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Abstract—Our goal is to automate the understanding of
natural hand-object manipulation by developing computer vision-
based techniques. Our hypothesis is that it is necessary to model
the grasp types of hands and the attributes of manipulated
objects in order to accurately recognize manipulation actions.
Specifically, we focus on recognizing hand grasp types, object
attributes and actions from a single image within an unified
model. First, we explore the contextual relationship between
grasp types and object attributes, and show how that context
can be used to boost the recognition of both grasp types and
object attributes. Second, we propose to model actions with grasp
types and object attributes based on the hypothesis that grasp
types and object attributes contain complementary information
for characterizing different actions. Our proposed action model
outperforms traditional appearance-based models which are not
designed to take into account semantic constraints such as grasp
types or object attributes. Experiment results on public egocentric
activities datasets strongly support our hypothesis.

I. INTRODUCTION

This work aims to automate the understanding of natural
hand-object manipulation in daily tasks using a wearable
camera. In particular, we focus on recognizing (1) grasp types,
(2) object attributes and (3) actions from image appearance
under first-person vision paradigm. These terms are defined
as follows: Grasp types are a discrete set of canonical hand
poses often used in robotics to describe various strategies for
holding objects stably in hand. For example, the use of all
fingers around a curved object like a cup is called a medium
wrap. Object attributes characterize physical properties of the
objects such as rigidity or shape. Actions in this work refer to
different patterns of hand-object interactions such as open or
pour.

The ability to understand hand-object manipulation auto-
matically from visual sensing is important for the robotics
community with potential applications such as robotic hand
design and robotic action planning. In robotic hand design, the
study of hand grasping behavior in daily manipulation tasks
provides critical information about hand functions that can be
used for robotic hand development [5, 35, 1, 6]. It can also
facilitate robotic task planning by studying the relationship
between different components (grasps, objects and actions) in
performing a manipulation task [11, 33]. Wearable cameras
enable continuous recording of unconstrained natural hand-
object interactions at a large scale, both in time and space,
and provides an ideal first-person point-of-view under which
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Fig. 1. Relationship between grasp types, object attributes, and manipulation
actions. Grasp types and object attributes at both hands are learned from image
evidence. Mutual context between grasp types and object attributes is explored.
Manipulation actions are modeled based on grasp types and object attributes.

hands and objects are often visible up-close in the visual field.
In this work, we develop automatic egocentric (first-person)
vision techniques that can be used as a tool to promote the
studies of hand manipulation in real-life settings.

However, the recognition task for understanding daily ma-
nipulation tasks from monocular images is also very challeng-
ing. There are many occlusions of a hand, especially fingers,
during hand-object interactions, making it hard to observe and
recognize hand grasps. It is also challenging to reliably detect
the manipulated object and infer attributes since the object
is also often occluded by the hand. This suggests that visual
information about hands and objects need to be reasoned about
jointly by taking into account this mutual context.

We propose a vision-based approach to detect the grasped
part of the object during manipulation by exploring spatial
hand-object configurations. Attribute information is then ex-
tracted from the manipulated object. Furthermore, we propose
to enhance the recognition of grasp types and object attributes
by their mutual context (contextual relationship between two
components that by knowing one component facilitates the
recognition of the other). Object attributes (e.g. , thick or long
shape of a bottle) have strong constraints on the selection
of hand grasp types (e.g. , Large Wrap). Thus, with the



knowledge of object attributes, we are able to predict a large
percentage of grasp types. On the other hand, humans use
the same or similar grasp types for certain types of objects,
thus the grasp type used reveals attributes of the object being
grasped. We formulate a Bayesian model to encode the mutual
context between grasp types and object attributes in which
recognizing one facilitates the recognition of the other.

Based on the visual recognition of semantic information
of grasp types and object attributes, we provide a semantic
action model as illustrated in Figure 1. Specifically, we train
discriminative classifiers for different actions based on the
probabilistic estimation (belief distribution) of grasp types and
object attributes.

There are several advantages for jointly modeling actions
in this way: (1) Grasp type helps describe the functionality of
an action, whether it requires more power, or more flexible
finger coordination; (2) Object attributes provide a general
description about the manipulated object and indicates pos-
sible interaction patterns; (3) Semantic information of grasp
types and object attributes enable the model to encode high-
level constraints (e.g. , medium wrap can only be used for
cylindrical objects) and as a result, the learned action model
is immediately interpretable.

The contributions of this work are as follows: (1) We
propose a novel method for extracting attribute information
of the grasped objects by exploring spatial hand-object con-
figurations; (2) We explore the mutual context of grasp types
and object attributes to boost the recognition of both; (3) We
propose a semantic action model based on grasp types and
object attributes which achieves state-of-the-art recognition
performance.

A. Related Work

Hand grasp has been studied for decades to better under-
stand the use of human hands [23, 27, 26, 2, 13]. Grasp
taxonomies have also been proposed to facilitate hand grasp
analysis [5, 17, 10]. Cai et al. [3] first developed techniques
to recognize hand grasp types in everyday hand manipulation
tasks recorded with a wearable RGB camera and provided
promising results with appearance-based features. Yang et
al. [32] utilized a convolutional neural network to classify
hand grasp types on unstructured public dataset and presented
the usefulness of grasp types for predicting action intention.
Saran et al. [28] used detected hand parts as intermediate
representation to recognize fine-grained grasp types. However,
the recognition performance is still not good enough for
practical usage in real-world environments. In this paper we
explore object contextual information to improve the grasp
recognition performance.

Visual attributes (physical properties inferred from image
appearance) are often used as intermediate representation for
many applications, such as object recognition [7, 21, 30], facial
verification [20], image retrieval and tagging [29, 24, 34].
Lampert et al. [21] performs object detection based on a
human-specified high-level description of the target classes
for which no training examples are available. The description

consists of attributes like shape, color or even geographic
information. Parikh and Graumn [24] explored the relative
strength of attributes by learning a rank function for each
attribute which can be used to generate richer textual descrip-
tions. In this work, we extract visual attribute information from
the manipulated object and use it as semantic information for
modeling manipulation actions.

The relations between object attributes and hand grasps are
widely studied for decades. It has been shown that humans use
the same or similar grasp types for certain types of objects,
and the shape of the object has a large influence on the
applied grasp [18, 12]. Recently, Feix et al. [11] investigated
the relationship between grasp types and object attributes in a
large real-world human grasping dateset. However, behavioral
studies in previous work do not scale to massive dataset.
In this work, we use a Bayesian network to model the
relations between grasp types and object attributes to boost
the recognition of both.

Past researches on recognizing manipulation actions focused
on using first-person vision since it provides an ideal viewing
perspective for recording and analyzing hand-object interac-
tions. Fathi et al. [8, 9] used appearance around the regions
of hand-object interactions to recognize egocentric actions.
The work in [25] has shown that recognizing handled objects
helps to infer daily hand activities. In [14], hand appearance
is combined with dense trajectories to recognize hand-object
interactions. However, most of previous work are learning
actions directly from image appearance, thus the action models
learned are easily overfit to image appearance. There are small
number of works which aim to reason beyond appearance
models [31, 16, 32]. In [16] a hierarchical model is built
to identify persuasive intent of images based on syntactical
attributes, such as “smiling” and “waving hand”. The work
of [32] is very related to our work which seeks to infer
action intent from hand grasp types. However, the action model
in [32] is relatively simple with only three categories to be
learned. In this work, we aim to model manipulation actions by
jointly considering grasp types together with object attributes.

II. OUR APPROACH

We proposed an unified model to recognize grasp types,
object attributes and actions from a single image. The approach
is mainly composed by three components: 1) A visual recogni-
tion layer which recognizes hand grasp types and attributes of
the manipulated objects. 2) A Bayesian network which models
the mutual context of grasp types and object attributes to boost
the recognition of both. 3) An action modeling layer which
learns actions based on the belief distribution of grasp types
and object attributes (output of the visual recognition layer).

A. Visual recognition of grasp types and object attributes

The visual recognition layer consists of two recognition
modules, one for grasp types and the other for object at-
tributes. Grasp types and object attributes are important for
understanding hand manipulation. Grasp types determine the
patterns of how a hand grasps an object, while object attributes
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Fig. 2. The list of nine grasp types selected from [10], grouped by
functionality (Power and Precision) and object shape (Prismatic, Round and
Flat).

indicate possible hand motion of the interactions. Furthermore,
grasp types together with object attributes provide consistent
characterization of the manipulation actions.

1) Grasp types: Hand grasp types are important for un-
derstanding hand manipulation since they characterize how
hands hold the objects during manipulation. A number of
work have investigated the categorization of grasps into a
discrete set of types [5][10] to facilitate the study of hand
grasps. We train classifiers for recognizing nine different
grasp types selected from a widely used grasp taxonomy
proposed by Feix et al. [10]. The grasp types as shown in
Figure 2 are selected to cover different standard classification
criterion based on functionality [23], object shape, and finger
articulation. We also abstract some grasp types in original
taxonomy which are ambiguous from appearance into single
grasp type (e.g. Thumb-n Finger). Furthermore, all the nine
grasp types have a high frequency of daily usage based on
the work of [2]. Thus the selected grasp types can be used
to analyze large amount of manipulation tasks and meanwhile
are possible for automatic recognition from image appearance.

Hand patches are needed to train grasp classifiers. Following
[22], we train a multi-model hand detector composed by a
collection of skin pixel classifiers which can adapt to different
imaging conditions often faced by a wearable camera. For each
test image, a pixel-level hand probability map is generated
from the hand detector, and hand patches are then segmented
with a bounding box. In detail, candidate hand regions are first
selected by binarizing the probability map with a threshold.
Regions under a certain area proportion are discarded and at
most two regions are retained. Ellipse parameters (length of
long/short axis, angle) are fitted to the hand region and the
arm part is approximately removed by shortening the length
of long axis to 1.5 times of the length of short axis. Then the
remaining region is cropped with a bounding box. Linear SVM
classifiers are trained for each grasp type using feature vectors
extracted from hand patches. As the recognition output, belief
distribution of grasp types (or posterior probability of grasp
types given image evidence denoted as P (G|fG)) as well as
the predicted grasp type with highest probabilistic score are
obtained.
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Fig. 3. Object examples with four different attributes: Prismatic, Round,
Flat, and Deformable.

Recognition of grasp types provide information about how
the hands are holding the objects during manipulation. How-
ever, The grasp type alone is not enough to identify fine-
grained actions without information from the manipulated
objects. In the next section, we present the method to recognize
object attributes.

2) Object attributes: Attribute information of the grasped
object part is important for understanding hand manipulation
since it indicates possible hand motion in hand-object inter-
actions. For example, the body part of a bottle with long
and thick shape indicates a motion of “holding”, while the
bottle cap with small and round shape probably indicates a
motion of “screwing”. While objects can be assessed by a
wide range of attributes (shape, weight, surface smoothness,
etc.), we only focus on attributes that are relevant to grasping
and are also possible to be learned from image appearance.
Figure 3 illustrates the attributes studied in this work, three of
which are related to object shape and the fourth is related to
object rigidity. We identify three different shape classes based
on the criterion in Table I. The fourth attribute of Deformable
identifies the object that deforms under normal grasping forces.
Examples are a sponge or a rag. In this work, we aim to extract
the above four object attributes from each grasped object part.

TABLE I
CLASSIFICATION CRITERION OF THREE SHAPE CLASSES. LENGTH OF

OBJECT ALONG THREE OBJECT DIMENSIONS (MAJOR AXES OF THE
OBJECT) ARE DENOTED AS A, B, AND C , WHERE A ≥ B ≥ C .

Shape classes Object dimensions
Prismatic A > 2B

Round B ≤ A < 2B, C ≤ A < 2C
Flat B > 2C

Similar to grasp type recognition, appearance-based features
are extracted from object patches to train object attribute
classifiers. However, object detection is a challenging task in
computer vision, particularly unreliable when there are occlu-
sions during manipulation. We observe that hand appearance
provides important hint about the relative location and size of
the grasped part of the object (not the whole object, and we
will refer to “grasped part of the object” simply as “object”
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Fig. 4. Illustration of relative location and scale of the hand and the
manipulated object.

in the following paper) from which attribute information is
extracted. As illustrated in Figure 4, relative location (dx, dy)
from the center of hand to the center of object is consistent to
the hand orientation, and the object scale (Wo, Ho) is related
to the size of hand opening. Therefore, we propose to train a
target regressor for predicting the relative location and scale of
the grasped object based on hand appearance. Specifically, we
do regression on three quantities: normalized relative location
of (Nx, Ny) and relative scale of Ns specified as follows:

Nx =
dx
Wh

Ny =
dy
Hh

Ns =

√
Wo ×Ho

Wh ×Hh

(1)

Here are the steps of how to extract object attribute infor-
mation: First, linear SVM regressors for object detection are
pre-trained based on hand appearance features and manually
annotated object bounding boxes. Note that when annotating
object bounding box, we are not labeling the whole object
but the grasped part of the object. Then, object patches
are segmented with bounding boxes estimated based on the
regressed quantities defined in Equation 1. Finally, linear SVM
classifiers for object attribute classification are trained based
on object appearance features extracted from segmented object
patches and manually annotated attribute labels. As output,
belief distribution of object attributes (or posterior probability
of object attributes given image evidence denoted as P (O|fO))
as well as the predicted attributes are obtained.

Visual recognition of grasp types and object attributes
are challenging tasks as there are many occlusions during
manipulation. In the next section, we present how to boost
the recognition performance by mutual context.

B. Mutual context of grasp types and object attributes

There is strong causal relations between object attributes
and grasp types. Object attributes such as geometric shape and
rigidity have a large impact on the selection of grasp types. To
grasp an object with thin prismatic shape (e.g. , the mug cup
handle), grasp type of Small Wrap is often selected, while to
grasp an object with small round shape (e.g. , a bottle cap),
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Fig. 5. A Bayesian network modeling the relationship between object
attributes and grasp types.

grasp type of Precision Sphere is preferred. On the other hand,
knowing the grasp types used helps to infer the attributes of
the grasped object. Therefore, mutual context between grasp
types and object attributes can be explored that knowing the
information of one side facilitates the recognition of the other.

We use a Bayesian Network to model the context informa-
tion between grasp types and object attributes as illustrated
in Figure 5. There is a directional connection from object
attributes O to grasp types G, encoding the causal relation
between object attributes of O and the grasp types of G. fO
and fG denote the image evidence from the detected object
regions and hand regions respectively. Based on this model,
the posterior probability of object attributes and grasp types
given the image evidence can be computed as:

P (O,G|fO, fG) =
P (O)P (G|O)P (fO|O)P (fG|G)

P (fO)P (fG)

=
P (G|O)P (fO, O)P (fG, G)

P (fO)P (fG)P (G)

∝ P (G|O)P (G|fG)P (O|fO)

(2)

Thus, we can jointly infer object attributes O∗ and grasp types
G∗ by maximizing a posterior (MAP) as:

(O∗, G∗) = arg max
O,G

P (O,G|fO, fG)

= arg max
O,G

P (G|O)P (G|fG)P (O|fO)
(3)

The optimal inference is obtained by searching the joint
space of object attributes and grasp types that maximizes
the multiplication of three components. The first component
P (G|O) is the conditional probability of grasp types given
object attributes and has been learned in advance from oc-
currence frequencies of the training data. The last two com-
ponents P (G|fG), P (O|fO) are posterior probability of grasp
types and object attributes given image evidence, and can be
estimated from the probabilistic output of grasp classifiers and
object attribute classifiers (belief distribution of grasp types
and object attributes) respectively. Note that grasp classifiers
and object attribute classifiers are learned from the training
data as introduced in previous section II-A.
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Fig. 6. Hierarchical action model based on belief distribution of grasp types
and object attributes from the visual recognition layer.

C. Action modeling

Previous studies [23] showed that action functionality is
an important factor that affects human grasp selection. Thus
it is possible to infer action functionality from grasp types.
In this work, we take a further step to model manipulation
actions based on the grasp types of hands as well as the
attributes of manipulated objects. Our hypothesis is that grasp
types together with object attributes provide complementary
information for characterizing the manipulation action.

We propose a semantic action model that builds on the
semantic information of grasp types and object attributes.
The diagram of the action model is shown in Figure 6. The
hierarchical model separates the action modeling part from
the low-level visual recognition part, thus the action learned
is independent of image appearance which often changes under
different scenes. The visual recognition layer is introduced in
Section II-A which takes as input the image appearance and
output belief distribution of grasp types and object attributes.
At action modeling layer, a linear mapping function is learned
for each action which models its semantic relationship with
grasp types and object attributes denoted as:

PAction = f(PGl, PGr, POl, POr|θ) (4)

where PAction is the probabilistic estimation of manipulation
actions, PGl, PGr are belief distribution of grasp types for both
hands, POl, POr are belief distribution of object attributes, and
θ is a set of parameters that measure the relationship between
each action and its semantic components.

More specifically, for each image, the visual recognition
layer is applied to extract semantic information represented
by a 25-dimensional feature vector, of which 17 dimension
is composed by belief distribution of grasp types for two
hands (Writing Tripod is never used by the left hand) and
8 dimension is composed by belief distribution of object
attributes of two grasped objects. Linear SVM classifiers
are trained for different actions based on the obtained 25-
dimensional feature vectors.

III. EXPERIMENTS

In this section, we present four sets of results to validate
different components of our approach: (1) grasp type recogni-
tion, (2) target regression and object attribute recognition, (3)
improved recognition by mutual context of object attributes
and grasp types, (4) action recognition.

We evaluate our approach on a public dataset (GTEA Gaze
Dataset [9]) of daily activities recorded by a head-worn wear-
able camera. This dataset consists of 17 sequences of cooking
activities performed by 14 different subjects. The action verb
and object categories with beginning and ending frame are
annotated. We also use another public dataset (GTEA Gaze+
Dataset [9]) to test the generality of action models. This
dataset consists of seven cooking activities, each performed
by 10 subjects. Similarly, action labels are provided. The main
difference between these two datasets is that in the former
dataset activities are performed near a table while in the second
dataset activities are performed in a natural setting. The details
of evaluation for each component are introduced in following
sections.

A. Grasp type recognition

To train grasp classifiers for grasp type recognition from
egocentric video, we annotate grasp types for 1000 hand
images from GTEA Gaze Dataset. Previous work on grasp
type recognition used Histogram of Oriented Gradient (HoG)
[3] and Convolutional Neural Network (CNN) [32] for classi-
fying different grasp types from monocular images. In this
work we choose HoG as baseline feature and compare it
with two different CNN-based features. Since the number of
annotated grasp images is not sufficient for training CNN
with large number of parameters, we perform fine-tuning to
existing pre-trained CNN model and extract mid-layer features
from it. In particular, we combine a large pre-trained CNN
model proposed by Krizhevsky et al. [19] with domain-specific
fine-tuning on our annotated hand images using the open
source Caffe library [15]. We replace the original CNN’s
1000-way classification layer with a randomly initialized 9-
way classification layer (for the 9 grasp types) and perform
stochastic gradient descent (SGD) training at a learning rate of
0.001. Feature vectors are extracted from two different layers
(CNN-pool5 and CNN-fc6) of the CNN separately. Compared
to CNN-pool5 which is the max-pooled output of the CNN’s
final convolutional layer, CNN-fc6 adds one fully connected
layer to CNN-fc6. Based on the extracted features, linear
SVMs are trained for 9 grasp types. 5-fold cross-validation
is used for evaluation.

TABLE II
CLASSIFICATION ACCURACY FOR NINE GRASP TYPES ON GTEA GAZE

DATASET.

HoG CNN-pool5 CNN-fc6
Accuracy 50% 61.2% 56.9%

Grasp recognition performance of different features is



shown in Table II. Highest classification accuracy of of 61.2%
is achieved by CNN-pool5. It can be seen that CNN-based
feature outperforms hand-crafted feature HoG, also validated
by the work of [32]. However, our work shows the feasibility
of adapting pre-trained CNN model to grasp recognition
problem with scarce training data.

B. Object attribute recognition

To train target regressors for predicting object location and
scale, we annotated object bounding boxes for 1000 images
with well detected hand patches from GTEA Gaze Dataset.
The bounding box is annotated to include the object part being
grasped. To train attribute classifiers, we also annotate attribute
information for regions enclosed by annotated object bounding
boxes. Linear SVM target regressors are trained based on
annotated object bounding boxes and features extracted from
hand patches. Linear SVM attribute classifiers are trained
based on annotated object attributes and features extracted
from annotated object patches. We use the libSVM library [4]
for implementation. Since this is the first work by far as
we know on recognizing object attributes from hand-object
manipulation, we use same features as in Section III-A.

Table III shows quantitative results of target regression
evaluated by Intersection of Union (IoU) which measures the
overlap ratio of ground-truth object bounding box and the
predicted object bounding box. The predicted object bounding
box with equal width and height are determined based on the
regressed quantities defined in Equation 1. CNN-pool5 and
CNN-fc6 obtain similar performance but work much better
than HoG. Figure 7 demonstrates qualitative results of target
regression. It can be seen that the predicted object bounding
boxes match well with ground-truth object bounding boxes,
although the background is cluttered and objects are partially
occluded by hands. The results indicate that it is possible to
detect the grasped object parts simply from hand appearance.

TABLE III
QUANTITATIVE RESULTS OF TARGET REGRESSION EVALUATED BY

INTERSECTION OF UNION (IOU).

HoG CNN-pool5 CNN-fc6
IoU 0.471 0.739 0.736

TABLE IV
PERFORMANCE OF ATTRIBUTE CLASSIFICATION ON GTEA GAZE

DATASET.

Object Attribute HoG CNN-pool5 CNN-fc6
Prismatic 80.2% 87.9% 84.5%

Round 94.0% 94.0% 95.7%
Flat 81.0% 85.3% 87.1%

Deformable 88.8% 92.2% 91.4%
Combined 60.3% 72.4% 71.9%

Table IV shows the classification results for four binary
object attributes. Accuracy is evaluated for four binary at-

10 

Fig. 7. Qualitative results of target regression. Blue and green bounding boxes
show the detected hand regions and ground-truth object regions respectively.
Red circles show the predicted object regions with center of circle indicating
object location and radius indicating object scale.

tributes separately as well as combined. When evaluating
combined attributes, a prediction is considered as accurate
if all the attributes are correctly classified. Accuracy of over
80% is achieved for all binary attributes and the advantage
of CNN-based features over hand-crafted features is verified.
For combined attributes, CNN-pool5 achieves best accuracy
of 72.4% which means the percentage of cases that all binary
features are correctly classified is over 72.4%. The results
demonstrate the potential of learning physical properties of
the manipulated objects from monocular images.

C. Better recognition by mutual context

In this section, we show that the recognition of grasp types
and object attributes can be improved by mutual context. We
estimate the probability of grasp types conditioned on object
attributes as prior information by occurrence frequencies from
training data. Figure 8 shows the estimated conditional prob-
ability. It can be seen that different kinds of objects have very
different distribution over applied grasp types. Rigid-Prismatic
object such as a bottle is often held with Large Wrap or Index
Finger Extension, while Rigid-Round object such as a bottle
cap is often held with Precision Sphere.

We compare the recognition performance of with and
without context information. For recognition without context
information, grasp types and object attributes are inferred
independently by simply selecting the category which outputs
best score from classifiers. For recognition with context infor-
mation, grasp types and object attributes are jointly inferred
from Equation 3. Features of CNN-pool5 are used in both
two cases. The results in Table V and Table VI show that
visual recognition of grasp types and object attributes are
significantly improved by using context information. For grasp
types, overall classification accuracy is improved by 12.9%.
Performance of most grasp types are improved by object
context, except for Power Sphere and Precision Sphere. We
believe the performance deterioration of the two grasp types
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Fig. 8. Probability of grasp types given object attributes estimated by
occurrence frequencies from training data.

is due to some false classification of the attribute Round.
For object attributes, classification accuracy for combined
attributes is improved by 9.5%. Experiment results strongly
support the use of contextual information for improving visual
recognition performance.

TABLE V
PERFORMANCE IMPROVEMENT FOR GRASP TYPE RECOGNITION BY

MUTUAL CONTEXT (EVALUATED BY ACCURACY).

Grasp Category CNN CNN+Context
Extension Type 16.6% 20%

Index Finger Extension 66.6% 94.9%
Large Wrap 71.1% 81.8%

Lateral Pinch 87.5% 90.3%
Power Sphere 57.1% 33.3%

Precision Sphere 74.9% 66.6%
Small Wrap 52.6% 100%

Thumb-n Finger 55% 59%
Writing Tripod 73.3% 80%

Overall 61.2% 74.1%

TABLE VI
PERFORMANCE IMPROVEMENT FOR OBJECT ATTRIBUTE RECOGNITION BY

MUTUAL CONTEXT (EVALUATED BY ACCURACY).

Object Attributes CNN CNN+Context
Prismatic 87.9% 88.8%

Round 94.0% 95.7%
Flat 85.3% 88.8%

Deformable 92.2% 92.2%
Combined 72.4% 81.9%

D. Action recognition

In this section, we demonstrate the effectiveness of mod-
eling manipulation actions based on semantic information of
grasp types and object attributes. The verb part of original
action labels in GTEA Gaze Dataset are used as action labels
in this work. For example, “Open a jam bottle”” and “Open a
peanut bottle” are considered as the same action “Open”. We
focus on actions which require two-hand coordination. Seven

action classes are learned in this work and are illustrated in
Figure 9.

To evaluate the effectiveness of the proposed semantic
action model, action recognition performance is compared
with four baseline methods. In the first two baseline methods,
action classifiers are trained based on appearance features
extracted from two hand regions and two object regions. In
particular, HoG features (HoG-4, “4” stands for the feature
concatenation from four regions) and CNN-based features
(CNN-pool5-4, “4” has same meaning as in HoG-4) are ex-
tracted. Since gaze information is not available in our proposed
system, we didnt directly compare with the features used in
[9]. Instead, we extract appearance features (HoG and CNN)
from the detected hand and object regions which are used
as approximation of the region of gaze. In the third and forth
baseline method, grasp types (GpT) and object attributes (OA)
are used as intermediate features for training action classifiers
respectively. Note that GpT is also used in the method of
[32] for recognition of three different action intentions. In the
proposed method, grasp types and object attributes are jointly
used (GpT+OA). In practice, linear SVMs are used for training
action classifiers. Performance is evaluated using 5-fold cross
validation based on labeled images from GTEA Gaze Dataset.

The action recognition performance and feature dimension
of different methods are shown in Table VII. The proposed
GpT+OA outperforms GpT and OA, which indicates the com-
bination of grasp types and object attributes provides better
action modeling than using the two components separately.
Accuracy of 79.3% achieved by GpT+OA is also comparative
to state-of-the-art CNN-based feature representation. Note
that our method uses much lower feature dimension of 25
compared to 36864 used in CNN-pool5-4.

TABLE VII
PERFORMANCE COMPARISON FOR RECOGNIZING SEVEN ACTION CLASSES

ON GTEA GAZE DATASET.

Accuracy Dimension
HoG-4 65.5% 11664

CNN-pool5-4 81.0% 36864
GpT [32] 69.0% 17

OA 70.7% 8
GpT+OA 79.3% 25

To demonstrate the correlation between each action and its
semantic components of grasp types and object attributes, we
compute model parameters from support vectors learned by
each linear SVM classifier. Model parameters indicate the
correlation between action and its 25 semantic components.
Visualization of model parameters is illustrated in Figure 9. It
can be seen that each action has strong correlation to different
grasp types and object attributes.

To compare the generality of the proposed semantic action
model with appearance-based action model, we performed
cross-dataset action recognition by training and testing on
two different datasets. While all the training procedure is
done on GTEA Gaze Dataset, we test action recognition on
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Fig. 9. Visualization of model parameters for seven action classes. The saturation of red color indicates positive correlation while the saturation of green
color indicates negative correlation. White color indicates no correlation.

GTEA Gaze+ Dataset recorded in different environments. We
selected 100 images for each action category and a total of
700 images from GTEA Gaze+ Dataset are used for testing.
Appearance-based model is trained based on CNN-pool5-4,
while the proposed hierarchical model is trained based on
GpT+OA. Classification accuracy is shown in Table VIII. The
proposed semantic model outperforms the appearance-based
model by nearly 10%. The experiment verifies the generality
of the proposed method which takes into account semantic
constraints of grasp types and object attributes, and therefore
is more robust to overfitting.

TABLE VIII
GENERALITY EVALUATION OF ACTION MODELS BY TRAINING ON GTEA

GAZE DATASET AND TESTING ON GTEA GAZE+ DATASET.

CNN-pool5-4 GpT+OA
Accuracy 40.7% 50.4%

IV. CONCLUSION

We proposed an unified model for understanding hand-
object manipulation with a wearable camera. From a single
image, grasp types are recognized from the detected hand
regions and attribute information are extracted from the de-
tected object parts. Furthermore, mutual context is explored to
boost the recognition of both grasp types and object attributes.

Finally, actions are recognized based on belief distribution of
grasp types and object attributes.

Experiments were conducted to verify our proposal: (1) We
achieved average accuracy of 61.2% for grasp type recognition
and 72.4% for object attribute classification. (2) By mutual
context, recognition performance is improved by 12.9% for
grasp types and by 9.5% for object attributes. (3) Our proposed
semantic action model achieved classification accuracy of
79.3% which is comparative to state-of-the-art feature rep-
resentation with much lower feature dimension. Evaluation
results for model generality support our hypothesis that grasp
types and object attributes contain consistent information
for characterizing different actions. We believe our work of
studying the relationship between grasp types, object attributes
and actions points out an important direction for understanding
hand manipulation from vision.

In future work, we wish to extend the current single-
image framework to temporal dimension in order to study
the temporal evolution of hand grasping dynamics in different
manipulation tasks. Another direction we wish to step on is to
extract more complex object attributes (such as 3D shape) in
studying grasp-object relationship based on depth information
by using wearable RGB-D camera.
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