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Abstract—In recent years, the topic of multi-robot systems has
become very popular. These systems have been demonstrated
in various applications, including exploration, construction, and
warehouse operations. In order for the whole system to function
properly, sensor calibrations such as determining the camera
frame relative to the IMU frame are important. Compared to
the traditional hand-eye & robot-world calibration, a relatively
new problem called the AXB = Y CZ calibration problem
arises in the multi-robot scenario, where A,B,C are rigid
body transformations measured from sensors and X,Y, Z are
unknown transformations to be calibrated. Several solvers have
been proposed previously in different application areas that can
solve for X,Y and Z simultaneously. However, all of the solvers
assume a priori knowledge of the exact correspondence among
the data streams {Ai}, {Bi} and {Ci}. While that assumption
may be justified in some scenarios, in the application domain
of multi-robot systems, which may use ad hoc and asynchronous
communication protocols, knowledge of this correspondence gen-
erally cannot be assumed. Moreover, the existing methods in the
literature require good initial estimates that are not always easy
or possible to obtain. In this paper, we propose two probabilistic
approaches that can solve the AXB = Y CZ problem without a
priori knowledge of the correspondence of the data. In addition,
no initial estimates are required for recovering X , Y and Z. These
methods are particularly well suited for multi-robot systems, and
also apply to other areas of robotics in which AXB = Y CZ
arises.

I. INTRODUCTION

Many multirobot calibration problems can be formulated
using the equation AXB = Y CZ, where A, B and C are
known homogeneous transformations from sensor readings,
and X , Y and Z are unknown relationships between two target
frames. For the dual arm system [20] shown in Fig. (1), the
problem becomes the hand-eye (X), robot-robot (Y ) and tool-
flange (Z) calibration problem where robot 1 holds the camera
and robot 2 holds the marker. For a team of mobile robots [8]
illustrated in Fig. (2), a triple hand-eye ( or camera-marker )
calibration problem exists where each robot agent is “looking
at” the marker on the next agent. In Fig. (3), the problem of
the serial-parallel hybrid robot system [23] is cast as the tool-
gripper (X), flange-base (Y ) and camera-base (Z) calibrations.
The same mathematical modeling also exists in co-robotic
ultrasound (US) tomography where two hand-eye and one
robot-robot calibrations are needed [1]. However, relatively
little work has been done on AXB = Y CZ calibration.
To the best of our knowledge, only Wang [20, 22] and Yan

Fig. 1: The Hand-Eye, Robot-Robot, Tool-Flange Calibration of a
Dual Arm System

Fig. 2: Triple Hand-Eye Calibration of a Multi-Robot System

[23] proposed several algorithms for solving X , Y and Z
simultaneously.

A. RELATED WORK

The AXB = Y CZ problem first originated as an extension
of the robot hand-eye problem. The hand-eye calibration
problem can be formulated as AX = XB, where A and
B are homogeneous transformations calculated from sensor



readings, and X is the unknown transformation from the
mounted sensor (US probe, camera, etc.) to the robot end-
effector. Tsai [19] and Shiu [18] were among the first to solve
the AX = XB problem. Many other solvers have also been
proposed in the literature [2, 3, 4, 7, 10, 13, 16, 24]. The
hand-eye and robot-world calibration problem is an extension
of the hand-eye problem, and is formulated as AX = Y B
where X denotes the transformation between sensor and the
end-effector and Y describes the transformation between the
robot base frame and the world frame. In this formulation, A
and B are the homogeneous transformations measured directly
from sensors. Quite a few AX = Y B solvers have been
proposed in the literature [9, 11, 12, 14, 15, 17, 25]. Most
of the existing AX = XB and AX = Y B solvers deal with
the case where there is an exact correspondence between the
data pairs Ai and Bi. However, this is generally not true in
real applications due to asynchronous sensors or missing data.
[2] and [15] proposed probabilistic approaches for solving the
AX = XB and AX = Y B problems respectively, and both
of them show the superiority of the probabilistic approaches
over the traditional solvers when handling data without a priori
knowledge of correspondence.

B. CONTRIBUTIONS

In this paper, we propose two “probabilistic” frameworks
for solving the AXB = Y CZ robot system calibration
problem. Due to the different physical properties of the robotic
system, two types of probabilistic AXB = Y CZ solvers
exist which greatly reduce the need for a priori knowledge
of the correspondence between sensor data. We use the word
“probabilistic” because the measured datasets {Ai}, {Bi}, and
{Ci} are each replaced with histograms on the space of rigid-
body poses, and normalized to be probability densities. That
is, while there are no random variables in this problem, the
tools of probability and measure theory can still be employed
with great benefit.

The rest of the paper is organized as follows. In section
II, we introduce some of the fundamental mathematical back-
ground. Section III describes in detail the formulation of the
two probabilistic AXB = Y CZ solvers. In section IV, we
perform numerical simulations to compare the probabilistic
and traditional AXB = Y CZ solvers, and show the effec-
tiveness and robustness of the former. Comparison between
the two probabilistic approaches are also performed to show
their respective desired application scenario. In section V, we
draw conclusions and point out future directions.

II. MATHEMATICAL BACKGROUND

Before going into the probabilistic solvers for the AXB =
Y CZ problem, we provide a brief introduction to the concepts
of mean, covariance and convolution on the special Euclidean
group SE(3).

The special Euclidean group SE(3) is the space consisting
of rigid body transformations of the following form:

H(R, t) =

(
R t
0T 1

)
∈ SE(3), R ∈ SO(3) (1)

Fig. 3: Flange-Base, Camera-Base and Tool-Gripper Calibration of a
Serial-Parallel Manipulator

where t ∈ R3 is a translation vector and SO(3) denotes the
special orthogonal group consisting of 3×3 rotation matrices.
T denotes the transpose of a vector or matrix and H is the
symbol for a group element in SE(3). The group operation is
matrix multiplication.

There is a unique and correct way to define integration
on SE(3) called the “Haar measure”, and is denoted as
dH . In particular, if R is expressed in ZXZ Euler angles
(α, β, γ), then to within an arbitrary scale factor dH =
sinβ dα dβ dγ dt1 dt2 dt3. Within this context, the convolution
of two well-behaved functions can be defined as [5, 6]:

(f1 ∗ f2)(H) =

∫
SE(3)

f1(K)f2(K−1H) dK (2)

where K,H ∈ SE(3). The integral over SE(3) can be
expressed in various coordinates and here we choose the
exponential coordinates, where the six-dimensional integral
over SE(3) and its measure can be found in [21].

As it will be used in later sections, we define a Dirac delta
function on SE(3), δ(H), by the properties

(f ∗ δ)(H) =

∫
SE(3)

f(K)δ(K−1H) dK = f(H), (3)

and ∫
SE(3)

δ(H)dH = 1. (4)

Informally, we can think of δ(H) as an infinite spike of the
form

δ(H) =

{
+∞ if H = I4
0 if H 6= I4

(5)

where δ(H) is only nonzero at the identity and zero elsewhere,
H ∈ SE(3) and I4 denotes a 4 by 4 identity matrix. Given
A ∈ SE(3), the corresponding shifted version of the Dirac
delta function can be defined as δA(H) = δ(A−1H).

In the probabilistic approaches to be introduced, all SE(3)
elements will be represented by their mean M and covariance
Σ. Given a probability density function (PDF) as f(H), its



mean and covariance are defined to satisfy the following
equations [5, 21]:∫

SE(3)

log(M−1H)f(H) dH = O4 (6a)

Σ =

∫
SE(3)

log∨(M−1H)[log∨(M−1H)]T f(H) dH (6b)

where O4 denotes the 4 × 4 zero matrix and H = exp ĥ,
ĥ ∈ se(3), h = log∨(H) ∈ R6, and

log(H) =


0 −h3 h2 h4

h3 0 −h1 h5

−h2 h1 0 h6

0 0 0 0

 . (7)

Given a PDF describing {Ai} as fA(H), where i =
1, . . . , n, the corresponding discrete versions of the mean and
covariance are:

n∑
i=1

log(M−1
A Ai) = O4 (8a)

ΣA =

n∑
i=1

log∨(M−1
A Ai)[log∨(M−1

A Ai)]
T . (8b)

Numerically, given a set of Ai, MA can be solved in
an iterative manner as described in [21]. In the context of
AXB = Y CZ calibration, MB and MC can be computed in
a similar fashion, and ΣA, ΣB and ΣC are straightforward to
compute given MA, MB and MC . Given two PDFs f1 and f2

on SE(3), if both of them are “highly-focused” in the sense
that ‖Σ1‖ � 1 and ‖Σ2‖ � 1, then the mean and covariance
of their convolution (f1 ∗ f2)(g) can be calculated as [21]:

M1∗2 = M1M2 (9a)
Σ1∗2 = Ad(M−1

2 )Σ1Ad
T (M−1

2 ) + Σ2 (9b)

where

Ad(H) =

(
R O3

t̂R R

)
. (10)

The “hat” operation here converts a three dimensional vector
into a skew-symmetric matrix:

t̂ =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 . (11)

The following is also true and will be used later:

Ad(H−1) = Ad−1(H) =

(
RT O

−R̂T tRT RT

)
. (12)

III. PROBLEM FORMULATION

In this section, we derive the mathematical frameworks
of the two probabilistic approaches for the AXB = Y CZ
problem. They share a common theoretical framework but are
designed for different types of robotic systems.

A. Fundamental Framework

Given a large set of triples (Ai, Bi, Ci) ∈ SE(3)×SE(3)×
SE(3) where i = 1, · · · , n, the following equation can be
obtained:

AiXBi = Y CiZ. (13)

Using the shifting property of Dirac delta function, we have

(δAi ∗ δX ∗ δBi)(H) = δ(B−1
i X−1A−1

i H) (14a)
(δY ∗ δCi ∗ δZ)(H) = δ(Z−1C−1

i Y −1H). (14b)

Using Eq. (5) and Eq. (13), the above two equations can be
combined into a single equation as:

(δAi
∗ δX ∗ δBi

)(H) = (δY ∗ δCi
∗ δZ)(H). (15)

Next, define the PDF of {Gi} as:

fG(H) =
1

n

n∑
i=1

δGi(H) (16)

where G ∈ {A,B,C}. Then use the bi-linearity of convolu-
tion, add n instances of Eq. (15), substitute Eq. (16) into the
summation, and if we further constrain fA, fB and fC to be
highly focused, we get:

(fA ∗ δX ∗ fB)(H) ≈ (δY ∗ fC ∗ δZ)(H). (17)

Unlike in the AX = XB and AX = Y B problems in which
similar steps were used in [2, 15] to produce exact results, in
the AXB = Y CZ problem the step from Eq. (15) to Eq. (17)
is an approximation. This is because the left-hand side of
Eq. (15) couples Ai and Bi, whereas in Eq. (17) the sets A and
B are treated as independent. This approximation is justified
by the smallness of the products of the covariances of A and
B, which follows from the assumption that the distributions
are highly focused. Then by employing Eq. (9a) twice, we get
the mean equation of AXB = Y CZ as

MAMXMB ≈MYMCMZ . (18)

Because X , Y and Z are all single elements of SE(3), MX =
X , MY = Y , MZ = Z, and ΣX = O, ΣY = O, ΣZ = O.
Eq. (18) then becomes

MAXMB ≈ YMCZ (19)

The covariance equation is obtained by first computing
ΣA∗X and then ΣA∗X∗B as:

ΣA∗X∗B = Ad(B−1)Ad(X−1)ΣAAd
T (X−1)AdT (B−1)+ΣB

(20)
Similarly, ΣY ∗C∗Z can be obtained as:

ΣY ∗C∗Z = Ad(Z−1)ΣCAd
T (Z−1) (21)



Therefore, by equating Eq. (20) and Eq. (21), the covariance
equation for AXB = Y CZ becomes

Ad(B−1)Ad(X−1)ΣAAd
T (X−1)AdT (B−1) + ΣB ≈

Ad(Z−1)ΣCAd
T (Z−1)

(22)
To simplify notation, we will treat subsequent approxima-

tions as equalities. In order to decompose Eq. (22) into sub-
equations, define the covariance matrix as

ΣH =

(
Σ1

H Σ2
H

Σ3
H Σ4

H

)
∈ R6×6 (23)

where H = A,B,C and Σi
H ∈ R3×3. To simplify the

notation, we define U = t̂. Substitute Eq. (23) into Eq. (22)
and one gets the upper left block as

RT
BR

T
XΣ1

ARXRB + Σ1
B = RT

ZΣ1
CRZ , (24)

and the lower right block as

RT
BR

T
XΣ1

AW
T
XB +RT

BR
T
XΣ2

ARXRB + Σ2
B =

RT
ZΣ1

CRZU
T
Z +RT

ZΣ2
CRZ

(25)

where WXB := UBR
T
BR

T
X + RT

BUXR
T
X . For convenience,

we call Eq. (24) the Sig-Rot equation and Eq. (25) the Sig-
Trans equation. Sig-Rot equation contains only the rotational
information from the unknown matrices while Sig-Trans equa-
tion contains both the rotational and translational information.
These two equations are not sufficient to solve the problem
since Eq. (24) contains only RX and RZ , and Eq. (25) contains
only tX and tZ in addition to the above two rotations, whereas
Y is “lost” in the covariance equation. However, it turns out
that by rearranging the order of X , Y and Z, similar equations
to Eq. (24) and Eq. (25) can be obtained to solve for the
unknown transformations.

There are a total of six variations of AXB = Y CZ formu-
lations. If we write AXB = Y CZ as AXBZ−1C−1Y −1 = I
and premultiply by A−1 and postmultiply by A on both sides
of the equation, we have XBZ−1C−1Y −1A = I which
“moves” A from the left to the right. The same operation can
be done in turn for X , B, Z−1, C−1 and Y −1 and these give
a total of six variations, which can be converted back into the
AXB = Y CZ form as shown in the “Representation” column
of Table I .

For most AX = XB and AX = Y B calibration solvers, a
common approach is to solve for rotations first and then the
solution of translations becomes easier. The AXB = Y CZ
probabilistic methods do this similarly, and thus we only list
the Sig-Rot equations and leave out the Sig-Trans equations
for the rest of the variations in Table I. However, given the
Sig-Rot equations, it is non-trivial to solve for RX , RY or
RZ due to the quadratic terms in Eq. 24. One can employ an
exhaustive optimization approach on three Sig-Rot equations
(e.g., No. 1,3,6 in Table I) to solve for RX , RY and RZ

simultaneously, but that requires one or several good initial
guesses to reach the global minimum. We focus on designing
methods that do not require initial guesses at all and it turns

out that this is achieved by employing the physical properties
of the robotic systems as described in the next paragraph.

Note that for the three types of robotic systems described
in Fig. 1, Fig. 2 and Fig. 3, different types of constraints can
be applied onto the datasets {Ai}, {Bi} and {Ci}. For the
multi-mobile robotic system, any two robot agents can remain
static with the third agent moving freely. Or equivalently, any
one of A, B and C can be fixed without fixing the other two.
For the dual-arm and serial-parallel robotic systems, only A or
C can be fixed without fixing the other two. This is because
B describes the transformation between the marker frame and
the camera frame, while A and C are solely determined using
the forward kinematics of the robots. Hence it is very difficult
to keep B constant while varying A and C. Hence in the next
part, we present the frameworks for solving the calibration
problem for each of these two types of systems.

B. Two Frameworks for AXB = YCZ Calibration

Before presenting the two frameworks, we present Theorem
1 to simplify the computation of the mean and covariance of
H−1.

Theorem 1 If the mean and covariance are M and Σ for a
PDF f(H), then the mean and covariance for f(H−1) are
M−1 and Ad(M)ΣAdT (M) respectively.

Please refer to the appendix for the proof. Theorem 1 provides
a simple way to calculate the mean and covariance of f(H−1),
which is very useful due to the frequent calculations of PDFs
on the inverses of {A,B,C}. Another equation extracted from
Eq. (59) is

ΣK−1 = RKΣKR
T
K . (26)

which is useful when converting the Sig-Rot equations into
the simplified versions shown in the last column of Table I.

1) Framework 1: For the dual-arm and serial-parallel sys-
tems, we show that X , Y and Z can be recovered without
a priori knowledge of the correspondence between the data.
This is achieved by fixing A and C to give datasets I and II re-
spectively. When A is fixed, or equivalently A = AI , datasets
{BIi} and {CIj} can be measured where i, j = 1, · · · , n. In
addition, with the zero covariance constraints, ΣAI

= O and
ΣA−1

I
= RAI

ΣAR
T
AI

= O, we can simplify Eq. (24) to the
form

Σ1
BI

= RT
ZΣ1

CI
RZ . (27)

However, note that the zero constraint on ΣAI
applies

to neither Rep.3 nor Rep.6, where Rep.3 and Rep.6 de-
note the No.3 and No.6 Representation equations in Table
I respectively. When A is fixed to AI , the right hand side
of Rep.6, namely Y −1AIX , becomes a single “point” on
SE(3), whereas both CIi and B−1

Ij are PDFs on SE(3). The
corresponding convolution equation of Rep.6 becomes

(fCI
∗ δZ ∗ fB−1

I
)(H) ≈ (δY −1 ∗ δAI

∗ δX)(H). (28)

which does not hold because the convolution of PDFs is a
general PDF instead of a Dirac delta function. Therefore, the



No. Representation Sig-Rot Fixing Simplified Sig-Rot

1 AXB = Y CZ RT
BRT

XΣ1
ARXRB + Σ1

B = RT
ZΣ1

CRZ A Σ1
B = RT

ZΣ1
CRZ

2 A−1Y C = XBZ−1 RT
CRT

Y Σ1
A−1RY RC + Σ1

C = RT
Z−1Σ1

BRZ−1

3 BZ−1C−1 = X−1A−1Y RT
C−1R

T
Z−1Σ1

BRZ−1RC−1 + Σ1
C−1 = RT

Y Σ1
A−1RY B RCΣ1

CRT
C = RT

Y RAΣ1
ART

ARY
4 B−1X−1A−1 = Z−1C−1Y −1 RT

A−1R
T
X−1Σ1

B−1RX−1RA−1 + Σ1
A−1 = RT

Y −1Σ1
C−1RY −1

5 C−1Y −1A = ZB−1X−1 RT
ART

Y −1Σ1
C−1RY −1RA + Σ1

A = RT
X−1Σ1

B−1RX−1 C RBΣ1
BRT

B = RT
XΣ1

ARX
6 CZB−1 = Y −1AX RT

B−1R
T
ZΣ1

CRZRB−1 + Σ1
B−1 = RT

XΣ1
ARX

TABLE I: The simplified Sig-Rot equations after fixing A,B or C

underlying constraint of every convolution equation is that
there should be at least one non-trivial PDF on both sides of
the equation, and we call it the balanced-PDF constraint. The
zero covariance constraint can only be applied to the Sig-Rot
equation whose corresponding convolution equation satisfies
the balanced-PDF constraint.

As shown in [2], Σ1
B and Σ1

C have the same eigenvalues due
to the fact that Eq. (27) is a similarity transformation between
Σ1

B and Σ1
C . Calculate the eigendecomposition of ΣB and ΣC

as Σ1
B = QBΛQT

B and Σ1
C = QCΛQT

C where Λ denotes the
diagonal matrix. Substitute these two equations into Eq. (27),
and we have

Λ = QT
BR

T
ZQC︸ ︷︷ ︸
Q

ΛQT
CRZQB = QΛQT . (29)

According to [2], the special structure of Eq. (29) gives four
solutions for Q. Thus, we also get four candidates of RZ as:

RZ = QCI
QQT

BI
. (30)

For the translation part tZ , Eq. (25) can be simplified as

Σ2
BI

= RT
ZΣ1

CI
RZU

T
Z +RT

ZΣ2
CI
RZ (31)

and tZ = U∨Z can be solved directly.
Similarly, when fixing C ≡ CII , ΣCII

= ΣC−1
II

= O, the
Sig-Rot equation for Rep.6 (denoted as Sig-Rot.6) becomes

Σ1
B−1

II

= RT
XΣ1

AII
RX . (32)

Recall that this leads to an equation with structure similar
to Eq. (29) and so Q has four possibilities, and the four
candidates of RX can be calculated as

RX = QAII
QQT

B−1
II

(33)

There are two possible methods to recover Y . One method
is to apply Σ1

C = O to Sig-Rot.2 to get

RT
CR

T
Y Σ1

A−1RYRC = RT
Z−1Σ1

BRZ−1 , (34)

and hence we obtain a total of sixteen candidates of RY that
are based on the candidates of Q and RZ :

RY = QA−1QQT
BR

T
ZR

T
C . (35)

The other method is to employ the mean equations to recover
Y using the candidates of X and Z as

Y = AIXMBI
Z−1M−1

CI
(36)

and

Y = MAII
XMBII

Z−1C−1
II (37)

Hence the second approach gives a total of 16+16 = 32 candi-
dates of Y . When numerically simulating the two approaches
above, the second approach is better in terms of generating
candidates of Y that are closer to the ground truth, whereas
the first one is more likely to result in candidates far from the
true Y .

The solution for tZ and tX becomes trivial once RZ and RX

are known. Using the second approach to compute Y , we will
have a total of 4×4×32 = 512 combinations of {X,Y, Z}. In
order to filter out the best combination among the 512 choices,
the two datasets can be used to minimize an objective function.
For simplicity, let MLI

= AIXiMBI
, MRI

= YjMCI
Zk,

MLII
= MAII

XiMBII
and MRII

= YjCIIZk.
It turns out that the objective function is critical in getting

an optimal X,Y, Z consistently out of the possible 512 can-
didates. We tried a few functions and found that this function

min|| log∨(RT
MLI

RMRI
)||2 + || log∨(RT

MLII
RMRII

)||2
w · ||tMLI

− tMRI
||2 + w · ||tMLII

− tMRII
||2

(38)

where i = 1, . . . , 4, j = 1, . . . , 4, k = 1, . . . , 32 has the
highest success rate of picking the optimal X,Y, Z. Here w
is the weighting factor and can be varied depending on the
precision requirement on rotation and translation. Different
X,Y, Z will be selected given different w, and we settled on
w = 1.5 for the simulation.

2) Framework 2: For the multi-robot hand-eye calibration
problem, a less restrictive approach exists to solve for X , Y
and Z. In addition to fixing A or C, we can also fix B, and
this will produce three datasets that are labeled as follows.

Dataset I: A = AI with {BIi} and {CIj}

Σ1
B = RT

ZΣ1
CRZ . (39)

Dataset II: B = BII with {AIIi} and {CIIj}

Σ1
C−1 = RT

Y Σ1
A−1RY . (40)



Dataset III: C = CIII with {AIIIi} and {BIIIj}

Σ1
B−1 = RT

XΣ1
ARX . (41)

Under this situation, X , Y and Z are solved independently
and there are a total of 4 × 4 × 4 = 64 combinations of
solutions. By letting MLIII

= MAIII
XiMBIII

and MRIII
=

YjCIIIZk, we can form the following objective function using
all 3 datasets:

min|| log∨(RT
MLI

RMRI
)||2 + || log∨(RT

MLII
RMRII

)||2
|| log∨(RT

MLIII
RMRIII

)||2 + w · ||tMLI
− tMRI

||2+

w · ||tMLII
− tMRII

||2 + w · ||tMLIII
− tMRIII

||2
where i = 1, · · · , 4, j = 1, · · · , 4 and k = 1, · · · , 4.

(42)

IV. NUMERICAL SIMULATION

In this section, we compared our probabilistic approaches
numerically with the existing methods in the literature. For
convenience, we called the probabilistic methods presented in
Framework 1 and Framework 2, Prob1 and Prob2 respec-
tively. In [23], two approaches were proposed for solving
the AXB = Y CZ problem: one is called the DK method
while the other is the PN method. In [20], a simultaneous
AXB = Y CZ solver was introduced and we call it Wang in
this paper. Note that all of the three methods in the literature
require a priori knowledge of the exact correspondence be-
tween the datasets {Ai}, {Bi} and {Ci}, and in this section
we refer to them as the “traditional methods”. We performed
numerical simulations on both the traditional and probabilistic
methods to show that: 1) probabilistic approaches showed
superior performance when dealing with data that has little or
no correspondence compared to traditional solvers; 2) Prob2
performed better than Prob1 when the former had complete
datasets.

There are several things to pay attention to when comparing
the probabilistic approaches with the traditional methods.
Firstly, PN is an unconstrained nonlinear optimization algo-
rithm which requires multiple initial guesses of X , Y and Z to
achieve an almost global minimum solution. Secondly, Wang
is a least-squares-based search algorithm that requires good
initial guesses of at least two of RX , RY and RZ . Thirdly,
both of them are simultaneous approaches meaning that none
of A, B or C needs to be fixed during the calibration process.
Lastly, DK is a separable method requiring A or C to be fixed
during the calibration process. However, no initial guesses are
needed to obtain the final result.

A. Data Generation and Error Metrics

In order to compare all of the five AXB = Y CZ solvers
together, we generated the simulated datasets as follows. First,
we fixed A such that A = AI , and {BIi} are given by

BIi = exp(δ̂i)BI0 (43a)
δi ∈ N (0; Σ) ⊂ R6 (43b)

where the mean µ = 0 ∈ se(3), the covariance matrix
Σ = σdataI6 ∈ R6×6 and i = 1, 2, . . . , 100. The hat operator

ˆ converts a 6 by 1 vector into its corresponding Lie algebra
in se(3). Given the ground truth of X , Y and Z, {CIi} is
generated by

CIi = Y −1AIXBIiZ
−1, (44)

and we call this dataset I.

Then, we generated dataset II where we fixed C such that
C = CII , and generated BIIi and AIIi in a similar fashion:

BIIi = exp(δ̂i)BII0 (45a)
AIIi = Y CIIZB

−1
IIiX

−1 (45b)

Lastly, dataset III was obtained by fixing B such that B =
BIII , and {AIIIi}, {CIIIi} were given by

AIIIi = exp(δ̂i)AIII0 (46a)
CIIIi = Y −1AIIIXBIIiZ

−1. (46b)

In each dataset, the number of measurement data for A,B,C
is 100, i.e. i = 1, . . . , 100. Note that there were a total of
three datasets but only the first two could be applied on DK
and Prob1 methods, but all three sets could be used by PN,
Wang and Prob2 methods. In order to compare the methods,
the datasets being passed into each method are indicated by
checkmarks in Table II. The recovered X , Y and Z were
compared with the actual transformations using the following
metrics for the errors in rotation and translation:

Error(RH) =‖ log∨(RT
Hsolved

RHtrue) ‖ (47a)
Error(tH) =‖ tHsolved − tHtrue ‖ / ‖ tHtrue ‖ (47b)

where H = X,Y, Z.

Dataset Prob1 Prob2 Wang PN DK

I AI , {BIi}, {CIi} X X X X X
II CII , {BIIi}, {AIIi} X X X X X
III BIII , {AIIIi}, {CIIIi} × X X X ×

TABLE II: Datasets used on each method

B. Simulation and Discussion

To compare all the five algorithms comprehensively, we
performed numerical simulations by varying

1) the scrambling rate r,
2) standard deviation σdata for generating the measurement

data,
3) noise level σnoise.

For each set of conditions, we ran 10 trials and plotted the
average error of the computed X,Y, Z from the true values.
For experiments (2) and (3) the range of the errors were very
big across all the methods. Hence we used the logarithm scale
for the vertical axis in Fig. (5), Fig. (6) and Fig. (7).

First, given the three sets of {A}, {B} and {C}, we
scrambled BIi, AIIi, CIIIi up to a certain percentage r where
r = 0%, 20%, 40%, 60%, 80%, 100%. We set σdata = 0.02 to
generate the original datasets A, B and C. 10 trials were run
for each algorithm at each scrambling rate r, and the average
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Fig. 4: Rotation/Translation Errors in X,Y, Z v.s. scrambling rate for 10 trials and 100 measurements

0.02 0.04 0.06 0.08 0.1

σ
data

10
-6

10
-4

10
-2

10
0

10
2

Error in RX

0.02 0.04 0.06 0.08 0.1

σ
data

10
-6

10
-4

10
-2

10
0

10
2

Error in RY

0.02 0.04 0.06 0.08 0.1

σ
data

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Error in RZ

0.02 0.04 0.06 0.08 0.1

σ
data

10
-2

10
-1

10
0

10
1

10
2

Error in tX

0.02 0.04 0.06 0.08 0.1

σ
data

10
-3

10
-2

10
-1

10
0

Error in tY

0.02 0.04 0.06 0.08 0.1

σ
data

10
-4

10
-3

10
-2

10
-1

10
0

Error in tZ

Prob1

Prob2

Wang

DK

PN

Fig. 5: Rotation/Translation errors v.s. standard deviation of measurement data for r = 1% and σnoise = 0
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Fig. 6: Rotation/Translation errors v.s. standard deviation of noise applied to the data for r = 1% and σdata = 0.02
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Fig. 7: Rotation/Translation errors v.s. standard deviation of noise applied to the data for r = 10% and σdata = 0.02

errors in rotation and translation were plotted as in Fig. (4).
It can be seen that the rotation and translation errors of both
Prob1 and Prob2 remain close to zero despite the scrambling
rate r increasing, while the errors of DK, PN and Wang either
diverged quickly or blew up in the beginning. This showed the
outstanding performance of the probabilistic approaches when
dealing with data streams that had missing correspondence
information. In addition, no initial estimates of any kind were
needed to calculate X , Y and Z.

Next, we varied the datasets with different values of σdata
where σdata = {0.02, 0.04, 0.06, 0.08, 0.1} and r = 1%. As
shown in Fig. (5), as the standard deviation σdata increased,
both the rotation and translation errors increased. This was
consistent with the assumption on the datasets that they should
be “highly focused”. Moreover, Prob2 gave smaller rotation
and translation errors compared to Prob1, when all three
datasets were available. This meant that although Prob1 can
be applied to a broader scope of robotic systems, Prob2 is



preferable if the system allowed the acquisition of complete
datasets. This is important because candidates of Y can affect
the picking of both X and Z. If no Y is close to its ground
truth, it is possible to pick the wrong X and Z even when there
are some candidates very close to their ground truths. Besides,
the performance of the probabilistic methods in general are
comparable to or better than the traditional methods even when
the scrambling rate is as low as 1%.

In the real world, data gathered from experiments are
usually noisy, and it is interesting to see how the five algo-
rithms perform with noisy and scrambled data. In Fig. (6)
and Fig. (7), we fixed the standard deviation for generating
the datasets as σdata = 0.02. For a homogeneous matrix
H , we apply noise with zero mean and standard deviation
σnoise = {0, 0.002, 0.004, 0.006, 0.008, 0.01} to get a noisy
Hnoise = Hexp(δ̂), δ ∈ N (0; Σ), where the covariance matrix
Σ = σnoiseI6 ∈ R6×6. The scrambling rate in Fig. (6) is
r = 1% and the scrambling rate in Fig. (7) is r = 10%.
There are several observations from these two figures.

1) Probabilistic methods deteriorate relatively faster than
the traditional methods when the scrambling rate is very
low, in this case r = 1%.

2) The probabilistic methods become closer or much better
than the traditional methods when the scrambling rate
increases from 1% to 10%, despite the effects of noise.

3) For traditional methods, the scrambling rate was the
dominant factor on the errors of the solved X,Y and Z
when it is large enough. As in Fig. (7), when r = 10%,
the performance of the traditional methods only fluctu-
ated within a small range despite the increasing noise.

V. CONCLUSION AND FUTURE WORK

Motivated by problems that arise in multi-robot systems,
in this paper we proposed two probabilistic approaches to
solve the AXB = Y CZ calibration problem for the case
where partial or all correspondence information between the
datasets was lost. Numerical simulations were performed to
show the outstanding performance of the probabilistic ap-
proaches over the traditional AXB = Y CZ solvers that
demand exact correspondence among the datasets. In addition,
the probabilistic approaches did not require initial estimates
which made the calibration process easier. We compared the
performance between the two probabilistic approaches and
showed that given complete datasets, Prob2 gave better RY

and tY . However, Prob1 required fewer datasets and had wider
applications. Possible future work includes deriving a simul-
taneous probabilistic approach that can deal with scrambled
data obtained without fixing any degrees of freedom in the
system. It is also worthwhile to check the performance of the
current probabilistic approaches in real world applications.

APPENDIX

A. Proof for Theorem 1

Proof: Let f ′(H) = f(H−1) whose mean and covariance
are M ′ and Σ′ satisfying the following equations∫

SE(3)

log(M ′
−1
H)f ′(H)dH = O (48)

and

Σ′ =

∫
SE(3)

log∨(M ′
−1
H)[log∨(M ′

−1
H)]T f ′(H)dH.

(49)
After a simple substitution, Eq.(48) becomes∫

SE(3)

log(M ′
−1
H)f(H−1)dH = O. (50)

Next, set K = H−1 and use the invariance of integration
under inversion, Eq. (50) becomes:∫

SE(3)

log(M ′
−1
K−1)f(K)dK = O. (51)

Premultiply M ′ and postmultiply M ′−1 on both sides of the
equation to get∫

SE(3)

log(K−1M ′
−1

)f(K)dK = O (52)

by using the property

H1(logH2)H−1
1 = log(H1H2H

−1
1 ). (53)

Eq.(52) can be further written as∫
SE(3)

log(M ′K)f(K)dK = O, (54)

given log(H−1) = − logH . This shows that M ′ = M−1.
By definition, covariance Σ′ will be

Σ′ =

∫
SE(3)

log∨(M ′
−1
H)[log∨(M ′

−1
H)]T f(H−1)dH

(55)
which becomes

Σ′ =

∫
SE(3)

log∨(MK−1)[log∨(MK−1)]T f(K)dK (56)

under a change of variables and substitution of M ′ = M−1.
Knowing that

Ad(H1) log∨(H2) = log∨(H1H2H
−1
1 )

log∨(K−1M) = − log∨(M−1K)
(57)

Ad(M−1)Σ′AdT (M−1) =∫
SE(3)

log∨(K−1M)[log∨(K−1M)]T f(K)dK
(58)

so that
Ad(M−1)Σ′AdT (M−1) = Σ (59)

which, after inversion of the Ad matrices, completes the proof.
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