approach to docking
in Fig. Docking occurs when §X, < 0, |§Y,| < r, and
|0Z,| < rq. The first two seconds of connection are indicated
by the shaded area. Once docked, dZ, has a characteristic
decrease due to the instantaneous reduction of leader drag.
Time on the x-axis is simply shown for scale. An image
sequence of the approach to docking, then station keeping,
taken from the left wing of the follower, is shown in Fig. [T0]

Throughout the flight, in Fig. @ Xdock Was increased so that
the terminal guidance was more aggressive. This resulted in
more frequent docking attempts but with a lower likelihood of
success, where each attempt was a transition from pre-contact
to a dock attempt. For comparison, D1-2 were successful on
the first attempt, but each took 29 s and 48 s respectively. D3-5
were successful on the 5th, 8th and 4th attempt, respectively,
with an average time of 17 s.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a complete solution to autonomous
airborne docking, from theoretical inception, to practical
demonstration. The vision-aided guidance and navigation al-
gorithms contain principled solutions to problems that are only
encountered during actual implementation. An illuminating
example is the minor IMU alignment, which was found to
cause a consistent lateral position bias between the follower
and the drogue. Although the bias was only ~0.5 m, it would
have continued to prevent docking, if it were not estimated
within the filter.

As the first results of their kind, this work contributes a
verified starting point for future research. This may include the
development of a docking appendage for small UAV refueling
and recharging; and application to UAV aerial capture.
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(c) The terminal position error ¢ Py, for five approaches to docking.  Fig. 10: The approach to docking, then station keeping, taken
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