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Abstract—A set of practical mathematical tools for creating
self correcting, self compensating optical angular encoders is
presented. Included is [a] a discussion and proof of the so-called
Angular Encoder Theorem, which is the fundamental element
of real time self correction based on read head symmetry aver-
aging; [b] a discussion and derivation of the self-compensation
equations, which can be used in tandem with the encoder theorem
to increase accuracy further; [c] a kinematic model which can
be used to simulate realistic operational scenarios; and [d] rules
of thumb and implications for the designer. Sample simulation
results and sample test results are also presented. These tools
enable the designer to work out cost-effective encoder designs to
meet different accuracy requirements for different applications.
Such encoders automatically retain their accuracy over indefinite
periods of time without human intervention of any kind and are
thus well suited for challenging robotic applications. These tools
can and have been used to construct cost-effective encoders with
demonstrated sub-arcsecond accuracy. Finally, sample source
code is available online.

I. INTRODUCTION

An essential requirement for more accurate robots is more
accurate angular encoders. In recent years, much progress has
been made. New high precision calibration methods have been
developed by Estler et al.[1], Masuda et al.[5], [7], Lu et al.[9]
and Just et al.[8]; new self-compensation techniques have been
developed by Geckeler et al.[2], Probst [3], Watanabe et al.[6],
Masuda[5] and Cramer [10]; and self-correction by read head
symmetry averaging has been investigated experimentally by
Watanabe et al.[4] and Cramer [10]. The purpose here is to put
these results onto a common mathematical footing, enabling
designers to create practical encoders for many different
robotic applications.

(For clarity the following terminology, taken from the
metrology field, is used here: compensation is the measure-
ment of parameters which govern the systematic errors of
the device, correction is the adjustment of raw measurements
to improve accuracy, and calibration is the comparison of
the device under test with a trusted reference that is directly
traceable to a national standards agency.)

Most promising is the optical angular encoder, which has
the great advantage of being non-contact and therefore free
from errors caused by direct physical contact, free of friction
and mechanical wear, and free from stick-slip behavior for
optimum control system performance.

A typical spindle assembly is shown in figure 1. Two
bearings hold a rotating shaft in place while allowing it to
rotate about its longitudinal axis. The outer races of the
bearings are fixed to the stator which is not shown. The angular
encoder assembly is on the right side of the spindle. The

Fig. 1. Spindle assembly with angular encoder

rotating part is the encoder disk which is fixed to the rotating
shaft. The non-rotating part consists of one or more read heads
which are rigidly attached to a mounting plate. The read heads
are soldered to a circuit board which in turn is connected to
an on-board processor.

Fig. 2. Encoder disk diffraction grating (number of lines greatly reduced for
clarity)

The rotating encoder disk, typically made of glass, has a
series of radial lines etched on its surface, as shown schemat-
ically in figure 2. These lines form a diffraction grating, and
the read head design takes advantage of the diffraction effect
to achieve a high level of precision. A typical encoder disk
diffraction grating has on the order of 10,000 lines, and an
angular resolution of well under 1µrad is readily achievable
with standard commercial components.

The layout of a typical optical read head is shown in figure
3. An LED in the head emits a coherent beam of light which
strikes the diffraction grating etched on the encoder disk. (At
high magnification the grating has the appearance of a straight
line, but actually the grating is circular and the individual lines
radiate from a common center which ideally lies on the axis
of rotation.) The beam is reflected by the disk grating, passes
through an index grating and then falls on a set of photodiodes.
Diffraction effects are used to obtain high precision quadrature
measurements of the position of the read head relative to the



Fig. 3. Optical read head concept (courtesy renishaw.com)

two nearest grating lines, i.e. the two lines which bracket the
read head.

II. THE ANGULAR ENCODER THEOREM

Perhaps the single most important tool for the encoder
designer is the angular encoder theorem. It provides a simple
and cost-effective way to increase encoder accuracy without
imposing overly strict mechanical tolerances.

A. Theorem Statement

Consider an angular encoder with N equally spaced read
heads, and define the read head average as θ = Σθi/N , where
θi is the angle measurement of read head i. Assume that the
error is continuous and periodic with period 2π. Assume also
that the error is a function the disk rotation angle only, and that
each read head is subject to the same error modulo a phase
angle given by its location relative to the other read heads.
Then all Fourier error modes cancel identically except for
mode N and its harmonics. In other words, only error modes
N, 2N, 3N, .. remain after averaging. For clarity this will be
called symmetry averaging to distinguish it from ordinary
statistical averaging, which at best provides only 1√

N
behavior.

B. Proof

Consider an encoder with N equally spaced read heads. The
read head spacing is 2π/N , and the read head average is

e(θ) =
1

N

N∑
h=1

eh(θ) =
1

N

N∑
h=1

e(θ + 2πh/N). (1)

where h is the head number. The error due to mode m is

em(θ) =
1

N

N∑
h=1

ehm(θ)

=
1

N

N∑
h=1

em(θ + 2πh/N)

=
1

N

N∑
h=1

sin(mθ + 2πmh/N + φ).

(2)

Now consider the case in which m is a harmonic of N , i.e.,
m = jN where j = 1, 2, 3, .... The mode m error is

em(θ) =
1

N

N∑
h=1

sin(mθ + 2πjNh/N + φ)

=
1

N

N∑
h=1

sin(mθ + 2πjh+ φ)

=
1

N

N∑
h=1

sin(mθ + φ) = em

(3)

This proves that error modes which are harmonics of N, the
number of read heads, are unaffected by symmetry averaging.

Next consider the case of error modes which are not
harmonics of N . In this case one can write m = jN+k, where
j is a positive integer and k = m mod N. The argument of
the sine function can be written as

mθ + 2πmh/N + φ = mθ + 2π(jN + k)h/N + φ

= mθ + 2πkh/N + φ.
(4)

This is a useful simplification, as 1 < k < N − 1. If the
theorem holds for these modes, then it holds for higher modes
as well. Now it is only necessary to prove that

em(θ) =
1

N

N∑
h=1

sin(mθ + 2πmh/N + φ) = 0 (5)

for 1 ≤ m < N. Using a standard trigonometric identity, the
sine term can be written in the form

sin(mθ + φ) cos(2πmh/N) + cos(mθ + φ) sin(2πmh/N).

The error after symmetry averaging then becomes

em(θ) =
sin(mθ + φ)

N

N∑
h=1

cos(2πmh/N)

+
cos(mθ + φ)

N

N∑
h=1

sin(2πmh/N).

(6)

We next invoke trigonometric identities for the two summa-
tions. The identities in their standard form are

N∑
n=0

sin(nx) =
sin(Nx/2) sin((N + 1)x/2)

sin(x/2)
(7)

and
N∑

n=0

cos(nx) =
cos(Nx/2) sin((N + 1)x/2)

sin(x/2)
. (8)

Finally, we change the summation index from n to h, evaluate
the h = 0 term explicitly to remove it from the summation,
and insert x = 2πm/N. This produces the result that

N∑
h=1

cos(2πmh/N) = 0 (9)



and
N∑

h=1

sin(2πmh/N) = 0, (10)

and therefore
em(θ) = 0 (11)

when m is not an integer multiple of N. This concludes the
proof.

C. Self-Correction

At the level of approximation of interest here, on the order
of 2 to 3 µrad, all encoder errors are in some sense associated
with the disk. The largest error component in most cases is
mode 1, and it will be shown that this is due to imperfect
disk centering. The next largest error component is typically
mode 2, which is caused by disk tilt plus mode 2 error in the
diffraction grating. Error modes 3 and higher are due entirely
to errors in the disk itself. This includes errors in the grating
lines and deviations from perfect flatness of the disk surface.

A key consideration is that disk centering error is [a]
large and [b] varies with angle of rotation. Imperfections in
the bearings such as small deviations from perfect sphericity
cause the centering error to vary in a complicated way as a
function of shaft rotation angle. Mechanical shock and thermal
expansion also affect centering. Consequently, the mode 1
error component varies significantly with time and with shaft
rotation angle. As for the magnitudes involved, in a 2.54
cm optical radius encoder, 1 µm of centering error causes
a maximum angular error of 1µm/2.54cm .

= 40 µrad .
= 8

arcsec, an order of magnitude greater than the level of accuracy
sought here.

Because it is both large and time-dependent, disk centering
error would seem to pose a major obstacle to high accuracy.
For example, the traditional method of encoder mapping is
of little use, because the correction map is static. Fortunately,
this is precisely where the encoder theorem comes into play: if
the encoder has two or more equally spaced read heads whose
measurements are averaged together, then mode 1 error cancels
out.

The next largest source of error in most cases is disk tilt.
Simulations using the kinematic model described below show
that disk tilt produces an error profile that is primarily mode
2. Like disk centering, disk tilt is a complicated function of
time and rotation angle because of small imperfections in
the bearings and races, mechanical shock and temperature
variations. But this error can also be removed with the help
of the theorem, this time by averaging together three or more
read heads.

All that is required to satisfy the assumptions underlying the
theorem is that the error at any particular instant of time must
be describable by a Fourier series. Thus the encoder theorem
provides real time self correction capability for some error
modes, including the largest and most unstable.

This is all very encouraging, but there are limitations. There
is a hardware cost associated with each additional read head,
and there is limit on the number of read heads which will

physically fit. Also the read heads are never perfectly placed
in practice. Simulations show that read head placement errors
lead to modal leakage: modes which ideally would cancel out
identically do not in actuality disappear completely. Finally
there remain the so-called degenerate modes, i.e. modes N ,
2N , 3N, . . . , which are not corrected at all.

III. SELF-COMPENSATION

In some applications, the encoder theorem alone is not
enough to reach the desired accuracy. An additional, com-
plementary method is needed. One standard method is the
reference mapping . A traceable reference encoder is attached
to the axis of the encoder under test, and the axis is moved
one full revolution in small steps. After each step, the rotation
angle is measured by both encoders. The differences between
the two encoder readings are computed and saved in an
array called an encoder map which is then used to correct
subsequent measurements.

The reference mapping method is in common use but is not
well suited for high volume production. A trained operator
must mount and dismount the reference encoder and monitor
the test. Special adaptor hardware is required to mount the
reference encoder, and the hardware is subject to damage
and wear, causing accuracy to degrade over time. Accuracy
also suffers if torque specifications are not rigidly adhered to
when bolting the reference encoder on. The reference encoder
and associated electronics and software are costly. Even when
the adaptor hardware is in good condition and procedures
are properly followed, the act of mounting the reference
encoder physically disturbs the encoder under test, introducing
repeatability errors on the order of an arc second. Finally, the
reference encoder compensation can only be performed in a
specially equipped facility. If an encoder drifts in the field, it
must be sent back to the factory to be re-compensated, leading
to significant down time for the user.

A better method is self-compensation, which requires no
reference encoder, no physical contact, and no human operator.
All that is needed is a single additional read head, called the
reference head, which is located asymmetrically relative to the
other read heads.

The method rests on the same assumptions as the encoder
theorem and involves pairing each read head with the reference
head. Then, for each pair, one computes the difference in the
readings at a number of different angles. Consider one such
pair; the first member is read head 0, i.e. the reference head,
and the second is read head n. The error associated with read
head 0 can be approximated by a Fourier series:

e0(θ) ≡ e(θ) =

M∑
j=1

Sj sin jθ + Cj cos jθ (12)

where j is the mode number and M is the mode at which the
series is truncated. e(θ) is the error function of the encoder. It
is in general a good approximation because the amplitude of
the individual modes drops off rapidly with increasing mode



number for a properly constructed encoder. The error for read
head n differs from that of read head 0 by a phase:

en(θ) =

M∑
j=1

Sj sin (jθ + jhn) + Cj cos (jθ + jhn) (13)

where θ is the shaft rotation angle and hn is the angular
position of read head n relative to read head 0.

The error coefficients Sj and Cj must be somehow deter-
mined in order to correct subsequent encoder measurements.
Ideally one would extract the coefficients by calculating the
discrete Fourier transform of en(θ), but the reference encoder
has been eliminated and so en(θ) cannot be measured directly.
What can be measured instead are the read head differences,
defined as

dn(θ) ≡ en(θ)− e0(θ) (14)

and then describe them by a different but related Fourier series

dn(θ) =

M∑
j=1

S′
j sin (jθ + jhn) + C ′

j cos (jθ + jhn) (15)

In this approach, the read head differences dn(θ) are directly
measured and a discrete Fourier transform or least squares
Fourier fit is used to determine the S′ and C ′ coefficients.

It will be shown (see section IV for a derivation) that the
desired error coefficients Sj and Cj can be computed from the
known difference coefficients S′

j and C ′
j by a pair of simple

equations. These equations, called the cotangent equations, are

Snj =
1

2

(
C ′

j cot

(
jhn
2

)
− S′

j

)
Cnj = −1

2

(
S′
j cot

(
jhn
2

)
+ C ′

j

)
.

(16)

A. Determination of Error Function Coefficients

The following steps are used to determine the desired
Fourier error coefficients from measurements from a pair of
encoder read heads. Read head 0 is defined as the reference
head and is by definition located at angle zero. The second
read head is number n and is located at angle hn relative to
the reference head.

1) Specify M , the highest error mode to be corrected.
2) Specify T , the number of steps per full revolution.
3) Step the mechanical axis from 0 to 2π radians in equal

increments.
4) After each step, measure the rotation angle with read

head 0 (the reference head), and read head n.
5) Compute the differences of the readings and store them

in an array.
6) Compute the FFT of the differences array.
7) Extract the lowest M difference DFT coefficients from

the DFT.
8) Compute the lowest M Fourier error coefficients with

equations 16.

The end result is that the coefficients Sj and Cj in equations
12 and 13 are determined out to the maximum desired mode
M . In other words, a truncated Fourier series approximation
of encoder error function e(θ) has been obtained.

B. Multiple Read Heads
The procedure requires the existence of at least two read

heads, one of which is the reference head. In most cases there
will be more than two read heads. Consider for example a so-
called 2+1 design which has two equally spaced read heads
with a spacing of 180 degrees plus a reference head which is
located asymmetrically. In this case the reference head can be
paired with two different read heads and the above procedure
yields two separate sets of Sj and Cj coefficients.

Ideally both sets of coefficients are identical, but in reality
the two sets of coefficients will differ slightly. It is therefore
advantageous to average the two sets of coefficients together
to obtain a single set which is more accurate than either of the
individual sets. It is also useful to compute the deviations from
the average as this provides useful diagnostic data regarding
the health of the encoder hardware. They are also useful in
choosing the truncation point M of the Fourier series.

C. Computing the encoder map
The final step in the encoder self compensation process

is extraction of the encoder map function m(θ). Note that
m(θ) 6= e(θ), although the two functions are closely related.
m(θ) is calculated with a modified version of the error
function equation 13. The encoder theorem removes certain
modes and so these modes need to be excluded from the
summation. For an encoder with N equally spaced read heads
the equation is

m(θ) =

M/N∑
j=1

SNj sinNjθ + CNj cosNjθ (17)

As an example, consider a 3+1 type encoder with maximum
mode number M = 9. The summation is then

m(θ) = S3 sin 3θ + C3 cos 3θ

+ S6 sin 6θ + C6 cos 6θ

+ S9 sin 9θ + C9 cos 9θ

(18)

Finally, the desired encoder map is just an array of values
which comes from sampling the residual error function at a
series of equally spaced discrete points. In other words, the
final map is just

mi ≡ m(θi), i = 1, 2, 3, ..., imax (19)

The dimensionality of the map, imax, should be chosen in
such a way that the highest mode of interest is sampled well.

D. Positioning the reference head
The position of the reference head must be chosen with

care; a poor choice causes the cotangent values in eq. 16 to
blow up, making the map hypersensitive to small errors in
the raw measurements. In fact it is desirable to minimize the
cotangents. This still leaves the designer with plenty of leeway.



IV. DERIVATION OF COTANGENT EQUATIONS

In this section we derive the cotangent equations 16 which
are the basis of encoder self-compensation. We will model the
individual read head errors by a Fourier series, and we will
assume that the errors are the same for all read heads except
for a phase angle. The measurement µ0(θ) from the reference
head can be expressed in the following way:

µ0(θ) = θ +

M∑
j=1

Sj sin(jθ) + Cj cos(jθ) (20)

where j is the Fourier mode number, θ is the true shaft rotation
angle and the summation represents the error. For read head
n, which is located at angle hn relative to the reference head,
we get a similar expression but with phase terms added:

µn(θ) = θ+

M∑
j=1

Sj sin (jθ + jhn) +Cj cos (jθ + jhn) (21)

Now take the difference of the two measurements, which gives

dn(θ) = µn(θ)− µ0(θ)

=

M∑
j=1

Sj sin (jθ + jhn) + Cj cos (jθ + jhn)

− Sj sin(jθ)− Cj cos(jθ)

(22)

Note that when the difference of two read heads is taken,
the true rotation cancels out and the remaining expression is
due solely to the errors in the two readings. We now want to
cast the expression for the read head differences into a more
useful form. To begin with, we use trigonometric identities
[12] to rewrite the summand as

2 sin

(
jhn
2

)
·
[
Sj cos

(
jθ +

jhn
2

)
− Cj sin

(
jθ +

jhn
2

)] (23)

Then we make the substitutions

S′′
j ≡ 2Sj sin

(
jhn
2

)
C ′′

j ≡ −2Cj sin

(
jhn
2

) (24)

which yields

dn(θ) =

M∑
j=1

S′′
j cos

(
jθ +

jhn
2

)
+ C ′′

j sin

(
jθ +

jhn
2

)
(25)

For our final simplification step we define new coefficients
S′
j and C ′

j which satisfy the equation

S′′
j cos

(
jθ +

jhn
2

)
+ C ′′

j sin

(
jθ +

jhn
2

)
≡ C ′

j cos jθ + S′
j sin jθ

(26)

so that

dn(θ) =

M∑
j=1

C ′
j cos jθ + S′

j sin jθ (27)

To obtain explicit expressions for the new coefficients, first
set θ = 0 in the above equation. This immediately gives

C ′
j = S′′

j cos

(
jhn
2

)
+ C ′′

j sin

(
jhn
2

)
(28)

Next, setting θ = π/2 gives

S′
j = S′′

j cos

(
π/2 +

jhn
2

)
+ C ′′

j sin

(
π/2 +

jhn
2

)
(29)

or equivalently

S′
j = −S′′

j sin

(
jhn
2

)
+ C ′′

j cos

(
jhn
2

)
(30)

Now solve for S′′
j and C ′′

j :

S′′
j = C ′

j cos

(
jhn
2

)
− S′

j sin

(
jhn
2

)
(31)

C ′′
j = S′

j cos

(
jhn
2

)
+ C ′

j sin

(
jhn
2

)
(32)

Substituting the definitions of S′′
j and C ′′

j into these equa-
tions gives

2Sj sin

(
jhn
2

)
= C ′

j cos

(
jhn
2

)
− S′

j sin

(
jhn
2

)
(33)

−2Cj sin

(
jhn
2

)
= S′

j cos

(
jhn
2

)
+ C ′

j sin

(
jhn
2

)
(34)

which can then be rearranged to give the desired result:

Sj =
1

2

(
C ′

j cot

(
jhn
2

)
− S′

j

)
Cj = −1

2

(
S′
j cot

(
jhn
2

)
+ C ′

j

) (35)



V. SIMULATIONS

A. Kinematic Model

As a first step in the validation of the foregoing formalism,
a series of simulations was run. These simulations are based
on a simple kinematic model of angular encoders which will
now be described.

Fig. 4. Encoder kinematic model

Figure 4 illustrates the basic ideas behind the kinematic
model. We begin by defining the stator frame of reference,
in which the read head has a fixed position. The Z axis is
defined to coincide with the nominal axis of rotation. The X
and Y axes are perpendicular to Z and obey the right hand
rule and are oriented such that the Y coordinate of the read
head is zero. For clarity, all variables will be defined in the
stator frame and all calculations are carried out in this frame.

The encoder disk is modeled by three vectors. The position
vector of the disk center (more specifically the center of the
radial diffraction grating that is etched on the disk surface)
is ~ε, the normal vector of the disk is n̂, and the unit vector
which represents the index line on the disk grating is λ̂. In the
ideal case of a perfectly centered and un-tilted disk, ~ε = 0 and
n̂ = (0, 0, 1). The index line vector λ̂ defines the zero point
for angle measurements on the disk.

The read head is modeled as a fixed point in space with
position vector ~h, which emits a beam with direction vector
û. The beam intersects the plane of the disk at a point whose
direction vector relative to the disk center is î. What the read
head measures, in effect, is the angle between the intersection
vector î and the index line vector λ̂.

The steps for computing the expected measurement from a
single read head for a given angular encoder configuration can
now be listed:

1) Specify encoder configuration parameters:
â Shaft rotation axis
~h Read head position vector
û Read head beam direction vector
~ε0 Disk position vector before shaft rotation
n̂0 Disk normal vector before shaft rotation
λ̂0 Initial disk index line direction vector

2) Specify shaft rotation angle θ

3) Compute rotation matrix M(θ, â)
4) Rotate disk configuration vectors:

~ε = M · ~ε0,
n̂ = M · n̂0,
λ̂ = M · λ̂0

5) Compute intersection~i of read head beam with plane of
rotated disk

6) Compute intersection direction vector î = N(~i − ~ε),
where N() indicates normalization

7) Compute angle θ′ between disk intersection direction
vector î and rotated index line direction vector ~λ.

8) Compute error in read head measurement e = θ′ − θ

The intersection ~i of a line described by a point ~r and
direction vector û with a plane described by a point ~p and
normal vector n̂ is

~i =
~p · n̂− ~r · n̂

û · n̂
(36)

Next we give the computational steps to determine the angle
θ between two unit vectors â and b̂ relative to a known normal
vector n̂ that produces a result on the interval [−π, π]:

1) d = â · b̂
2) ~c = â× b̂
3) c = |~c|
4) s = S(~c · n̂)
5) θ = arctan (sc, d)

where the function S() returns the sign of the argument.
This model can be adapted to simulated any number of read

heads. It is also possible to model errors in the disk itself, i.e.
grating errors, with any desired functional form.

B. Simulation Results

With the kinematic model, simulations can be constructed
which illustrate the effects of disk centering and disk tilt
errors. It will be recalled that these errors vary with time and
shaft rotation angle because of imperfections in the bearings,
including slight variations in radius from one ball to another
and slight deviations from sphericity of each individual ball. A
static additive correction is therefore not effective for removing
these errors, and real time self-correction based on symmetry
cancellation and the encoder theorem must be used instead.

Figure 5 shows that disk centering error produces a large
mode 1 Fourier component, with an admixture of higher modes
which are too small to be visible on the plot. Similarly, figure
6 shows that disk tilt produces a mode 2 component, again
with invisibly small amounts of higher modes.

Figure 7 illustrates the encoder theorem in action for the
case of an encoder with an optical radius of 2.54 cm with
5 µm centering error, 6 mrad disk tilt error, 5µrad mode 3
grating error and 2.5µrad mode 4 grating error. Error modes
1 though 4 are present in this case, and the residual error plot



shows that only the 5µrad mode 3 signal survives symmetry
averaging; this is in keeping with the prediction of the theorem.

The final simulation plot, figure 8, is an example of the
encoder theorem and self-compensation operating in tandem
for the case of an encoder with an optical radius of 2.54
cm with 5 µm centering error, 6 mrad disk tilt error, 5µrad
mode 3 grating error and 2.5µrad mode 4 grating error. In this
case, errors modes 1 through 4 are initially present. Symmetry
cancellation effectively removes modes 1, 2 and 4 while self-
compensation addresses mode 3. As shown in the plot, the
remaining error is mode 6 as expected, with an amplitude that
is a tiny fraction of a µrad.

Fig. 5. Error function for r = 2.54 cm encoder, 5 µm centering error

Fig. 6. Error function for r = 2.54 cm encoder, 6 mrad disk tilt error

C. Limitations and Error Sources
At this point some cautionary notes are in order. The

intention of the simulations presented above was to [a] validate
the formalism and [b] to illustrate the formalism in action.
The extremely small errors that remained in these simulations
after correction and self compensation are not achievable in
reality. For one thing, in a realistic scenario the read heads
are not perfectly placed, and imperfect placement leads to
modal leakage: error modes that would ideally be completely
removed in fact remain in small residual amounts.

There is also a limitation on the number of modes which
can be addressed. These methods are good for low angular

Fig. 7. Error function for r = 2.54 cm encoder with 5 µm centering error, 6
mrad disk tilt error, 5µrad mode 3 grating error and 2.5µrad mode 4 grating
error, after three head symmetry cancellation

Fig. 8. Error function for r = 2.54 cm encoder with 5 µm centering error, 6
mrad disk tilt error, 5µrad mode 3 grating error and 2.5µrad mode 4 grating
error, after three head symmetry cancellation and mode 3 self compensation

frequency modes, but higher modes are problematic. For
example, if the mode in question has a wavelength that
is comparable to or smaller than the read head placement
tolerance, then it will not be removed by these methods. This
means that the methods presented here work best with encoder
disks that do not have high frequency error modes. Fortunately
this turns out to be true for the vast majority of cases.

As with other Fourier methods, phenomenon of aliasing
needs to be considered. This issue can be mitigated by
appropriate filtering during data collection.

There is also the question of what level of encoder accuracy
is suitable for the application. The encoder is only as good as
the enclosing structure. If the enclosing structure, typically
a robot joint, is subject to other errors such as bending and
thermal expansion, then the accuracy of the encoder may
not produce the desired overall system accuracy. In other
words, to achieve high accuracy for a robotic system, high
accuracy encoders are necessary but not sufficient. What has
been presented here can be a part of the answer but it is not
the entire answer.



VI. TEST RESULTS

In addition to simulations, physical tests have been carried
out in which encoder maps obtained by self-compensation
were compared to maps obtained by reference-mapping. The
reference encoder in these tests was a Heidenhain RON-901
and the encoder under test was a 3+1 type: 3 equally spaced
read heads plus one asymmetrically mounted reference head.

A sample test result is shown in figure 9. The plot compares
a map function obtained by self-compensation with a map
obtained from the RON-901. Recall that the map function is
a measure of the error that remains after symmetry averaging.
The plot indicates that averaging has left an error signal that
is primarily mode 3 as expected from the encoder theorem.
The amplitude of the map is approximately 15µrad; for
comparison, the amplitude before averaging was on the order
of 150µrad.

The maximum difference between the two maps is approxi-
mately 5µrad or 1 arcsecond. In fact, subsequent testing done
by indirect non-contact methods showed that the maximum
error after self-compensation was actually slightly less. The
dominant error in this test is actually the attachment hardware.

Fig. 9. Comparison of post symmetry averaging encoder maps obtained by
self-compensation (dotted line) and reference mapping (solid line)

A. Indirect Tests

The 3+1 encoder design discussed above has been standard
equipment in popular commercial laser tracker devices for
the dimensional metrology market for several years now.
Customers include the largest and most demanding players in
the aerospace and automotive industries. Before shipping, each
of these devices is subjected to stringent NIST-traceable cali-
bration procedures which follow the ASME B89.4.1 standard
[13]. These are system-level tests which quantify the accuracy
of the 3D coordinate measuring capability of each tracker.
These tests provide excellent indirect measures of encoder
accuracy. In addition, each tracker is subjected to so-called
interim tests each time they are prepared for a measuring job.
These are also stringent indirect tests of encoder accuracy.

Years of experience have shown that these systems function
within specifications[15] indefinitely without human interven-
tion.

VII. CONCLUSIONS

Two complementary methods for improving the accuracy
and stability of optical robotic angular encoders have been
presented, and their consequences worked out. Both methods
are based on Fourier analysis of encoder errors. In addition,
a method for simulating realistic angular encoder operational
scenarios was presented.

The encoder theorem involves averaging N ≥ 2 uniformly
spaced read heads, and it was proven that in this case all
Fourier error modes cancel out identically except for degen-
erate mode N and its harmonics, which are unaffected.

The encoder theorem is useful because it provides real time
self-correction capability. It is especially useful for modes 1
and 2, which simulations showe are due to disk centering and
disk tilt errors respectively. Because these modes are sensitive
to the instantaneous state of the bearings, they are inherently
volatile and cannot be accurately corrected with any static
method such as an encoder map.

We then presented a self-compensation method which uses
an asymmetrically placed reference read head to measure the
degenerate modes and produce an error map which can then be
used to correct subsequent measurements. Self-compensation
is well suited for modes which are relatively stable over time
such as errors in the disk grating. When used in tandem, these
two methods enable the construction of stable, cost-effective
encoders with sub-arcsecond accuracy.

These methods are well suited for robotic applications
because accuracy is maintained with zero human intervention.
Self-correction occurs automatically with each reading the
encoder makes, while self-compensation is easily automated
and can be initiated automatically as well if desired. They also
enable the encoder to continuously monitor its own health.

A kinematic model of angular encoders was then presented.
This model was used to construct simulations which demon-
strate that disk centering and disk tilt errors produce primarily
mode 1 and mode 2 Fourier components respectively. They
were also used to demonstrate the operation of the encoder the-
orem and self-compensation methods in action. The kinematic
model is also useful for encoder design; different read head
arrangements and different mechanical tolerances and different
measurement scenarios can all be simulated.

Finally a sample test result was shown to illustrate the
effectiveness of these methods in a real encoder. Taken to-
gether, the methods given here provide a practical approach
for designing practical angular encoders with sub-arcsecond
accuracy and which require no human intervention to maintain
their accuracy over long periods of time. Source code and
additional examples are available for download [14].
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