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Abstract—This paper presents a collaborative control strat-
egy designed to enable a team of robots to track attracting
Lagrangian coherent structures (LCS) and unstable manifolds
in two-dimensional flows. Tracking LCS in dynamical systems is
important for many applications such as planning energy optimal
paths in the ocean and predicting various physical and biological
processes in the ocean. Similar to existing approaches, the
proposed strategy does not require global information about the
dynamics of the surrounding flow, and is based on local sensing,
prediction, and correction. Different from existing approaches,
the proposed strategy has the ability to track attracting LCS
and unstable manifolds in real time through direct computation
of the local finite time Lyapunov exponent field. The collaborative
control strategy is implemented on a team of robots and the theo-
retical guarantees of the tracking strategy is briefly discussed. We
demonstrate the tracking strategy in simulation using static and
time dependent flows and experimentally validate the strategy
using a team of micro autonomous surface vehicles (mASVs) in
an actual fluid environment.

I. INTRODUCTION

We are interested in the development of collaborative con-
trol strategies for distributed sensing and tracking of coherent
structures and manifolds in flows using teams of autonomous
underwater and surface vehicles (AUVs and ASVs). Re-
searchers have shown that motion planning and adaptive sam-
pling strategies for underwater robots can be improved when
incorporating either historical ocean flow data [23, 25, 24]
or multi-layer partial differential equation (PDE) models of
the ocean [26, 12]. However, accessibility to and the overall
quality of ocean current hindcasts, nowcasts, and forecasts
provided by Navy Coastal Ocean Model (NCOM) databases
[18], regional ocean model systems (ROMS) [25], and/or other
numerical models are generally low. This is because most
existing ocean models are derived from assimilated satellite
and field data with predictions from numerical PDE models
[21, 22]. As such, existing data sets that describe ocean flows
are mostly finite time and of low spatio-temporal resolution.

In this work, we are interested in deploying teams of robots
to track a class of coherent structures that are important
for quantifying transport phenomena in flows. Inanc et al.
showed that time and fuel optimal paths in the ocean can
coincide with a specific class of coherent structures called
Lagrangian coherent structures (LCS) [10, 19]. LCS are the
extensions of stable and unstable manifolds to general time-
dependent flows [3, 2] and are similar to separatrices that
divide the flow into dynamically distinct regions. This is

supported by Forgoston et al.’s work where they showed that
LCS coincide with regions in the flow field where more escape
events occur [1]. As such, knowledge of LCS is important for
planning energy efficient trajectories in the ocean, maintaining
sensors in their desired monitoring regions [13, 9, 6], and
enabling computationally tractable and efficient estimation and
prediction of the underlying geophysical fluid dynamics.

In two-dimensional (2D) flows, LCS are one-dimensional
separating boundaries analogous to ridges defined by local
maximum instability, and can be quantified by local measures
of Finite-Time Lyapunov Exponents (FTLE) [20]. The track-
ing of coherent structures in fluids is challenging since the
structures are generally unstable and time-dependent. Existing
work have shown that it is possible to use a team of robots to
collaboratively track the stable manifolds and LCS boundaries
in 2D flows [14, 16, 15]. The strategy relies on robots
maintaining a boundary saddling formation while collecting
local measurements of the flow velocity. LCS tracking is
achieved by fusing the data to identify the region in the flow
field with the extremal velocity. While the strategy has been
validated using analytical models that describe large scale
ocean circulation [8, 16], experimental data created in a flow
tank, actual ocean data [14], and a scaled robotic platform
[15], the work is primarily focused on the tracking of the
repelling LCS boundaries or stable manifolds in 2D flows.
Since the identification of repelling LCS boundaries requires
the computation of forward FTLEs, real time tracking of
the LCS boundaries in these existing work is achieved by
solely examining the flow velocities in the region physically
spanned by the robot team and do not rely on actual FTLE
computations. As such, no information is obtained about the
type of the LCS being tracked since tracking of the boundaries
is not based on the local FTLE measures and the team
may switch between tracking attracting and repelling LCS
boundaries arbitrarily. Furthermore, since the LCS boundaries
are not explicitly resolved the team of robots may end up
tracking a non-existent boundary.

In this work, we present a methodology to track attracting
LCS boundaries or unstable manifolds through the explicit
on-board calculation of local FLTE fields. This can be done
in real-time since the required FTLE calculations only use
previously acquired flow velocity data. The proposed tracking
strategy utilizes the FTLE field along with instantaneous local
flow field measurements to resolve the attracting LCS bound-



ary. In addition, we develop agent-level control policies which
use the dynamics of the underlying flow field to maintain
formation among a team of ASVs as they track the boundary.
We verify the feasibility of the proposed method through
simulations using 2D stationary and time varying flow fields
and validate the proposed methodology in a laboratory setting
using small ASVs in actual fluid flows.

The structure of the paper is as follows: We provide a
background on the characterization of LCS using local FTLE
measures and formulate the problem in Section II. The devel-
opment of the proposed control strategy is presented in Section
III and its theoretical feasibility is analyzed in Section IV.
Simulation and experimental results are presented in Section
V and Section VI respectively. We conclude with a discussion
of our results and directions for future work in Section VII.

II. BACKGROUND AND PROBLEM STATEMENT

A. Background

In this paper we consider the problem of tracking an
attractive Lagrangian Coherent Structure (LCS) in a 2D planar
flow field of the form

ẋ(t) = F(x, t) (1)

where x = [x,y]′ gives the position in the plane and x′
denotes the transpose of the vector x. The boundary tracking
methodology presented in this paper is based on the real time
calculation of the FTLE field of (1) and the Proper Interior
Maximum (PIM) triple inspired boundary tracking strategy [8].

The position of a fluid particle advected by the flow field
given by (1), is a function of time t, the starting point of
the particle x0 and starting time t0, i.e., x = x(t;x0, t0). Using
the notation used by Shadden et al. [20], the solution to the
dynamical system given in (1) can be viewed as a flow map
which takes points from their initial position x0 at time t0 to
their position at time t. This map, denoted by φ t

t0 , satisfies

φ
t
t0(x0) = x(t;x0, t0), (2)

and has the properties φ
t0
t0 (x) = x and φ

s+t
t0 (x) = φ s+t

s (φ s
t0(x)).

The Finite Time Lyaponov Exponent (FTLE) with a finite
integration time interval T , associated with a point x at time
t0 is given by,

σ
T
t0 (x) =

1
|T |

ln
√

λmax (∆) (3)

where λmax (∆) is the maximum eigenvalue of the finite-time
version of the Cauchy-Green deformation tensor ∆, given by,

∆ =
dφ

t0+T
t0 (x)
dx

′
dφ

t0+T
t0 (x)
dx

. (4)

The value of ∆ is computed numerically by discretizing the
domain into a regular grid and computing the trajectories of
each point and its immediate neighbors in the grid from time
t0 to t0 + T (see Fig 1(a)). For each point in the grid, the
trajectories are computed by numerically integrating (1) from
t0 to t0 +T .

In this paper, LCS are considered to be ridges in the FTLE
field calculated using (3), i.e., maximal values in the FTLE
field as defined by Shadden et al. [20]. The forward-time
FTLE field calculated by advecting fluid particles forward in
time (T > 0), reveals repelling LCS which are analogous to
the stable manifolds of saddle points in a time independent
flow field. Conversely, the backward-time FTLE field (T < 0)
reveals attracting LCS which are analogous to unstable man-
ifolds of a time independent flow field.

The FTLE value gives a measure of the maximum expansion
of two initially nearby particles when they are advected by the
flow. Therefore, particles initiated on opposite sides of an LCS
will have much higher FTLE values than their neighbors, since
an LCS acts as a boundary between two dynamically distinct
regions of the flow [20]. Thus, by calculating the FTLE field
in a neighborhood that contains an LCS, it should be possible
to find the LCS by tracing out points with the highest FTLE
values.

B. Problem Statement

Let Bu denote an attractive LCS of the flow map given in
(1). In this work, a team of N Autonomous Surface Vehicles
(ASVs) are used to track Bu in real time. Each ASV is assumed
to have the kinematic model given by,

ẋi =Vi cosθi +ui (5a)
ẏi =Vi sinθi + vi (5b)

where Vi is the speed of the ASV with respect to the flow, θi is
the heading direction of the ASV, xi = [xi,yi]

′ is the position of
the ASV in the global frame and ui = [ui,vi]

′ is the velocity of
the underlying flow field at xi. Specifically, ui = Fx(xi, t) and
vi = Fy(xi, t). In vector form, the velocity of an ASV could be
written as,

Vgi = Vi/f +F(xi, t) (6)

where Vgi = [ẋ, ẏ]′ and Vi/f is the velocity of the ith ASV
relative to the flow. Note that Vi and θi are the magnitude
and direction of Vi/f respectively. The control inputs of the ith

ASV are Vi and ωi = θ̇i. We assume that each ASV has the
capability to measure the flow velocity at its current position
and that each ASV can communicate bi-directionally with a
data processing vehicle. Throughout this work, we assume that
the ASVs are initialized as a grid with the center ASV (Pc),
coincident on Bu as shown in Fig. 1(b). Using the definitions
and assumptions given above, we can now state the problem
being addressed in this paper as follows:

“Given an initial estimate for the position of a point on Bu
at time t0, develop a collaborative control strategy to track
Bu for time t > t0 for a team of ASVs with kinematic models
given by (5) while maintaining a grid formation similar to Fig.
1(b)”.

III. METHODOLOGY

A. Manifold Tracking

The methodology proposed in this paper utilizes a com-
bination of backward-time FTLE computations and the PIM



(a) (b)

Fig. 1. (a) Locations of neighboring particles for the numerical computation
of ∆. (b) Agents are initialized in a grid formation with the center of the grid
coincident on the attracting LCS

triple inspired tracking strategy [8] to locate the attractive LCS
boundary. Since LCS are time varying, tracking based solely
on FTLE computations will tend to fail especially when the
time scales of the past flow velocity measurements are not
representative of the time scales of the current or future time
variations of the boundary.

1) Locating the LCS boundary using the FTLE field:
Considering the flow velocity measurements obtained by the
team of ASVs, an approximation could be obtained for the
velocity field given in (1) as

˙̂x(t) = F̂(x, t) (7)

for t = t0, ..., ti, ..., t f and x = x0
1,x

0
2, ...,x

0
N, ...,x

f
1,x

f
2, ...,x

f
N,

where ti is the ith sampling instance and xi
j is the position

of the jth ASV at ti. The trajectories of a set of particles
arranged in a grid around the center ASV Pc, are computed
by integrating F̂ backwards in time, i.e., T < 0. The resulting
flow map is used in (4) and (3) to compute the backward-
time FTLE on this grid. However, the problem of using F̂ to
compute the backward time FTLE is its inherent sparseness.
Therefore, trilinear interpolation is used on F̂ to approximate
the flow velocities at spatio-temporal coordinates for which
direct velocity measurements are unavailable. It has been
found that FTLE maxima are relatively insensitive to the
interpolation scheme used for the computations [5]. Since we
assume that Pc is initialized on Bu itself, following from the
discussion in Section II-A, the point with the highest FTLE
value on this grid will correspond to a point on the LCS. Let
this boundary location found using the FTLE field be denoted
by qF.

2) Locating the LCS boundary using the PIM inspired
strategy: This boundary tracking strategy introduced by Hsieh
et al. [8] is based on the PIM triple method [17]. Given a
team of three robots, denoted as {L;C;R}, robot C is tasked
to remain close to the boundary of interest, Bu. Robots L and R
are tasked to remain on opposite sides of Bu at all times and
thus maintain a saddle straddle formation. Let ûL(t), ûC(t)
and ûR(t) denote the flow velocity measurements obtained
by L, C and R at their respective positions xL(t), xC(t) and
xR(t). The saddle straddle line segment J whose end points
are defined by xL and xR, is discretized such that xL = q1 <
q2 < ... < qM = xR. Given a set of velocity measurements
ûi(t) and corresponding position estimates x̂i(t), the flow

velocity at qk is calculated as u(qk) = ∑ j ∑
N
i=1

wi jûi( j)

∑ j ∑
N
i=1 wi j

where wi j = ‖x̂i( j)− qk‖−2. The location of the boundary
on the current saddle straddle line segment is given by the
point qB = arg max

k=1,...,M
u(qk)

′ûc(t). For more information on this

boundary tracking method, interested readers are referred to
[8, 14].

This method is used to compute the boundary location on a
saddle straddle line segment defined by the two immediate
neighbors of Pc on either side of the boundary. Let this
boundary location found using the PIM triple based method
be denoted by qP.

3) Boundary tracking: The current location of the LCS (qh)
is considered to be the weighted average of qF and qP. As such

qh =
dPqF +dF qP

dP +dF
(8)

where dF and dP are shortest distance from Bu to qF and qP
respectively.

Next, the Lagrangian nature of the FLTE field is used to
predict the future location of the LCS boundary. It has been
shown by Shadden et al. [20] that FTLE values calculated
with large integration (advection) times are constant along
trajectories. Therefore, to get an approximation of the future
LCS location q̂h, we advect a fluid particle located at qh
forward in time for T1 seconds using F̂. Fig. 2(a) gives an
illustration of the process.

In order for Pc to follow Bu, we want Pc to head towards
q̂h at all times, i.e., we want the velocity of Pc in the global
frame, Vgc, to be directed towards q̂h at all times. As shown
in Fig. 2(b) this could be done by setting Vc/f (velocity of Pc
relative to the flow) appropriately. Since we have the freedom
to set |Vc/f| arbitrarily and set the direction θd accordingly, we
select the minimum possible value for |Vc/f|. It can be shown
that the minimum possible |Vc/f| and the corresponding θd are
given by,

|Vc/f|= |vi cosα−ui sinα| (9a)

θd = α + sign(F(xc, t)×Vgc)
π

2
(9b)

where α is the direction of Vgc as shown in Fig. 2(b). Using
(9), the velocity commands for Pc are set as,

Vc = |v̂i cosα− ûi sinα| (10a)

ωc = Kω (θd−θc)+ θ̇d (10b)

where ûi = F̂x(xc, t), v̂i = F̂y(xc, t) and θc is the current heading
angle of Pc. Setting the velocity commands as in (10) will
result in Vc/f attaining the values given in (9) and as a
consequence Pc will always be headed towards q̂h.

Remark 1: The proposed tracking strategy fundamentally
relies on the team’s ability to simultaneously measure the flow
field on opposite sides of Bu. Thus, it is possible track the LCS
using a minimum of three agents. However, the spatial spread
of the flow data collected with just three agents would not be
sufficient for effective FTLE calculations.



(a) (b)

Fig. 2. (a) The LCS location qh is detected on the calculated FTLE grid
and the flow map is used to predict the future LCS location q̂h. (b) Vc/f is
selected such that Vgc is always directed towards q̂h

B. Formation Keeping

It has been shown by Haller et al. [3] that particle trajecto-
ries which are infinitesimally close to the attracting coherent
structure, will separate from the manifold at an exponential
rate when time is propagated backwards. In other words,
particle trajectories which are close enough to the attracting
LCS (Bu), will converge towards Bu at an exponential rate in
forward time. We make use of this property of the attracting
LCS to design a control strategy that will maintain the initial
grid formation of the ASVs. In this formulation we assume
that Pc tracks Bu accurately using the methodology provided
in Section III-A and that the path of Pc provides the trajectory
of Bu.

Since the path that the formation of ASVs needs to follow
is defined by the boundary Bu, we consider the tangent and
normal directions of Bu in the development of the proposed
control strategy. At any point on Bu, the tangent direction
is defined as the direction in which a fluid particle would
propagate, when it is placed at that point. The normal direction
to Bu is considered to be pointing towards its instantaneous
center of rotation. Let t̂ be the unit vector in the tangent
direction and n̂ be the unit vector in the normal direction.
Utilizing this notation, the flow velocity at a point x near Bu
could be written as,

F(x, t) =Vt f (d)t̂+Vn f (d)n̂ (11)

where d is the normal distance measured from Bu to x. d is
considered to be positive when measured in the direction of
n̂. Similarly, the velocity of the ith ASV relative to the flow,
Vi/f, could also be expressed as,

Vi/f =Vti(d)t̂+Vni(d)n̂ (12)

Using (11) and (12), (6) can be rewritten in terms of t̂ and n̂
as,

Vgi =V t
gi t̂+V n

gin̂ (13)

where

V t
gi =Vti(d)+Vt f (d) (14a)

V n
gi =Vni(d)+Vn f (d) (14b)

V t
gi governs the motion of the ASV parallel to Bu while V n

gi
governs the motion perpendicular to Bu. Since it is assumed
that Bu is provided by the path of Pc, V t

gi also governs the
motion of the ASV parallel to Pc and V n

gi governs the normal
distance from Pc to the ASV. For the ASVs to remain in grid
formation around Pc, V t

gi should make the ith ASV follow Pc

in the t̂ direction while V n
gi should make the ASV maintain a

fixed distance from Pc in the n̂ direction.
In order to ensure that the ASVs follow Pc in the t̂ direction,

we want,

Vti(d) = |Vgc|
(

ρ−d
ρ

)
− F̂(xi, t) · t̂ (15)

where |Vgc| is the speed of Pc in the global frame and ρ is the
radius curvature of Bu at the current location of Pc. If Vti(d)
attains the value in (15), then V t

gi in (14a) would be set to,

V t
gi = |Vgc|

(
ρ−d

ρ

)
(16)

which would ensure that the ith ASV would follow Pc in the
t̂ direction. Let’s denote this desired value of Vti given in (15)
as V̄ti.

The converging property of Bu near its boundary is used to
find a velocity profile for Vni(d) that guarantees that an ASV
will maintain a fixed normal distance from Pc. The observation
of exponential convergence of particle trajectories near Bu
made in [3], suggests that |Vn f | increases linearly with |d|,
at points very close to Bu. Therefore it is assumed that,

Vn f (d) =−λd , −dl− ≤ d ≤ dl+ (17)

where [−dl− ,dl+ ] defines the attracting region of Bu and λ (>
0) defines the rate of convergence of fluid particles towards
Bu. Such a flow velocity profile would make all fluid particles
in the interval [−dl− ,dl+ ] converge to Bu exponentially. Since
the ASVs are required to maintain a fixed normal distance to
Bu, Vni(d) needs to be set such that the ASVs converge to a
boundary parallel to Bu, instead to Bu itself. Therefore Vni(d)
is set to

Vni(d) =
β

d
−dl− ≤ d ≤ dl+ (18)

where β is a design parameter. Let’s denote this desired value
of Vni given in (18) as V̄ni. Fig. 3 shows the velocity profiles
of Vn f , V̄ni and their sum V n

gi in the attracting region of Bu.
Note that there is a discontinuity at d = 0 in the profiles of
V̄ni and V n

gi. This does not pose a problem because the ASVs
do not operate at d = 0 as we show in the next section.

In order to attain the desired values for Vti(d) and Vni(d)
given in (15) and (18) respectively, the control inputs of the
ith ASV are set as

Vi =
√

V̄ 2
ti +V̄ 2

ni (19a)

ωi = Kωi (θdi−θi)+ θ̇di (19b)



(a) (b)

(c)

Fig. 3. Velocity profiles of (a) Vn f (d), (b) Vni(d) and (c) V n
gi(d) =Vn f (d)+

Vni(d).

with θdi = atan2(V̄ni,V̄ti)+α, where α is the heading angle
of Pc.

Remark 2: The formation keeping strategy outlined above is
based on local information. Therefore, the control commands
for each ASV is computed individually. In the manifold
tracking strategy, the tracking agent uses flow velocity mea-
surements obtained by the other agents to compute the local
FTLE field. While the computation of the local FTLE field is
currently centralized, the process can be distributed since the
computations required for the calculation of the FTLE field
can be parallelized or carried out in a distributed fashion.

IV. ANALYSIS

In this section, we discuss how setting Vti and Vni to their
desired values given in (15) and (18) will result in the ith ASV
maintaining its formation with respect to the center ASV Pc.
As shown in (16), setting Vti as in (15) will result in the ith

ASV following Pc in the t̂ direction. We are more interested in
how setting Vni as in (18) results in the ith ASV maintaining
a fixed distance from Bu.

As discussed in the previous section, the normal component
of the velocity of the ith ASV in the global frame, V n

gi given
in (14b), governs the normal distance from Bu to the ASV.
Specifically, we could say that ḋ = V n

gi(d). Substituting for
Vn f and Vni in V n

gi gives,

ḋ =
β

d
−λd , −dl− ≤ d ≤ dl+ (20)

Solving (20) gives,

d =



√(
d2

0 −
β

λ

)
e−2λ t +

β

λ
d0 > 0

−

√(
d2

0 −
β

λ

)
e−2λ t +

β

λ
d0 < 0

(21)

where d0 is the initial distance from Bu to the ASV. From (21),
it is easy to see that,

lim
t→∞

d =



√
β

λ
, d0 > 0

−
√

β

λ
, d0 < 0

(22)

Thus it can be seen that d will always stabilize to ±
√

β

λ
and

it will never approach d = 0.

V. SIMULATION RESULTS

In this section we validate the proposed tracking and for-
mation keeping strategy in simulations. In all the simulations,
we employ a team of seven robots to track the attracting LCS.
The strategy is evaluated in 2D static conservative flows, 2D
time-varying conservative flows and 2D periodic flows.

A. 2D Static Conservative Flows

In these simulations, the proposed methodology is used to
track static boundaries in conservative flows. The flow velocity
in this case is given by,

F = a∇ϕ−b∇×ψ (23)

where a,b > 0 and ϕ is an artificial potential function such
that ϕ(x) = 0 for all x ∈ Bu and ϕ(x)< 0 for any x ∈R2/Bu.
The vector ψ is a 3× 1 vector whose entries are given by
[0, 0, γ(x,y)]T where γ(x,y) is the curve describing the desired
boundary [7]. Selecting a > 0 ensures that the flow field F has
an attracting LCS.

Fig. 4(a) shows a team of seven ASVs tracking a circular
attracting LCS and Fig.4(b) shows a team of seven ASVs
tracking a sinusoidal attracting LCS. In both cases, the actual
LCS is shown in red while the detected LCS, i.e., the trajectory
of Pc, is shown in blue.

It can be seen that Pc tracks the boundary accurately in both
cases. The mean tracking errors for the circular and sinusoidal
boundaries were found to be 2.67 and 4.59 respectively. The
mean tracking error represents the average normal distance
from Pc to the actual boundary. Compared with the spatial
spread of the boundaries, the tracking errors are relatively
small. As shown in section III-A, the future LCS location is
predicted by projecting the current LCS location forward in
time using past velocity data. Therefore, tracking errors can
be expected if the past flow velocity data does not provide an
indication of the future curvature of the boundary.



TABLE I
THE MEASURED AND EXPECTED DISTANCE FROM AN ASV TO THE

BOUNDARY

Boundary Type λ β dexp dact
Circular 0.4 250 25 25.1

Sinusoidal 0.1 40 20 19.7

(a)

(b)

Fig. 4. (a) Shows the progression of the ASVs while tracking a circular
boundary; (b) shows the progression of the ASVs while tracking a sinusoidal
boundary.

In both cases, the team maintains formation while track-
ing the boundary. Table I shows the average distance an
ASV maintains from the boundary in each case. In Table
I, λ , β represent the corresponding values in (17) and (18)
respectively, dexp is the expected normal distance from the
boundary to an ASV calculated using (22) and dact is the
average distance an ASV maintains from the boundary in the
simulations. Note that in both cases λ was calculated using a
linear approximation of the flow near the boundary.

B. 2D Time-Varying Conservative Flows

In this simulation we consider a conservative flow field in
which the attracting LCS is time varying. The flow field used
in this case has the same form as (23), with time varying ϕ and
γ . Fig. 5 shows the locations of a team of ASVs tasked with
tracking a time varying sinusoidal front in a conservative flow

field. The background shows the actual FTLE field computed
using complete knowledge of the flow field. The dark red areas
in the FTLE field indicate the attracting LCS boundary. Fig.
5 shows that Pc tracks the time-varying LCS accurately and
the formation of the ASVs is maintained through the tracking
process.

C. Time-Dependent Wind-Driven Double-Gyre Flow

In this section we consider a flow field where F is deter-
mined by the wind-driven double-gyre flow model, given by

ẋ =−πAcos(π
f (x, t)

s
)sin(π

y
s
)

d f
dx
−µx, (24a)

ẏ = πAsin(π
f (x, t)

s
)cos(π

y
s
)−µy, (24b)

f (x, t) = ε sin(ωt +ψ)x2 +(1−2ε sin(ωt +ψ))x. (24c)

When ε = 0, the double-gyre flow is time-independent, while
for ε 6= 0, the gyres undergo a periodic expansion and contrac-
tion in the y direction. In (24), A approximately determines the
amplitude of the velocity vectors, ω/2π gives the oscillation
frequency, ε determines the amplitude of the up-down motion
of the separatrix between the gyres, ψ is the phase, µ

determines the dissipation and s scales the dimensions of the
workspace.

Fig. 6 shows positions of a team of ASVs tasked with
tracking an attractive LCS in a time-varying double-gyre flow.
It can be seen that the team of ASVs are able to track the LCS
boundary accurately while maintaining the desired formation
of the agents.

D. LCS tracking in the presence of measurement noise

In this section, the proposed tracking and formation keeping
strategy is evaluated in the presence of measurement noise.
Zero mean Gaussian noise, with standard deviation σ =

√
2I

with noise intensity I, is added to the velocity measurements
obtained by each ASV to simulate measurement noise. Fig.
7 shows a team of ASVs tracking the LCS in a time-varying
conservative flow in the presence of measurement noise. In
this case, the noise intensity is set to 0.25 which results
in a standard deviation for the measurement noise which is
approximately 12% of the mean flow velocity on the LCS
boundary. Comparison with Fig. 5 shows that there is no
significant degradation of the boundary tracking performance
even in the presence of measurement noise. This is expected
since it has been shown that LCS extracted from FTLE fields
are robust to measurement errors of the velocity field [5, 4].

VI. EXPERIMENTAL RESUTLS

In this section we evaluate the methodology proposed
in section III employing our indoor laboratory experimental
testbed : multirobot Coherent Structure Testbed (mCoSTe).
The mCoSTe is an indoor laboratory experimental testbed that
consists of three flow tanks and a fleet of two types of micro-
autonomous surface vehicles: the mASV and the mASVf.
The proposed tracking strategy is validated using a fleet of



(a) t=50s (b) t=62s (c) t=74s (d) t=86s

(e) t=98s (f) t=110s (g) t=122s (h) t=134s

Fig. 5. The positions of the team of ASVs while tracking a time varying boundary in a conservative flow. The background shows the actual FTLE field
calculated using complete knowledge of the flow field. The trajectory of Pc is shown in white.

(a) t=51s (b) t=62s (c) t=76s (d) t=88s

Fig. 6. The positions of the team of ASVs while tracking a time varying boundary in a wind-driven double-gyre flow model. The background shows the
actual FTLE field calculated using complete knowledge of the flow field. The trajectory of Pc is shown in black.

(a) t=62s (b) t=86s (c) t=110s (d) t=134s

Fig. 7. The positions of the team of ASVs while tracking a time varying boundary in a conservative flow n the presence of measurement noise.

mASVs in one of mCoSTe’s flow tanks - the Multi Robot
(MR) tank. The mASVs are differential drive surface vehicles
equipped with a micro-controller board, XBee radio module,
and an inertial measurement unit (IMU). The vehicles are
approximately 12 cm long and have a mass of about 45 g each.
Localization for the mASVs is provided by an external motion
capture system. The MR tank which is 3× 3× 1 m3 in size,

is designed to accommodate the operation of several mASVs
and is able to create time-independent flow fields that exhibit
kinematic and transport features similar to those observed in
the ocean [11]. Flow fields are generated in the MR tank using
rotating cylinders each having a diameter of 10 cm. The speed
and direction of the cylinders can be controlled individually
to obtain a desired flow field in the MR tank. For additional



(a) (b)

(c) (d)

Fig. 8. (a)-(c) shows the motion of the mASVs in the MR tank. (d) shows
the trajectories of the mASVs in the tank. The red line indicates the actual
boundary, the blue line indicates the trajectory of Pc.

details about the various components of the mCoSTe and the
quality of the flows that can be created using the mCoSTe, we
refer the interested reader to [11].

In the first experiment, three mASVs along with four virtual
ASVs were used to track a simulated static flow field of the
form given in (23). The objective of this experiment was to
demonstrate the viability of the proposed methodology on
actual ASVs. The three mASVs were initially arranged in a
saddle straddling formation with the center mASV (Pc) tasked
with tracking the boundary. Let the mASVs to the left and
right of Pc be denoted by Pl and Pr respectively. The virtual
agents were placed at the four corners of the grid. For the
flow field used for the experiment, λ = 0.133 and β was set
to 0.005, which from (22) indicates that the mASVs should
converge to a distance of 0.194 m from the boundary. The
actual average distance from the boundary to Pl and Pr were
measured to be 0.183 m and 0.205 m respectively. Fig. 8(a)-
(c) show the motion of the mASVs in the MR tank and Fig.
8(d) show the trajectories of the mASVs.

In the next experiment, six flow cylinders were used to
create an attracting coherent structure in the MR tank. The
objective of this experiment was to evaluate the formation
keeping strategy outlined in section III-B on an actual at-
tracting manifold using three mASVs. In this case, the center
mASV is provided the path of the attracting manifold before-
hand. Fig. 9(a)-(c) show the motion of the three mASVs along
the attracting manifold and Fig. 9(d) shows the trajectories of
the three mASVs in the tank. It can be seen that the mASVs
maintain formation while moving along the boundary. It is not

(a) (b)

(c) (d)

Fig. 9. (a)-(c) show the motion of the three mASVs along the attracting
manifold. (d) shows the trajectories of the mASVs in the tank.

possible to provide a quantitative measure for the performance
of the formation keeping strategy, since a method is currently
unavailable to measure the flows in the MR tank accurately.

VII. DISCUSSION AND FUTURE WORK

In this work, we developed a methodology to track attracting
LCS boundaries or unstable manifolds through the explicit on-
board calculation of local FLTE fields. The proposed method-
ology was evaluated through a wide range of simulations
and through experiments carried out in an indoor laboratory
testbed. As shown in section V, the proposed boundary track-
ing and formation keeping strategies are robust when operating
in static and time-varying conservative flows and even in
the periodic wind-driven double-gyre flows. Even though the
development and the analysis of the method does not explicitly
consider measurement noise, the proposed method has been
shown to work well with noisy measurements. This is not
surprising since existing work [5, 4] suggest that a manifold
tracking strategy based on FTLE computations should be
robust to measurement noise. While the formation keeping
strategy has been shown to work in the presence of noise, the
effect of noise on its performance needs to be further analyzed
and thus is a direction for future work. In addition, while
the computations required for manifold tracking is currently
carried out in a centralized manner, these computations can be
easily distributed since the proposed strategy is based solely
on local measurements of the flow field. Such a distributed
implementation and validating its performance are areas for
future work.
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