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Abstract—We consider an optimal stopping formulation of
the mission monitoring problem, where a monitor vehicle must
remain in close proximity to an autonomous robot that stochas-
tically follows a pre-planned trajectory. This problem arises
when autonomous underwater vehicles are monitored by surface
vessels, and in a diverse range of other scenarios. The key
problem characteristics we consider are that the monitor must
remain stationary while observing the robot, and that the robot
motion is modelled in general as a stochastic process. We
propose a resolution-complete algorithm for this problem that
runs in polynomial time. The algorithm is based on a sweep-
plane approach and generates a motion plan that maximises
the expected observation time. A variety of stochastic models
may be used to represent the expected robot trajectory. We
present results drawn from real AUV trajectories and Monte
Carlo simulations that validate the correctness of our algorithm
and its feasibility in practice.

I. INTRODUCTION

Mission monitoring is a supervisory problem where a
robot or a manually driven vehicle tracks the progress of an
autonomous mobile robot in performing a pre-planned task.
There are many examples of such tasks, including undersea
surveys [38l 21]], monitoring our natural environment [18]],
autonomous farming [5] and planetary exploration [33]. Mon-
itoring allows for rapid response to failures and to important
information that the robot may discover during the progress
of its mission [22, 23| [7]. Additionally, the monitoring vehicle
may augment mission capabilities by providing observations
from external viewpoints, such as for accurate localisation and
navigation [24} 34, 4l 27]]. In some cases, the monitor vehicle
must remain stationary in order to observe or communicate
with the robot. The monitor vehicle must decide where to
stop, and when to move to the next observation location.

Classical optimal stopping problems [12], such as the well-
known secretary problem, involve a binary choice; at each
time point, the decision at hand is simply whether to stop or
continue. If this choice can be repeated, the problem can be
considered to be one-dimensional in the sense that it involves
a choice of nonoverlapping intervals along a single dimension
representing time. However, mission monitoring also involves
spatial dimensions. We refer to this case as spatiotemporal
optimal stopping. The goal of this work is to develop complete
algorithms for a spatiotemporal optimal stopping problem
where the motion of the target robot in general is stochastic.
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Fig. 1.  Geometric interpretation of the spatiotemporal optimal stopping
problem. A deterministic robot trajectory is shown in blue and also projected
onto a plane in the two spatial dimensions. An example monitor trajectory
solution is overlaid. Cylinders represent effective monitoring range at stopping
locations. Green stars represent parts of the mission that are not monitored.

This work is motivated directly by autonomous underwa-
ter vehicle (AUV) operations. Most AUVs in practice are
supervised by powered surface vessels. The AUV navigates
autonomously, often following a pre-planned trajectory with
reasonable accuracy, but failures can occur that require human
intervention. The AUV may also discover information of
immediate value. Therefore, effective monitoring is relevant
even if the robot is autonomous; monitoring allows operators
to respond to failures and relevant information quickly.

Acoustic systems used for communication with the AUV
have limited range, and some operators must stop and deploy
this communication equipment, with engines powered down,
for maximum efficiency [6]. An optimal stopping solution
maximises the time spent observing, and minimises time spent
in stopping and starting the surface vessel which may incur
a time penalty. This problem is not limited to the AUV
monitoring context; other motivating examples include flying
robots that must land during observational periods to conserve
energy [10], acoustically-covert surveillance for tracking ani-
mals [36,|19]], ground-based mobile recharge stations for aerial
vehicles [32], aerial robots that must be stationary to achieve
accurate measurements of radio-tagged wildlife [13]], and un-



derwater robots that need to stop and surface to communicate
or observe some phenomenon [16].

A related spatiotemporal optimal stopping problem for AUV
monitoring has recently been studied [6]. However, AUV
motion is limited to the deterministic case, and the solutions
lack completeness guarantees. The contribution of this work
is an efficient resolution-complete algorithm for this problem
that in general models AUV motion as a random process.
The stochastic model can be in any form that yields a spatial
distribution at a given time point.

Our algorithm generates an optimal nonoverlapping set of
“cylinders” in the 3D configuration space consisting of two
spatial dimensions and one time dimension (Fig. [T). These
cylinders represent a stationary observation range and time,
and are linked by a path that respects motion constraints of the
monitor platform. The objective is to maximise the expected
overlap time between the cylinders and the stochastic mission
trajectory. Hardware-setup time penalities are naturally mod-
elled geometrically by modifying the cylinder heights when
evaluating trajectory overlap. Time and space are discretised,
but fine resolution is feasible in practice. The algorithm uses
a sweep-plane approach to compute a resolution-complete
solution in polynomial time.

In addition to analytical evaluation, we provide simulation
examples drawn from actual AUV trajectories that illustrate the
behaviour of the algorithms. We also validate our results by
comparing expected observation time with actual observation
time from Monte Carlo experiments, where the trajectory of
the robot is drawn from an assumed stochastic process. The
clock-time performance of our implementation shows that the
solution is viable for practical use in mission monitoring.

II. RELATED WORK

A closely related problem is studied by Best and Anstee [6],
who propose a greedy planner and a genetic algorithm for
AUV mission monitoring where the AUV trajectory is as-
sumed to be deterministic. The genetic algorithm is shown
to achieve reasonable results but makes no guarantees on
convergence, runtime, or optimality. In this paper we develop
the spatiotemporal optimal stopping formulation, generalise
the problem to admit stochastic target robot trajectories, and
present efficient algorithms with analytical guarantees.

Optimal stopping describes a class of problems that require
a choice of when to take a particular action in order to max-
imise an expected reward [12]. Recently, Lindhé and Johans-
son [30] study an optimal stopping problem for a robot that
communicates with a base station while traversing a predefined
path. The robot must choose stopping points that maximise
communication quality while also making progress along its
path. Our problem is similar, but here the agent must also
choose a stopping location, and the reward received is time
dependent. Further, feasible next actions depend on previous
actions; a given stopping decision constrains the reachability
of future stopping locations. Planning must consider the entire
stopping sequence, rather than one-stop planning.

Sweep-plane algorithms are often used for computational
geometry problems such as Voronoi decomposition, intersec-
tions between line segments and unions of rectangles [15]. An
R"~! hyperplane is swept monotonically through an R space,
and calculations are performed at event points. Robot motion
planning problems can often be formulated geometrically
and solved with sweep-plane solutions [28]. Our approach
features a sweep-plane moving through time, where the event
calculations represent optimal sub-problems and lead to an
optimal global solution.

An event can be thought of as a vertex in a search graph
with edges linking back to previous events. This construction
forms a directed acyclic graph and therefore a longest path can
be computed in polynomial time [29} [14]]. Bopardikar ez al. [9]
employ this approach for dynamic vehicle routing, where an
agent maximises the number of space-time demands visited.
Dono [17] studies search graph culling using the convex hull
of reachable points. Various models for modelling stochastic
motion of a vehicle have been proposed, such as [25] 3]]. Our
problem again is similar, however our agent seeks to occupy
a region defined probabilistically over time. The novelty
of our approach in comparison lies in our proposed graph
construction algorithm to maintain optimality for a complex
constraint space and objective function.

In marine robotics, coordinated-control problems have re-
ceived much attention due to the benefits realised by multi-
robot systems [1]. Related problems include formation control
and communication connectivity maintenance [31} 20, [35 [2]],
and target following [8} [11], and these problems are generally
approached using closed-loop control with a sliding time hori-
zon. We focus on longer-term path planning with an objective
characterised as optimal stopping, and therefore formulate a
combinatorial optimisation solution.

Although there appears to be a dearth of work that directly
extends temporal optimisation problems to consider space,
there is a large body of literature that extends spatial optimi-
sation to consider time. Prominently, vehicle routing problems
(VRPs) have been studied with various time constraints, such
as VRPs with time windows [37]. The key difference in our
work is that time is considered as an objective to be maximised
(for effective monitoring) rather than as a constraint.

III. PROBLEM FORMULATION

The problem involves two mobile agents: 1) a farget which
follows a probabilistic trajectory defined by a mission plan,
and 2) a tracker that seeks to effectively monitor the target
throughout the mission. To monitor effectively, the tracker
must be within range of the target and must be stationary.
The trajectory of the tracker can therefore be characterised
as a sequence of stopping waypoints in time and space. This
scenario presents an optimisation problem with the target’s
trajectory as the independent variable, and the tracker’s trajec-
tory is to be optimised. In this section, we formally define the
characteristics of the target and tracker trajectories, and the
idea of effective monitoring as an optimisation objective.



A. Target Trajectory (Independent)

The trajectory of the target is described as its position
as a function of time x(¢) : [0,7] — X, where T is the
mission duration and X is the space of all possible target
locations. We assume that the trajectory is not known precisely
ahead of time, and therefore the predicted location of the
target at time t; is represented as a random variable X; with
some known distribution X; ~ D;. The distribution D; has
probability density function p;(z). A distribution is defined
for every discrete time step t; := (¢ — 1)A, € T over the
duration of the mission, and therefore the predicted trajectory
of the target is given by the sequence of random variables
X = (Xl, XQ, ceey XN)

This paper addresses two categories for the probability
distributions D;. For the general case, D; may be any given
probability distribution. We also make further refinements to
the algorithm for the special case where the target trajectory
is predicted precisely and therefore considered deterministic;
i.e., each p;(z) is defined as a Dirac delta function.

B. Tracker Trajectory (Dependent)

The trajectory of the tracker is also described as its position
as a function of time y(t) : [0,7] — ), where ) is the
space of all feasible positions of the tracker. The trajectory of
the tracker is characterised as alternating between two states
{STOPPED, MOVING} := S, which is described by a function
of time s(¢) : [0,7] — S. When in the STOPPED state, the
tracker stops and remains stationary at a waypoint position
Ui € Y C Y. Over the course of a mission, the sequence of
M waypoints is denoted ¥ := (1, Yoy -, a1 )-

1) Arrival and Departure Times: The tracker remains
STOPPED at each waypoint during the time interval of the
waypoint arrival and departure times [t¢,t¢), therefore
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The tracker is MOVING between consecutive waypoints
(i, i+1) over the time interval [¢{,¢2, ). Therefore, the state
as a function of time is defined as

) sToppeED if T € [JM, [t2,19)
s(1) =
MOVING  otherwise.

o MY

The sequences of associated arrival and departure times are
denoted T% := (t3,13,..,13,) and T9 := (¢4,#%,...,t%,)
respectively, and satisfy the constraints 2 < ¢4 < ¢ HETAL 2

For convenience, we denote the trajectory of the tracker as
a tuple U = [V, T? T9], which is described by a sequence
of waypoint locations Y, and associated sequences of arrival
times 7@ and departure times T9.

2) Travel time: The required travel time ¢3 —td between two
waypoints is known and defined by some functlon 0(9i, Uj) =
YxY— R>o. The proposed algorithm is not dependent on
the exact trajectory taken to achieve this travel time between
waypoints. We require 6(¢;, ;) = 0 iff §; = g;, since ¢; and
1; would effectively become a single waypoint.

3) Start and End Conditions: Practically, tracking vehicles
are often also used for deployment/recovery of the target.
Hence, without loss of generality, we assume the constraints:

= E[Xl]a
This assumption is not limiting. We require only that ¢; and
yp are known.
4) Discretisation: The position function y(t) and state
function s(t) are sampled at discrete time steps ¢; € T,

resulting in the sequences of positions Y = (y1,y2,...,yn)
and states S = (s1, S2, ..., SN ).

=0,

ey
#,<T.

C. Effective Monitoring

The goal of the tracker is to effectively monitor the target. At
time ¢;, the monitoring effectiveness is described by a function
F(Xi,yi,8) : XxY xS — {0, 1}, with 1 meaning effectively
monitoring and 0 otherwise, defined as

F(IIX; — y;l|) if s; = STOPPED
F(Xoyyiy50) = {f(” wl) @)
0 if s; = MOVING,

where f(r;) : Rso — {0,1} is the monitoring effectiveness
while STOPPED, defined as the r-disk model
if T <r

~ 1
flrs) = {O otherwise. ®)
The monitoring range parameter is denoted r. Other definitions
for f(r;) may be used, such as a probabilistic communication
model, but we focus on the binary case here for clarity.
The objective function F'(X, Y, S) is defined as the expected
monitoring effectiveness over the duration of the mission:

N
F(X,KS) =E Ath(mez,Sz)‘|
. =1
= A[ZE [f (Xiayiasi)} ’
i=1

which can be interpreted as the expected total amount of
time that the tracker is STOPPED and in range of the target.
F(X,Y,S) can be evaluated using the expected values

= E[F(IX: — will)

_ / pi(@) f(llz — yil))da
X

E [f (Xia Yi, MOVING)] =0.

E [f (Xi, yi, STOPPED)]

Remark 1. For the special case where X; is deterministic,
E[f (Xi,vyi,s:)] = f(Xi, i, s;) and evaluates to 0 or 1 only.

For convenience, we also introduce notation for the moni-
toring effectiveness over a subset T of the mission as

Fri=A) E[f(

neN

Xnaynasn)]7 N:{ntn ETOT}.

We also introduce FT with the same definition but with the
assumption that s,, = STOPPED, Vt,, € T.



D. Problem Statement

Fig. |1} shown earlier, illustrates a geometric representation
of the target and tracker moving through time and the mon-
itoring effectiveness for a deterministic target problem speci-
fication. Using this visual model, the optimisation problem to
be solved can be stated as follows.

For a given target trajectory X (blue line), select the
positions Y (coordinates of red cylinders in horizontal plane),
arrival times T (bottoms of cylinders) and departure times T¢
(tops) of a set of stopping waypoints U (red cylinders of radius
r and vertical gaps §(i,3;)), such that the sum of the expected
monitoring effectiveness F(X,Y,S) is maximised over the
mission duration (number of green stars is minimised).

IV. GRAPH GENERATION

The proposed algorithm is divided into a graph generation
phase and then a longest path graph search which utilises
a sweep-plane, as outlined in Alg. This section focuses
on the process of generating the vertices and edges of the
search graph, as summarised in Alg. 2] The result is a graph
with vertices V and edges &, with paths through this graph
describing solution trajectories for the tracker.

A. Vertices

A set of graph vertices is generated, with each vertex
representing a potential stopping location in time and space.
This is achieved by selecting a discrete set of positions in space
in the neighbourhood of the target’s path. Time is incorporated
for each position by considering all times that the tracker is
expected to be effectively monitoring the target.

1) Space: The set of discrete space locations P C Y is
selected as the intersection )7 NP1 NPy NP3, with each set
described in the following points.

i) P1 is the set of all points p; that are within monitoring

range of part of the target’s trajectory, ie., 3X, € X :

E [£(1X, - p)] > 0.

Algorithm 1 Overview of trajectory planner for tracker
1: function MAIN(X, r)
2: [V, ] + GENERATEGRAPH(X, 1)
3 [V, &, vstart, Vend] < STARTENDCOND’s(V, &, X)
4: [{Q}, {¢}] + SWEEPPLANE(V, E)
5 [U, F] < BACKTRACKING({Q}, {¥}, venp, V, €)
6:  return [U = [Y,T* T, F)

Algorithm 2 Generating a graph of potential waypoint posi-
tions and times
1: function GENERATEGRAPH(X, 1)
Select potential stopping locations p; € P
Generate vertices v, = [py, T Tg] ey
Find feasible edges e = (v;,v;) € €
Calculate edge times tJ, t; for each edge ey
Calculate edge weight w; ; for each edge ey,
return [V, £] > Vertices, Edges

A O o
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Fig. 2. Possible stopping locations around a deterministic target trajectory
moving through 2 spatial dimensions. Also shown are the boundaries of the
convex hull (orange) and monitoring region (pink) described in Sec.

ii) P, is the set of all points x that are within the space
bounded by the convex hull of all possible locations
({x : 3i, pi(x) > 0}) visited by the target.

iii) P3 is a discrete set of possible stopping points. All
examples use a uniform grid.

An example of the resulting set of stopping locations
is shown in Fig. In practical circumstances, these set
definitions are reasonable. Specific conditions are defined in
Lemmas[I](P;) and 2] (P2) below. If a condition is not valid for
a specific problem then that set may be omitted to guarantee
optimality, potentially at the cost of higher computation time.

Remark 2. If the distributions p;(z) are unbounded, then P
is potentially an infinite set. However, the reachability pruning
(see later in Sec. [[V-C) ensures the search space is finite. For
computational reasons, to further reduce the size of the graph
it may be necessary to approximate P; and P, using non-zero
lower bounds, i.e., p;(x) > LB.

Remark 3. Due to the P5 discretisation, the space CH(X) for
‘P2 should be expanded in all directions by a distance the size
of the discretisation spacings, to avoid excluding potentially
optimal waypoints near the boundary.

Lemma 1. Stopping in effective monitoring region:
An optimal solution trajectory U only contains waypoints
at locations §; € Y which satisfy 31X, € X

E [f(HXn — QIH)} > 0. The proof requires triangle inequality
to hold for (i, U;), i-e. 0(Ja,b) < 0(Ja, i) + 6(Jis Ub)-

Proof: Define two partial solution trajectories over the
time interval [t2,4): 1) Y = (g, 95, §r) and i) Y* = (i, §r):
with §; satisfying X, € X : E [f(”X,] —gjo)} > 0. For
)7, the monitoring effectiveness F' while STOPPED at g; is
Flya oy = 0, due to the condition imposed on g;. Combined

377
with the MOVING times, Fju ;) = 0, with interval length
L = & — td. Therefore F(Y) = F[t‘i}.,tﬁ)u[t‘;c.,t?c)' For Y*,
the monitoring effectiveness while MOVING 1is F; ey =0,

with interval length L* = t’}: — t3". Therefore F(Y*) =
Fles sryopes 1)

It follows from the triangle inequality assumption that
L > L*. Therefore 3{t, t¥} : (¢ > t9) A (2 < t2), where
{td", 12"}« {t¥,t¥} is a feasible choice for departure and



arrival times. The optimal choice for {t¢",#"} will always
result in a greater or equal monitoring effectiveness than if
{9, 62"}« {t¥, ¥} were chosen, therefore:

FY™) > F[tf;,t‘,g’)u[tz,t‘;c)
= F[t;!,tg})u[t‘;,t‘g/)u[tﬁlg,t;)u[t;,tﬁc)

= F(Y) + F[tg,tg/)u[t;’,t;)

> F(Y).

It follows that F'(Y) will never decrease if g; was removed
from the sequence. This generalises to longer sequences since
F' is additive over partial sequences; therefore an optimal
sequence exists with all §; in range of an X,. O

Lemma 2. Stopping in convex hull:

An optimal solution trajectory U only contains waypoints at
locations §j; € Y which are in CH(X), where CH(X)) is the
space bounded by the convex hull of the set comprising all pos-
sible target positions X and known tracker positions 41, Y.
The proof requires CH(X) C Y, and that the travel time
monotonically increases with distance from a fixed start or end
position; i.e., (3, §a) > 6(3i, Gv) and (Ja,Ji) > 6(Jb, Ji),
V(Dis Jas G6) = 19 — Gill = 196 — ill-

Proof: Define a stopping position §, ¢ CH(X). By
definition, there exists a half-plane H such that CH(X) C H,
Jo & H, and g’ lies on the boundary of H where ¢ is the
closest point to g, in CH(X). The line segment g, to g is
perpendicular to the boundary of H; therefore ¢} is closer
than g, to any point in H, i.e., ||7% — k|| < ||Jo — h]|, Vh € H.
Therefore, since X; € H, we have f(||X; — 3%) > f(||X; —
Jall), VX, € X. It follows that the monitoring effectiveness of
a solution that contains a waypoint at ¢ will never decrease
if this waypoint were moved to g, instead. It is assumed that
g € Y, which will hold if CH(X) C Y.

To be optimal, selecting 7 instead of ¢, must not neg-
atively affect F at the previous and next waypoints in the
sequence. Define the partial solutions ¥ = (9, Ya, 9;) and
Y* = (4,9, 9;), where §;,9; € CH(X) C #. It follows
from the monotonic assumption that the travel times must
not increase by selecting ¢, i.e., 6(9;,9%) < (Ui, J,) and
3(9%,9;) < 0(Ja, ;). Therefore the departure from g; need
not be earlier and the arrival to §; need not be later if § is
chosen instead of §,; hence the monitoring effectiveness at ;
and 7; will not decrease if ¢ is chosen instead of 7,.

It follows that F(Y*) > F(Y). Given that §1,jy €
CH(X), this generalises to longer sequences. Therefore an
optimal solution trajectory has all 3; € CH(X). O

2) Incorporating Time: A vertex v, € ) represents the
tuple vy, := [py, 73, 75], where p,, € P and 73, 75 are described
as follows for the general and deterministic target cases.

In the general case, a new vertex is created for every
time step that the target is possibly in range of the tracker
if the tracker was STOPPED at position p,, ie., V :=

vy = [pn,Tf;,Tf]l — 1+ A E [f(||X(Tf;) —p,,H)} > 0}
This definition is referred to as the generalised algorithm.

=== Target trajectory (discretised)
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Fig. 3. Vertices overlaying an example deterministic target trajectory. Each
vertical blue line segment represents a vertex in the search graph. Each vertex
maps to a potential STOPPED position in the tracker trajectory, with the arrival
and departure times determined by the edges (Fig. [).

For the special case of a deterministic target trajectory,
only a single vertex needs to be created for each contiguous
subsequence of times where the target is in range of the
tracker. More formally, T; C 7 denotes the set of all times
such that the target would be effectively monitored if the
target were STOPPED at p; at time ¢;, i.e., T; := {t;, € T :
f(IX: = pil) = 1}. Each T; is then divided into multiple
subsequences, with each subsequence being a complete run of
consecutive timesteps (t;,t;41,....¢+%) € T;. Each subse-
quence forms a new vertex v,, in the search graph, such that
[y, 78, 78] <= [pi, tj, tjk + AJ. This is illustrated in Fig.
each vertical blue line segment is a vertex with the bottom at
time 7, and the top at Ts. This definition is referred to as the
deterministic algorithm. Justification for the adjustments made
in this deterministic case is provided later in Lemma [3]

B. Edges

A solution trajectory is represented by a path through the
graph with consecutive vertices connected by directed edges.
An edge is denoted e,, = (v;,v;) and describes travelling from
vertex v; at position p; to vertex v; at position p; at some time
in the solution trajectory. The set of all edges included in the
search graph is denoted £ C V x V.

Each edge has an associated departure time tgn := t¢ and
arrival time tg —:= ¢} which describes the exact time the

tracker moves from p; to p;. We require tf] satisfy

=1 <t (4)

For the general case, selecting ¢j < 7, is optimal relative
to the temporal resolution since each vertex represents only
stopping for a single time step at p,. For the deterministic
case, where a vertex represents a contiguous subsequence of
in-range timesteps, this choice is still optimal (shown later in
Lemma[3). The key advantage of having a fixed arrival time (@)
for a vertex is that the calculations for an edge e, = (v;, v;)

do not depend on the choice of arrival time for a previous
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Fig. 4. The four possible edge categories described in Alg.[3land Sec.

Algorithm 3 Edge weight and moving time calculations for
an edge. The four categories are illustrated in Fig.

1: function EDGECALCULATION(e,, = (v;, v;))

2 p e EF(IXy = pil)] sty =7

3: td «+ 78

4: if 6(pi,p;) > 78 — 7 then > Cat. 1
5: Do not include e, in &£

6: else if p; = p; then > Cat. 2
7: t§ 72

8: wi_’j%pX(Tf*T?)

9: else if &(p;,p;) > 72 — 7{ then > Cat. 3
10: t§ 78— d(pi,pj)

1. wij = px (T8 =78 = 8(pi,py))

12: else > Cat. 4
13: td < 78— (pi, pj)

14: wij + px (t8—72)

15: return [tz7t]7wz,j] > Depart, Arrive, Weight

edge e,, = (vp,v;) or the path taken to or from an edge; and
therefore optimal sub-paths are additive.

Each edge also has an associated weight w; ; which is
defined as the amount of time spent effectively monitoring

over the time interval [}, 7%), i.e.,

Wi,j = F[T ) (5)

Each edge is in one of four categories, which determines
the edge weight and moving times. The conditions are derived
directly from the geometric properties illustrated in Fig.[d The
calculations are listed in Alg. [3] and described as follows.

1) Infeasible — An edge is included if and only if the vertex
v is reachable from v;, i.e., 6(p;,p;j) < 7§ — 71

2) Same Position — The two vertices are at the same position
and therefore merged into a single waypoint.

3) Smaller Gap — The gap between the vertices is smaller
than d(p;,p;); therefore there will be no time spent
STOPPED while not in range.

4) Larger Gap — The gap is larger than 6(p;, p;); therefore
there must be some time STOPPED while not in range.

Remark 4. The edge weight calculations do not strictly
comply with (3). For an edge (v;,v;) where there exists
another vertex v, at the same position as v; with a later time
or at the same position as v; with an earlier time; then w; ;
may underestimate F[Tg,r;)- However, this case will be realised
by a path ((v;,va), (Va, v;)) Where w; , and wq ; comply with

(3). Underestimating w; ; is not a problem since a longest path
search will choose ({v;, vq), (Vq,v;)) instead.

Lemma 3. Optimal arrival time for deterministic case:

If a path passes through v,), then it is optimal for the solution
trajectory to arrive at p, with i3 chosen as 1,. This applies
when the target trajectory is deterministic, and also assumes
that the average speed of the tracker between waypoints is not
less than the maximum instantaneous speed of the target, i.e.,

0(Gi,95 [ Uiy U
OB > 16 (6) s V-9

Proof: Consider the path consisting of a single edge
(vl, v;) for three cases: i) choose t5 5, where 77 <t <
J, ii) choose ta — ta where t; = 7' and iii) choose ta
t5, where ¢}, < TS The following proof shows that ii) has a
monitoring effectiveness greater than or equal to i) and iii).
Firstly, consider the start times of a pair of vertices (77, 77).
When the target moves in a straight line at a constant speed
||| (i.e., gradient in Fig. [3), the vertices will have start times
with this same gradient between pairs, i.e., |7} — 7| = ||p; —
pill - ||£(¢)]]. If the target turns (e.g. upper half of Fig. B, or
moves slower, this time difference must always be larger; and

therefore generally |73 — 7| > [|p; — pil| - [|&(?)]|. Applying
the speed assumption,
|73 =7 = 1t = 7| = 8(pi, ;) (6)

An exception could occur at the beginning of the mission;
however the adjustments in Sec. make this impossible.

From (6), it follows that if t4 < 13, then td > 74, For ii),
the tracker departs p; at a time 0 := ¢3 —15_ earlier than for i).
Therefore ii) will spend O less time at p; and 0 more time at
p; than i). The extra time spent at p; is the interval [t} _,t} ),
and by definition of a vertex for the deterministic case (see
Remark [I) Flpa ) = 0, which is maximal. Case i) can not
improve on this during the extra time at p;, and therefore ii)
has a greater or equal monitoring effectiveness than i). The
above assumes 77 < TJ, however, it follows from (6) that an
optimal path w1ll not contain (v;, vj) if 73 > 7.

To achieve iii), the tracker will spend more time at v; than
for ii). This time is before TJ“ and therefore F[t| ) = 0,
which is minimal; hence ii) has a greater or equal momtormg
effectiveness than iii). This shows that ¢ < 77 is optimal. []

C. Start and End Conditions

The second phase (Sec. [V) backtracks through the graph
until a start vertex wvgg 1S found. To allow for this, a new
position Py = @1 is added to P, if it is not already in
the set, and vertices and edges are added as before. The start
verteX vy 18 selected as the earliest v; at ;. To ensure that
backtracking always finds a path back to vy, all other vertices
are adjusted using the rules:

do nothing if 72 > 0(pstart> Pi)
remove v; else if 78 < §(pstare; Pi) (7
T8 = §(Pstart, Pi)  Otherwise.

In (7), case two removes all v; that are not reachable from
Vstart- FOr the Lemma E] result to hold and therefore the ¢2
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into the current vertex, analogous to Fig. [3] but including the start condition
adjustment. Travel time assumes constant velocity motion.

Algorithm 4 Sweep-plane graph search: forward pass

1: function SWEEPPLANE(V, &)

2: Qgtare < 0

3 for t=1tq,to,..

4 for each v, € V:78 =1 do

5 &+ {e:ec = (v,v;) € E} 1> Edges into v;
6: Yy < argmax g [Qe + we ]
7
8

LiN do

Q; Q% + W, i

return [{Q}, {¢}] > Path weights, Back-pointers

selection (@) to be optimal, the third case trims all v; that are
reachable only at some time after 7.

For the end condition, new vertices and edges are added at
position peng = yas. The latest v; at g is denoted vepg.

V. SWEEP PLANE ALGORITHM

In this section, we propose a longest-path graph search
algorithm for finding the optimal tracker trajectory. The graph
can be efficiently searched since it is a directed acyclic graph
and therefore a topological ordering of V exists.

1) Forward Pass: A topological ordering can be found
by visiting v; in order of ascending time ¢ = 7}'. This can
be thought of as a sweeping plane as illustrated in Fig. [5]
and described in Alg. ] The sweep-plane represents a plane
covering P at a particular time ¢, and moves linearly through
increasing time 7 (line 3). A vertex v; is explored once the
sweep plane reaches ¢ = 7! (line 4). For efficient evaluation of
the vertex set in line 4, }V should be pre-sorted by ascending
72. When v; is explored (line 5), all edges e, leading in to v;
are compared (/ine 6) and the optimal previous vertex with an
edge into each v; is denoted 1;. The sum of weights along the
optimal path leading to vertex v; through edge e, is calculated
recursively and denoted €2; (line 7).

2) Backtracking: Lastly, the optimal solution path is found
by backtracking from vepq t0 vy by recursively following the
back-pointers ¢ until vy, is found. Backtracking will always

find vy due to the adjustments in Sec. The monitoring

. . _ d a
effectiveness is F' = Qeng + (Tend - Tend)'

A. Analysis

For each v;, the forward pass calculates the preceding vertex
1; and the sum of edge weights (2, for the optimal path from
Usare t0 ©;, if the mission ends at time 7. The algorithm
recursively solves optimal sub-problems until the full problem
is solved optimally.

Time complexity is analysed as follows. Let the spatial
resolution be |P|, temporal resolution |7 |, number of vertices
|V| and number of edges |£|. The complexity for generating
the set of vertices is O(|V|) = O(|P|-|T|) and for the edges
is O(|€]) = O(|V|?). Therefore the complexity for generating
the graph is O(|P|?-|T|?). The topological sort has complexity
O(|V|log|V|) and the path search is O(|V| + |€]). Therefore
the sweep-plane algorithm has time complexity O(|P|?-|T]?).

VI. EXPERIMENTS

This section describes simulation experiments in effective
monitoring of an AUV by a manned surface vehicle. In this
case, effective monitoring (defined formally in Sec.
allows the surface vehicle to communicate with the AUV,
respond to critical events, or intervene in the mission.

Simulations were performed using the same parameter val-
ues and target trajectories as the AUV missions described
in [6]. Parameter values are as follows: » = 200 m moni-
toring range, 2 m/s constant target speed, 25 m grid spacing,
A, = 10s time steps, travel time 0(9;,9;) = ”yjl";ﬁ"’” + Then,
with ||g|| = 5m/s tracker speed and Tye, = 30s for deploying
and retrieving the monitoring hardware. Two hour-long AUV
missions are considered as target trajectories, named Middle
Harbour and Jervis Bay. The circular and linear missions are
two extreme cases for the trajectory.

A. Deterministic Target Trajectory

Table | shows simulation results for four deterministic target
trajectories. The deterministic and the generalised algorithms
output the same solution trajectories, however the generalised
algorithm had a higher computation time. The algorithm shows
an improvement in the objective function over the Genetic
Algorithm results reported in [6]. The key advantage of the
proposed sweep plane algorithm is faster and guaranteed
runtime, and provably optimal solutions.

TABLE I
SIMULATION RESULTS FOR DETERMINISTIC TARGET TRAJECTORIES. THE
TWO PLANNERS OUTPUT IDENTICAL SOLUTION TRAJECTORIES.

Deterministic Generalised
Mission F/T M |V| time 4 time
Middle Harbour  79.5 8 2860 0.5 49483 101
Jervis Bay 79.2 7 3121 0.6 59146 144
circular 95.8 3 1203 0.3 27338 32
linear 52.2 6 430 0.2 8062 3.7

Columns: Objective function F'/T %; Num. stopping locations M; Num.
vertices |V|; Computation time (s).
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Fig. 6. Comparing planning with a deterministic model to planning with an
accurate uncertainty model. Green lines are sample target trajectories drawn
from the probabilistic model. Red regions represent the monitoring range
around the chosen stopping locations.

B. Planning with Uncertainty

We demonstrate how planning while taking into account
an accurate model for the uncertainty of the target trajectory
improves the monitoring effectiveness. Fig. [f] presents a target
mission that alternates between sections with high spatial
uncertainty and low spatial uncertainty. The illustrated target
trajectories are samples drawn from this uncertainty model.

Fig. [6(a)] shows the optimal stopping locations for the
tracker if there were no uncertainty in the target trajectory.
Fig. [6(b)] shows the solution when planning with a probability
distribution D, that accurately models the uncertainty. The ad-
vantage of the probabilistic planning is that it chooses to stop
and stay longer in the regions with lower spatial uncertainty.
For a Monte Carlo simulation drawing 10000 sample target
trajectories, the deterministic planner has a mean monitoring
effectiveness F'/T = 47.5%, while the probabilistic planner
improves on this with F//T' = 54.1%. The solution path length
given by the deterministic planner overestimates the expected
monitoring effectiveness; conversely, the probabilistic plan-
ning accurately predicts the expected monitoring effectiveness.

C. Realistic Probabilistic Trajectory

Now we consider an example probability distribution def-
inition. For a target with accurate localisation, uncertainty
in position is usually due to variance in speed, rather than
deviation from the path. To describe this, at time ¢; the target
is a distance d; along the path from the start. The speed d;
along the path at any time instance is assumed to be normally
distributed d; ~ N (||&||ave, %) and independent of other time
instances. This gives the recursive definition for d; as

dit1 = d; + Ad;. (8)

The general solution to (]E), for d; = 0 with zero uncertainty,
gives the state estimate with mean and variance

i = (7' - 1)||:t|‘aveAt and Zz’ = (Z - I)UZA?' (9)

Middle Harbour mission Jervis Bay mission

1 1
[} . (2]
» 0.8f 7 T 7 - _ o 0871 ToT T _
2 é ! [ T 2 i é T =
) | [ | |
=z 1 ‘ b =z L P!
E’ 0.6 L ‘ | g‘j 0.6 |
m b i L
£o4 : | £o4 L ro
S ‘ | ] |
E E |
S [ [ S (Y |
=S 02 | Lo = 02 1 ol
1 Lo I l‘
0 L.l 0 n
2 5 10 15 2 5 10 15
Uncertainty Uncertainty
Circular Linear
1 1
e T - =] E
1
208 1 ! | 208
o 1 | 4]
c 1 | S
[ | [
2 1 2
E 0.6 1 5 0.6 o .
E 5B -
2o4 £o4 i P
5 g || T
g 5.l N
0.2 0.2 |
= [ Deterministic = b . E ‘ E
[ Probabilistic .
0 0 L 11 1.1
2 5 .10 15 2 5 .10 15
Uncertainty Uncertainty

Fig. 7. Monte Carlo simulation results for a probabilistic target (10000 sam-
ples); planning with and without taking into account the uncertainty model.
F/T on vertical axes; oraee (uncertainty growth rate) on horizontal axes. Error
bars show the sample minima, quartiles and maxima.

Fig. [7] shows the results of Monte Carlo simulations per-
formed by drawing 10000 sample target trajectories directly
from (8) and the objective function was evaluated using the
planned tracker trajectory. Planning was performed either
with or without taking into account the uncertainty model
(). The horizontal axes shows varying speed uncertainty
O X Opae; Such that o, i1s defined as the standard deviation
of completion time in minutes for a 1 hour mission.

The monitoring effectiveness is higher when planning us-
ing the uncertainty model, due to the reasons discussed in
Sec. A single-tailed t-test confirms this (p < 0.01) for
all 16 missions except linear with 0,4 = 10.

VII. DISCUSSION AND FUTURE WORK

The results validate the performance of our algorithm
and show the value of the probabilistic formulation. Our
implementation is unoptimised, but still exhibits reasonable
clock-time performance. Execution time ranged from millisec-
onds to a few minutes using a standard desktop computer.
The approach is feasible for operational use as is, and can
easily be used in replanning for partially known mission
trajectories that are discovered over time. Our results also
motivate many important avenues of future work, including
generalising for probabilistic representations of the monitor’s
observation range and dynamic communication rates [26].
Further, an orientation-dependent monitoring model could be
accommodated by adding a tracker-orientation dimension to
the search space. It is also interesting to consider worst-case as
opposed to expected observation time, and multi-robot cases.
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