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Abstract—This paper presents a new framework for the
generation of high-speed running jumps to clear terrain obstacles
in quadrupedal robots. Our methods enable the quadruped
to autonomously jump over obstacles up to 40 cm in height
within a single control framework. Specifically, we propose new
control system components, layered on top of a low-level running
controller, which actively modify the approach and select stance
force profiles as required to clear a sensed obstacle. The approach
controller enables the quadruped to end in a preferable state
relative to the obstacle just before the jump. This multi-step gait
planning is formulated as a multiple-horizon model predictive
control problem and solved at each step through quadratic pro-
gramming. Ground reaction force profiles to execute the running
jump are selected through constrained nonlinear optimization
on a simplified model of the robot that possesses polynomial
dynamics. Exploiting the simplified structure of these dynamics,
the presented method greatly accelerates the computation of
otherwise costly function and constraint evaluations that are
required during optimization. With these considerations, the new
algorithms allow for online planning that is critical for reliable
response to unexpected situations. Experimental results, for a
stand-alone quadruped with on-board power and computation,
show the viability of this approach, and represent important
steps towards broader dynamic maneuverability in experimental
machines.

I. INTRODUCTION

Quadrupedal animals display a remarkable versatility to
dynamically negotiate challenging terrain in unstructured en-
vironments. Whether cornering to evade a predator in an open
field or leaping to cross a cavernous gap, biological systems
display a nearly seamless capacity to plan and execute complex
motions which are tailored to the terrain and task at hand.
In the robotics realm to date, a variety of mechanical and
computational limitations have prevented legged robots from
demonstrating an ability to dynamically negotiate unstructured
terrain.

One class of terrain irregularities are terrain obstacles, which
require strategies for the system to move around or over
the obstruction. In the case of unavoidable extreme terrain
obstacles, where static traversal strategies are not viable, the
only option may be for the system to take advantage of
its dynamics by performing a running jump to clear the
obstacle. With this motivation, this paper presents a new set
of algorithms that enable dynamic and autonomous running
jumps over terrain obstacles through online optimization in an
experimental quadruped, the MIT Cheetah 2, shown in Fig. 1.

Recent advances in a diverse set of quadrupedal robotic
machines encourage the use of the quadrupedal morphology to
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Fig. 1. System overview for online generation of running jumps to clear
terrain obstacles. All computation and power is provided on-board.

study dynamic maneuverability. BigDog and its successor LS3
have demonstrated impressive and robust dynamic walking on
a variety of terrain surfaces [19]. StarIETH [9] has displayed
a wide array of gaits up to 0.7 m/s with the incorporation of
series elastic actuation in its legs. The hydraulically actuated
HyQ [21] has shown the capacity for high-power movements
and is capable of terrain robust trot walking at 0.35 m/s [23].
The MIT Cheetah 1 [22] and Cheetah 2 [16] robots have shown
the capabilities of electric DC motors to enable high-speed
locomotion [12] up to 6 m/s.

In addition to limited terrain robustness for unperceived
obstacles, many studies have focused on quasi-static loco-
motion strategies to climb over more challenging terrains.
Kalakrishnan et al. [13] proposed learning algorithms for
foothold selection based on expert demonstrations using ter-
rain templates. Researchers working on HyQ studied the use of
stereo vision to build a height map of the surrounding terrain
[1]. These terrain maps were used online to modify the CPGs
which governed cyclical leg motions, enabling rough terrain
with obstacles up to 9.5 cm in height to be traversed. Reflexes
layered on top of foot CPGs have also shown the ability to
provide static ambling over obstacles up to 11cm in height [8].

Other work in simulation has studied the capabilities of non-
repetitive dynamic movements to enable clearance of more
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Fig. 2. Procedure overview showing computation breakdown with time. Upon detecting an obstacle, the system plans a modified approach using a multiple-
horizon model predictive control strategy (Sec. IV). During the step immediately before the obstacle, the system performs online trajectory optimization (Sec.
V-C) in order to select ground force profiles which will allow the quadruped to clear the obstacle.

extreme terrain obstacles. Wong and Orin [26] proposed the
use of binary search for a small set of control parameters
to produce standing jumps over obstacles. Coros et al. [2]
developed an extensive trajectory dictionary and virtual model
controller to perform running jumps over a variety of large
gaps. Krasny and Orin [14] applied an evolutionary algorithm
to optimize running jumps during quadruped galloping. These
motions have also been studied in a limited capacity for
humanoids [3, 25] by using simple models for trajectory
optimization. Still, across each of these studies, the resultant
controllers have required extensive offline optimization and
have not demonstrated viability for use in experimental hard-
ware.

We present a new framework which considers the dynamics
of high-speed locomotion on a variety of time-scales for
successful execution of an autonomous running jump to clear
an upcoming obstacle. For reliable clearance of the obstacle,
it is critical to adjust approach steps to place the robot in an
optimal location for the jump. Furthermore, a feasible jumping
trajectory must be tailored to the sensed obstruction. Running
jumps are autonomously executed in hardware for obstacles
between 27.5 cm and 40 cm tall during running at 2.4 m/s.
All computation and power is provided on board, with all the
algorithms operating at real-time rates sufficient for success
of the jump. To the best of the authors’ knowledge, this
represents the first description and experimental validation of a
framework for online planning of autonomous running jumps
for obstacle clearance.

II. SYSTEM OVERVIEW

A detailed overview of the framework for obstacle clearance
is shown in Fig. 2. This figure highlights the control system
components which enable the new autonomous capabilities
demonstrated in this work. At a high-level, control system
components for approach planning and clearance trajectory
optimization are used to move the system into a preferable
location relative to the obstacle and to select ground force
profiles for a running jump. These components fit into the
overall computation strategy as described in the following
paragraphs.

During normal running, the quadruped continuously ana-
lyzes Lidar data in the sagittal plane to perform obstacle

detection, as described in Sec. III. When an obstacle is
present, this data is then used to plan a modified approach
for the steps leading up to the obstacle. In this work, the
approach adjustment strategy considers the use of velocity
changes at each step in order to get into proper position.
This planning problem is formulated as a series of quadratic
programs, as described in Sect. IV, which are solved at each
step to provide model-predictive approach control. A lower-
level bounding controller is capable to track the desired speed
changes commanded through this approach [17].

In the final step before the obstacle, the quadruped per-
forms trajectory optimization for the clearance jump (Section
V-C). To accelerate this trajectory optimization procedure, the
quadruped is abstracted by a simple model with polynomial
dynamics. The trajectory optimization problem is transcribed
into a constrained nonlinear programming problem, and solved
online. By expressing the forces acting on this system as
Bézier polynomials, the polynomial character of the system
dynamics enables analytical formula for the system state at
any given time. This availability to query the simulated state
of the system without numerical integration is a key result
in order to generate obstacle clearance jumps on a real-time
deadline.

III. OBSTACLE DETECTION

In order to perceive information about its surrounding
environment, the quadruped was outfitted with a Hokuyo
UTM-30LX-EW laser range finder as shown in Fig. 1. This
sensor provides distance data in its scan plane with an angular
resolution of 0.25◦. To minimize the scan time, data was
collected in the sagittal plane only for angles between 45◦

above the horizontal, to 90◦ below the horizontal, as shown
in Fig. 3. It was assumed that the motion of the robot during
the scan time of 12.5 ms had a negligible effect on the data.
Pitch correction from the IMU was used to rotate this data
into global coordinates.

Following each scan, a simple line segmentation algorithm
was applied to detect the ground plane and the front face of
the obstacle. Nguyen et al. [15] provide a thorough overview
of line segmentation algorithms for planar data, and report
on the promising accuracy and processing speed of the Split
and Merge algorithm [18]. In order to further decrease the
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Fig. 3. Lidar data, preprocessing, and final segmentation for a characteristic
scan over 135◦ in the sagittal plane.

computational overhead of the algorithm, a simplification
of the Split and Merge algorithm, the Iterative-end-point-fit
(IEPF) algorithm [20] was used here. This algorithm begins
by constructing a line between the first and last points of the
data. It then proceeds to take the point furtherest from the line,
splits the data into two halves about this point, and reapplies
the algorithm to each half. This recursive process is repeated
until all data is within a threshold distance to any segment.

To decrease the size of the input to the IEPF algorithm,
data was first preprocessed to extract a contiguous subset of
points that contained the ground plane. Starting at 90◦ below
the horizontal, the radial distance of successive data points was
monitored for a large jump above a given threshold. All data
after the first jump was discarded. In addition, (x, z) data in the
sagittal plane within a small tolerance was clustered together
and averaged to further decrease the input size. Figure 3 shows
the preprocessed data passed to IEPF, as well as its segmented
output. The long first segment in this data represents the
ground plane, while the second segment represents the front
face of the obstacle. The distance to the second segment
d0 and its length h0 were then used to provide a sensed
obstacle distance and height to the approach adjustment and
trajectory optimization algorithms. This method was found to
be effective during bounding at 3Hz despite significant pitch
and small roll oscillations which perturbed the lidar scan plane,
as demonstrated further in Sec.VI.

IV. APPROACH ADJUSTMENT

Following the detection of an obstacle, the quadruped has
the opportunity to modify its approach. For instance, the
system may speed up or slow down to get into a preferable
position relative to the obstacle before attempting a clearance
jump. In order to determine an optimal approach, this section
formulates a series of constrained model-predictive control
(MPC) problems over multiple planning horizons. These mul-
tiple planning horizons enable the quadruped to determine the
optimal number of steps to take before reaching the obstacle
as well as its approach velocities at each step.

A. MPC for Approach Adjustment

Suppose that at the current step, the robot is a distance of d0

away from the obstacle and is traveling at an initial velocity

of v0. At each following step i, the state of the robot state is
similarly abstracted by xi ∈ R2

xi = [di vi]
T . (1)

In order to control its approach, the system may select speed
changes ∆vi at each step. It is assumed that this speed change
∆vi occurs over the duration of the step, providing an average
speed of vi + ∆vi

2 . Given a nominal step period T ∗, the state
then evolves as

xi+1 =

[
1 −T ∗

0 1

]
︸ ︷︷ ︸

A

xi +

[
− 1

2T
∗

1

]
︸ ︷︷ ︸

B

∆vi . (2)

Although these dynamics are a drastic simplification of the
full robot dynamics, they capture the main features that are
important to approaching the obstacle.

Consider first an N step approach leading up to the obstacle,
for some fixed N ∈ N+. We are then interested in finding
controls ∆v0:(N−1) that minimally disturb the nominal gait,
while landing the final state xN within a desired goal region.
The goal is defined here by lower and upper bounds:

xN = [dF vF ]
T and (3)

xN =
[
dF vF

]T
. (4)

A desired final state in the middle of the goal region is
prescribed as

xdN =
xN + xN

2
. (5)

An MPC problem is formulated as a quadratic programming
(QP) problem with optimal cost c(N) as:

c(N) = min (xN − xdN )T QF (xN − xdN )

+
1

N

N−1∑
i=0

ri∆v
2
i (6)

s.t. xi+1 = Axi + B∆vi

xN ≤ xN ≤ xN

v ≤ vi ≤ v
|∆vi| ≤ βvi

where v > 0 and v > 0 provide velocity limits on the gait,
and β ∈ (0, 1) limits the relative acceleration during any given
step. To penalize gait changes which happen closer to the
obstacle, the cost scalars ri are selected such that

ri = max(µi−(N−1), µmin) (7)

for some µ and µmin with 0 < µmin < µ < 1. This
discounting strategy encourages larger accelerations to occur
further from the obstacle in order to provide additional time
to recover from transient effects in the full system which are
not captured in this MPC formulation. The quadratic cost on
the final state, with QF = QT

F positive definite, rewards final
states that have margin to remain in the goal when unmodelled
effects in the full system disturb the optimized trajectories.



Parameter β µ µmin QF

Value 0.3 1.1 0.4 diag(2.5, 1)

Variable Bound dF vF vi
Min 0.5 m 1.8 m/s 1.0 m/s
Max 0.9 m 3.2 m/s 4.0 m/s

TABLE I
PARAMETERS FOR THE APPROACH ADJUSTMENT ALGORITHM

Given the bounds on the speed changes and states, it is
possible that there is no feasible approach for a given N . In
this case, we define c(N) = ∞. While most applications of
MPC seek to regulate the long-term state of a system and can
employ an infinite planning horizon, the unknown number of
steps before the obstacle requires us instead to search for the
desired planning horizon.

B. Multiple-Horizon MPC

Given the bounds on the forward velocities and final states,
c(N) <∞ only if

d0 − dF
vF

≤ N ≤ d0 − dF
vF

, (8)

where the lower step number bound is derived from traveling
the shortest distance to the goal region at the maximum
speed, and the upper bound follows similarly. This condition
introduces a finite range for N to be searched over, given the
initial state of the system. The optimal approach length N∗ can
then be found through evaluation of c(N) for each N in this
range. Figure 4 shows the optimal number of steps to be taken
before the obstacle as a function of initial state. Algorithm
parameters for this example are given in Table I. As distances
d0 become larger, the range of potential planning horizons (8)
can introduce many QPs that need to be solved. However, as
these QPs are trying to minimize accelerations while directing
the state to middle of the goal region, a reasonable estimate
for N∗ is

N∗ ≈ round
(
d0 − ddF
v0T ∗

)
. (9)

The optimum N∗ is found within ±1 step of this approxima-
tion for all cases shown in Fig. 4, allowing us to minimize the
number of QPs to be solved.

Recent advances in linear MPC using interior-point [24] and
active-set [6] solvers have greatly decreased the computational
overhead of online MPC approaches. Here, to solve the QP
for c(N), the open-source package qpOASES [7] was used.
This package provides a parametric active-set solver that is
particularly well suited for MPC. With this solver, QPs can
be solved in 250 µs for the horizons considered in our ex-
periments. Although MPC has been used extensively for ZMP
optimization [4] and footstep planning in humanoids [11], its
use for quadrupeds gait planning has yet been unexplored.

V. REAL-TIME JUMPING TRAJECTORY GENERATION

This section presents methods for online generation of the
robot’s jumping trajectory to clear an obstacle during running.
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Fig. 4. Optimal number of steps to the goal based on initial state. Color
indicates the optimal cost c(N∗). Unenclosed regions represent infeasible
regions for the start state, and show the need for early obstacle detection.

A simplified model with polynomial dynamics is introduced.
When forced by control inputs which are polynomial with
respect to time, this enables the state of the system at any
time to be rapidly obtained without numerical integration.
This simplification is used to accelerate online trajectory
optimization to generate force profiles that are tailored to the
sensed obstacle and robot state. In the hardware, these force
profiles are ultimately generated using joint torques of the
robot through a Jacobian Transpose mapping described in [17].

A. Simplified Model and Temporal Gait Pattern of Bounding

In a quadrupedal bounding gait, the front and hind leg pairs
act in parallel. As a result, the quadruped can be modeled
as a two-legged system in the sagittal plane, as shown in
Figure 5. The model assumes massless legs, and thus the
forces/moments exerted by each leg onto the body are stat-
ically equivalent to the horizontal and vertical ground reaction
forces F x and F z on the foot1. In practice, these ground
reaction forces can be generated by joint torques in the legs.
In this simplified model, the robot’s generalized coordinates
are q := (x, z, θ), where x is the horizontal position of the
center of mass (CoM) with respect to the foot, z is the vertical
position of the CoM with respect to the ground, and θ is the
body pitch angle as displayed in Figure 5.

Assuming a fixed gait timing, this simplified model is time-
switched hybrid, and follows a sequential phase order of Front
Stance phase, Aerial I phase, Hind Stance phase, and Jumping
Aerial phase (see Figure 5). For later use, we denote t1, t2,
t3, and t4 as the time corresponding to the end of the Front
Stance phase, the start and end of the Hind Stance phase, and
the end of the Jumping Aerial phase, respectively.

During the Front and Hind Stance phase, in which the front
pair of the legs and hind pair of the legs touch the ground, the
equations of motion of the robot are given by,

mẍ = Fx (10)
mz̈ = Fz −mg
Iθ̈ = −xFz + zFx

1Note: This assumption is reasonable as the legs of the cheetah are very
light, composing approximately only 10% of the total mass of the system.
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Fig. 5. A simplified time-switched hybrid quadrupedal bounding model. Assuming massless legs, the quadruped is abstracted by a planar rigid body evolving
under the influence of ground reaction forces and gravity. A fixed horizontal foot placement relative to the hip at the beginning of stance is used to determine
the point of application for the ground reaction force.

where, Fx and Fz are the ground reaction forces applied on
the foot of the robot, m and I are the combined mass and
inertia of the robot, and g is the gravitational constant. We
can further simplify (10) to provide

ẍ = ux (11)
z̈ = uz − g (12)

θ̈ = −αxuz + αzux (13)

where, ux = Fx

m , uz = Fz

m , and α = m
I .

In this paper, the scaled forces ux and uz are chosen as
nth-order Bézier polynomials during the interval t ∈ [t0, tf ]
where t0 and tf represent the beginning and end of the force
profile. The Bézier polynomials are given by,

ux(s) =

n∑
i=0

βi,xbi,n(s) (14)

uz(s) =

n∑
i=0

βi,zbi,n(s),

where βi,x and βi,z are the Bézier coefficients as optimized in
Section V-C, s := t−t0

tf−t0 ∈ [0, 1] is the normalized time, and
bi,n(s) is the i-th Bernstein Polynomial of degree n

bi,n(s) =

(
n

i

)
si (1− s)n−i . (15)

During the two aerial phases, Mid Aerial phase and Jumping
Aerial phase, the ground reaction forces ux and uz become
zero, and the robot follows ballistic dynamics of ẍ = θ̈ = 0
and z̈ = −g.

During the aerial phase, the virtual foot position with respect
to the shoulder follows the trajectory shown in Figure 6.
After these trajectories are completed, the position of the foot
with respect to the shoulder is held to wait for the impact
with the ground. These foot swing trajectories are designed
considering the workspace of the leg and energy consumption
through a separate one-time offline optimization procedure.
Their detailed design procedure is omitted here for the brevity
of the paper.

The durations of phases Tstance and Tair I are fixed at
values required during normal bounding, as given in [16],
while the duration of the last phase Tair II is elongated as
the robot jumps up to clear the obstacle. The value of Tair II
is varied according to the height of the robot jumping and is
selected by optimization process introduced in Section V-C.
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Fig. 6. Swing foot trajectory for the front leg with respect to the shoulder
during its aerial period of motion. The trajectory is designed to complete
within 90% of the expected flight time to recover from unexpected early
impact. The back leg trajectory follows a similar pattern.

B. Solution to the Equations of Motion

Given initial conditions
[
x0, z0, θ0, ẋ0, ż0, θ̇0

]
and ground

reaction forces (14) in the interval t ∈ [t0, tf ], solutions
to (11)-(13) can be obtained analytically without numerical
integration. As shown in (11) and (12), x(s) and z(s) can be
obtained by integrating ux(s) and uz(s) twice. Since ux(s)
and uz(s) are nth-order Bézier polynomials, x(s) and z(s)
are (n+ 2)th-order Bézier polynomials

x(s) =
n+2∑
i=0

ci,xbi,n+2(s) (16)

z(s) =

n+2∑
i=0

ci,zbi,n+2(s) (17)

for some set of ci,x and ci,z .
By taking the second derivative of (16) using common

formula [5] for Bernstein polynomials, the dynamics (11) can
be used to form n+1 linear equations which relate the Bezier
coefficients for ux to those for x. An additional two linear
equations relating the Bezier coefficients to initial conditions
x0, ẋ0 can be formed to provide

Cx cx = bx(βx, x0, ẋ0) (18)

where, cx ∈ Rn+3 is the vector consisting of the coefficients
ci,x, and Cx is a constant matrix. Thus, given a selection of a
horizontal ground force profile, along with initial conditions,
(18) can be quickly solved to obtain the Bezier coefficients



cx for x. A similar approach can be used to find the Bezier
coefficients cz for z

Cz cz = bz(βz, z0, ż0) . (19)

Similarly, since x and z are (n + 2)th-order Bézier poly-
nomials and ux(s) and uz(s) are nth-order Bézier polyno-
mials, we can easily deduce that the right hand side of (13),
−αxuz +αzux, is an (2n+ 2)th-order polynomial. Thus θ is
a (2n+ 4)th-order Bézier polynomial

θ(s) =

2n+4∑
i=0

ci,θbi,2n+4(s) (20)

for some set of ci,θ. Common formula [5] for the products
of Bernstein polynomials can be applied to express the right
hand side of (13) using Bézier coefficients. Equating these
coefficients to those with the second derivative of (20), and
using the initial conditions θ0 and θ̇0 provides

Cθ cθ = bθ(βx,βy, cx, cz, θ0, θ̇0), (21)

where, cθ ∈ R2n+5 is the vector consisting of elements
with ci,θ. Hence, Bézier coefficients of x(s), z(s), θ(s) are
easily obtained by solving (18), (19), and (21). Following
this procedure, the analytical formula for x, z, and θ from
(16), (17), and (20) can be used to quickly query the state
of the system at any time t ∈ [t0, tf ]. To handle the multiple
phases of motion, this procedure can be cascaded, enforcing
continuous differentiability across transition boundaries.

C. Jumping Trajectory Generation via Constrained Nonlinear
Programming

This section explains the new trajectory generation approach
for jumping over obstacles. A feasible jumping trajectory to
clear the obstacle is obtained by solving a nonlinear program-
ming problem. Optimization variables for this problem include
Bézier coefficients for the ground reaction forces ux(s) and
uz(s) for the front and hind pairs of legs as well as and the
duration of the jumping aerial phase Tair II .

The ground reaction force inputs ux(s) and uz(s) are
designed by adjoining two 3th-order Bézier polynomials,
connected at the mid-stance. Force profiles are constrained to
follow a common shape in both the x and z directions and in
the front and hind legs. In the first half of each stance these
profiles are designed with Bézier polynomial coefficients

β j
i := αji [0 0.8 1 1]

where i ∈ {x, z} and j ∈ {f, h} with superscripts f, h
representing front and hind legs, respectively. The four scaling
factors αji provide flexibility to the optimization to shape the
jump trajectory. Profiles in the second half of each stance
are given symmetrically by coefficients β j

i := αji [1 1 0.8 0] .
This choice of Bézier polynomial’s coefficients provides a
single peak trajectory where the peak is located in the middle
of the stance phase while the trajectory starts and ends with 0.
Figure 7 shows example force profiles when αfx = −180 N,
αhx = −178 N, αfz = 756 N, and αhz = 1000 N.
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Fig. 7. Example force profile for the front (f) and hind (h) legs optimized
to clear an obstacle 33 cm high at a distance of 1 m.

TABLE II
CONSTRAINTS IMPOSED FOR OBSTACLE CLEARANCE FEASIBILITY.

|θ(t)| < Θ, for 0 ≤ t ≤ t4
zffoot(t) > hobs(xffoot(t)), for t1 ≤ t ≤ t4
zhfoot(t) > hobs(xhfoot(t)), for t3 ≤ t ≤ t4
xffoot(t4) > d0 + 0.5w0

xhfoot(t4) > d0 + 0.5w0

z < zf (t1) < z

zh < zh(t2) < zh

z < zh(t3) < z

zf (t4) = z̃f

θ < θ(t4) < θ

|αj
x| < Fx for j ∈ {f, h}

0 < αj
z < F z for j ∈ {f, h}

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

To obtain αfx, αhx, αfz , αhz , and the arial phase time Tair II ,
a constrained nonlinear feasibility problem was posed. Since
success of the clearance was the dominant goal in this work,
an objection function of 0 was employed. This selection also
served to accelerate the optimization in comparison to includ-
ing a more complex objective function. Constraints over the
variables were selected as described in Table II. In this table
h0, d0 are the height and distance to the obstacle, respectively.
The parameter w0 controls the fore-aft obstacle clearance and
was chosen as 15 cm in experiments. The desired clearance
height around the obstacle is given as a function of forward
position hobs(x) by multiplying two sigmoid functions:

hobs(x) =h0
1

1 + e−σ(x−d1)

1

1 + eσ(x−d2)
(34)

with σ = 200 and d1, d2 = d0 ± .5w0 respectively.
The constraints in Table II are motivated as follows. The

constraint (22) is posed to avoid excessive torso oscillation
during the jumping, with the constant Θ > 0 chosen to be 45◦.
The constraints (23) and (24) are posed to avoid a foot tripping
over the obstacle, (25) and (26) ensure that the robot’s foot has
achieved the desired lateral clearance at the completion of the
jump. The constraints (27) and (29) are used to guarantee that



Fig. 8. Motion snapshots from a successful obstacle clearance jump. Frames are separated by 150 ms.

the robot’s shoulder position from the ground at the end of the
stance phase is within the range of the leg’s workspace, and
the constants z and z are chosen from the leg’s linkage design.
The constraint (28) ensures that the Hind Stance phase starts
with the hind shoulder height within the range of the hind leg’s
workspace, and zh and zh are chosen from the leg’s linkage
design. The constraints (31) and (30) are posed to provide a
configuration for safe landing. θ and θ are lower and upper
bounds of pitch angle at the landing, z̃f is the vertical foot
position with respect to the shoulder at the end of the jumping.

The above nonlinear feasibility problem was solved using
the nonlinear solver SNOPT [10]. Continuous constraints (22)-
(24) were discretized in time with 50-100 time steps per gait
phase. Computation of the parameters for a feasible jumping
trajectory takes less than 100 msec on average using the on-
board computer with Intel Core i5-4520U. Figure 7 shows
an example force profile with parameters obtained solving
this nonlinear programming problem for an obstacle with the
distance of 1 m and height of 0.33 m.

In implementation for the experimental hardware, trajectory
optimization was carried out on any step when the approach
modification provided N∗ ≤ 2. The optimization was carried
out when N∗ = 2 as a precaution in case the following
step placed the quadruped too close to the obstacle and
an emergency jump was required. In all cases, a predicted
distance to the obstacle at the next step d0 − v0T

∗ − 1
2∆v∗0

was passed to the trajectory optimization using the results of
the approach modification.

D. Landing Control

The purpose of the landing control is to provide a safe and
robust transition back to the normal running gait by handling
disturbances specific to the high impacts on the front legs
at landing that are experienced following the running jump.
We modify the horizontal and vertical force profiles of the
Front Stance phase to provide additional impulse to recover
the robot’s velocity states to their nominal values. Because
we use Bézier polynomials in (14) for force profiles ux(s)

and uz(s), the impulse
∫ Tstance

0
ux(s)dt and

∫ Tstance

0
uz(s)dt

can be calculated by simply averaging Bézier coefficients and
multiplying the length of duration. Therefore, by uniformly
scaling Bézier coefficients accordingly, we can modify the
impulse created by ux(s) and uz(s).

The vertical landing speed of the CoM ż(t4) at the mo-
ment of the landing is obtained from the jumping trajectory
optimization explained in Section V-C. The required vertical
impulse to steer ż(t4) to the nominal value of ż0 can be calcu-
lated using linear impulse and momentum change relationship

which is given by,∫ Tstance

0

uzdt = ż0 + ż(t4) + gTstance (35)

On the other hand, the horizontal force is modulated to
modify rotational impulse. Unlike the normal running case
where the swing foot retracts fast enough to provide ground
speed matching, the swing foot speed with respect to the
ground will be large after the jumping over obstacles because
the foot position with respect to the shoulder position is held
in position after the completion of the desired swing foot
trajectories. Due to the large relative swing foot speed at
impact, excessive rotational momentum about the CoM will
be generated upon impact with the ground. To handle this
disturbance, the horizontal force profile is adjusted to cancel
out additional rotational momentum delivered by the impact.

After the calculation of required vertical impulse and ro-
tational impulse, αfx and αfz were modified for force profiles
ux(s) and uz(s) to provide required impulses.

VI. RESULTS

With our framework the quadruped is able to autonomously
jump over obstacles up to 40 cm in height. This maximum
height represents 80% of the quadruped’s nominal leg length.

A. Setup
The algorithms described in the previous sections were

applied for online validation of the obstacle clearance frame-
work. All high-level control for obstacle detection, approach
adjustment, and trajectory optimization was performed using
a single core of a 2.6 GHz Intel Core i5-54250U processor
on a Nuc Mini-PC. Lower-level bounding control was carried
out on a 2.16 GHz Intel Core2Duo SpeedGoat board running
compiled Simulink. The base control frequency for the lower-
level bounding controller was 3 KHz with further details
provided in [17].

The quadruped was brought to a steady state 2.4 m/s
bounding gait before the running jump algorithms were tested.
During normal running, a wireless link to a host computer
was used to provide a desired running speed as well as a
heading set point from an operator to address lateral drift
on the treadmill. All other control actions were completed
on board. To clear the obstacle, no information regarding
the placement timing or obstacle height was provided to the
system in advance. Figure 8 shows snapshots of the obstacle
clearance jump in response to a 27.5 cm high obstacle. Video
results demonstrate the capabilities of this planning framework
to clear 34 cm and 40 cm obstacles without any retuning of
controller parameters.
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Fig. 9. Algorithm outputs over time for an obstacle clearance jump at 2.4
m/s over a 27.5 cm obstacle. Section VI-B provides additional details.

B. Algorithm Outputs

Figure 9 displays many of the algorithm outputs over time as
the quadruped detected, approached, and cleared the obstacle.
At data point (a) the obstacle is moved onto the treadmill.
During this process, the gap between the obstacle and the
ground produces errant height readings. A small amount of
logic was applied to disregard static obstacles at a far distance
from the quadruped. At (b) the obstacle is first correctly
detected. Between this time, and the final execution of the
jump, the detection algorithm provides an average height
of 28.1 cm with a standard deviation of 1.6 cm. Use of
this detected obstacle occurs at the following step, when the
approach adjustment algorithm is run. The algorithm finished
at (c) and commands a velocity decrease to position the
cheetah before the obstacle. Note that the velocity change
commanded in the following step at (e) is smaller due to the
discounting strategy applied by (7).

As shown in the fourth and fifth subplots, trajectory opti-
mization was applied during both modified running steps. In all
cases, a safety margin of 3 cm was added to the sensed height
to provide additional clearance. The jump optimization process
began immediately after (c) and completed at (d) in under half
a gait cycle. This first optimization was precautionary, in case
the approach adjustment algorithm determined that a clearance
jump was required at the following step. Note however, that
both horizontal and vertical scaling factors are larger for this
precautionary jump (in comparison to the following step) since
the emergency jump would need to be performed from a
farther distance. Here, the system evolves as predicted by the
the MPC approach controller, and an additional step is possible
before the obstacle. The clearance trajectory computed at (f)
is applied 100 ms later, at the beginning of the next step.

C. Discussion

During the experiment, six jumping trials were carried out.
The robot could jump over the obstacles successfully four

times out of six trials, but two failures were observed. The
first failure was caused when there was not enough distance
between the obstacle and the robot when the obstacle was
introduced. The treadmill is only 4 meters long, so the robot
did not have enough steps to adjust the approach and failed to
initiate the jump with appropriate distance from the obstacle.
The other failure was caused when the obstacle fell over, as our
algorithm is not yet capable of adapting to dynamic obstacles.

During one of the four successful trials, we observed that
the robot’s front left foot slightly collided with the obstacle.
In this experiment, the obstacle was tilted so not perfectly
perpendicular to the running direction. Because the sensor only
scans in the sagittal plane for the setup, the robot could not
detect that the part of the obstacle in front of the leg was closer
than the body. This would not have happened if the obstacle
was perpendicular to the running direction.

VII. CONCLUSION

This paper has developed new algorithms to perform a
dynamic obstacle clearance movement in response to a sensed
obstruction up to 80% of the quadruped’s leg length. The
quadruped reasons about its dynamics over multiple time
frames to select appropriate actions to prepare for and execute
the running jump. A model-predictive approach controller
places the system in an optimal location relative to the obstacle
to perform the running jump. By focusing on the the most
important characteristics of the approach, this strategy is able
to be computed in 250 µs, and also determines the optimal
number of step to be taken before the obstacle. In the final
steps of the approach, a more detailed trajectory optimization
problem is solved which determines ground force profiles to
propel the system up and over the obstacle while maintaining
clearance for its swing legs. These algorithms working in
tandem have shown viability in an experimental quadruped,
providing dynamic running jumps online during a 2.4 m/s gait.

Future research will build upon this work to integrate reac-
tive modification of leg trajectories in response to properties
of the sensed obstacle. Given the additional computation time
available with the current algorithms, this addition appears
computationally feasible. Additional work will also study
the performance of this framework with terrain obstacles in
outdoor environments. Earlier detection will provide addi-
tional availability to modify the approach, potentially resulting
in more favorable final states to begin the running jump.
However, this early detection also provides the possibility to
consider obstacle avoidance maneuvers such as a sharp turn.
With these capabilities, solid foundational dynamic movement
controllers will provide a basis to pursue dynamic motion
planning for legged machines in yet further unstructured
environments.
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