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Abstract—In this paper we present a system for the state
estimation of a dynamically walking and trotting quadruped.
The approach fuses four heterogeneous sensor sources (inertial,
kinematic, stereo vision and LIDAR) to maintain an accurate and
consistent estimate of the robot’s base link velocity and position
in the presence of disturbances such as slips and missteps. We
demonstrate the performance of our system, which is robust to
changes in the structure and lighting of the environment, as well
as the terrain over which the robot crosses. Our approach builds
upon a modular inertial-driven Extended Kalman Filter which
incorporates a rugged, probabilistic leg odometry component
with additional inputs from stereo visual odometry and LIDAR
registration. The simultaneous use of both stereo vision and
LIDAR helps combat operational issues which occur in real
applications. To the best of our knowledge, this paper is the first
to discuss the complexity of consistent estimation of pose and ve-
locity states, as well as the fusion of multiple exteroceptive signal
sources at largely different frequencies and latencies, in a manner
which is acceptable for a quadruped’s feedback controller. A
substantial experimental evaluation demonstrates the robustness
and accuracy of our system, achieving continuously accurate
localization and drift per distance traveled below 1cm/m.

I. INTRODUCTION

For legged robots to be useful and eventually autonomous,
they must be able to reliably walk and trot over a variety of
terrains and in the presence of disturbances such as slips or
pushes. They must also be able to perceive their environment
and to avoid collisions with obstacles and people.

Legged robot control systems typically act to regulate the
position, the orientation, and the associated velocities of the
robot’s base or center of mass. This state vector is used for
the planning of body trajectories, balancing and push recovery,
as well as local mapping and navigation. Accurate and reliable
state estimation is essential to achieve these capabilities, but it
is a challenging problem due to the demands of low latency
and consistency that high-frequency feedback control place on
it. Meanwhile, impulsive ground impacts, aggressive turns and
sensor limitations cause many modern exteroceptive navigation
algorithms to fail when most needed.

Despite the improvements demonstrated by bipedal systems
in the DARPA Robotics Challenge, for example [12], quadruped
robots (Boston Dynamics LS3 [14], MIT Cheetah 2 [18],
ANYmal [11]) present a more immediate solution to explore
the parts of the world that are inaccessible to traditional robots.

∗Both authors contributed equally to this work.

Fig. 1: Left: the Hydraulic Quadruped robot (HyQ) with the Carnegie
Robotics Multisense SL sensor head at the front. Right: the main
coordinate frames used in this paper.

In this paper, we demonstrate how inertial, kinematic, stereo
vision and LIDAR sensing can be combined to produce a
modular, low-latency and high-frequency state estimate which
can be directly used to control a state-of-the-art dynamic
quadruped. In turn, this estimate can be used to build accurate
maps of the robot’s environment and to enable navigational
autonomy. Compared with prior research, this contribution is
the first to discuss the complexity of consistent estimation of
both position and velocity signals, as well as the fusion of
stereo vision and LIDAR at very different sensor frequencies
and latencies for a quadruped’s feedback controller.

This article is presented as follows: in Section II we describe
previous research in this field and discuss how our contribution
differs from it. The robot platform and its exteroceptive sensor
suite are described in Section III, as are the performance
requirements we wish to achieve. Our algorithmic contribution
is presented in Section V, first overviewing our core inertial-
kinematic state estimator before describing modules for stereo
odometry and LIDAR registration. In particular, we discuss
the appropriate manner in which these sources of information
should be fused into the main estimate. In Section VII, we
present experimental results where we show how each of the
sensor modalities behaves in challenging circumstances and
how they contribute to improved performance. In the results
section, the robot is demonstrated achieving continuously
accurate localization with drift per distance traveled below
1 cm/m.

II. RELATED WORK

There is a significant body of literature in state estimation
and navigation of legged robots. As Ma et al. [14] described,



performance can be distinguished by multiple factors, such as
the quality of the sensors, the dynamics of the robot’s motion,
as well as the degree of challenge of the test environments and
extensiveness of the testing performed. To that list we would
add the quality of velocity estimation and suitability for use
in closed loop control.

Exteroceptive and proprioceptive state estimation are often
dealt with differently. Exteroceptive state estimate is closely
related to Simultaneous Localization and Mapping (SLAM)
and Barfoot [2] is an excellent resource in this area.

The motivation for proprioceptive state estimation is some-
what different for legged control system. Notably, Blösch
et al. [3] presented a rigorous treatment of the fusion of leg
kinematics and IMU information with a particular focus on
estimator consistency, which becomes important when fusing
very different signal modalities.

The method of sensor fusion we present is similar to that of
Chilian et al. [6] which discussed stereo, inertial and kinematic
fusion on a six-legged crawling robot measuring just 35 cm
across – yet combining all the required sensing on board. It was
unclear if computation was carried out on-board. The work of
Chitta et al. [7] is novel in that it explored localization against
a known terrain model using only contact information derived
from kinematics.

With a focus on perception in the loop, the electrically-
actuated MIT Cheetah 2 [18] produces impressive jumping
gaits which are cued off of a LIDAR obstacle detection system.
Because their work focuses on control and planning, the
perception system used therein is not intended to be general
nor it is used for state estimation.

The work of Ma et al. [14] is most closely related to
ours in scale and dynamism of their robot. Their system
was designed to function as a modular sensor head fusing
a tactical grade inertial measurement unit with stereo visual
odometry to produce a pose estimate for navigation tasks such
as path planning. Robot’s kinematic sensing was only used
when visual odometry failed. Their approach was focused on
pose estimation and was not used within the robot’s closed
loop controller. Their extensive evaluation (over thousands of
meters) achieved 1% error per distance traveled.

For cost and practical reasons we wish to avoid using such
high quality inertial sensors where possible. Our approach
was developed with a MEMS IMU in mind. In all of our
experiments we recorded both MEMS and Fiber Optic IMUs.
In Section VII we present some initial results comparing the
performance when using either sensor.

Finally, the estimator used in this work is based on a loosely-
coupled EKF. This general approach has been applied to micro-
aerial flight including Shen et al. [21] and Lynen et al. [13].

III. EXPERIMENTAL SCENARIO

Our experimental platform is a torque-controlled Hydraulic
Quadruped robot (HyQ, Figure 1) [20]. The system is 1 m long,
and weighs approximately 85 kg. Its 12 revolute joints have a
rotational range of 120◦. A summary of the core sensors on
the robot is provided in Table I. The 1 kHz sensors are read

Sensor Sensor Integration Integration Variables
Sensor Freq. Latency Freq. Latency Measured
IMU 1000 < 1 1000 n\a ωb b ẍb b
Joint Encoders 1000 < 1 1000 < 1 ẋb b
LIDAR 40 10 0.2-0.5 600 xw b θw b
Stereo 10 125 10 42 xw b

TABLE I: Frequency (Hz) and latency (ms) of the main sensors and
for computing corresponding filter measurements.

by our control computer (using a real-time operating system).
All other sensors are connected to a perception computer and
are passively synchronized with the real-time sensors [17].

The robot’s main exteroceptive sensor is the Carnegie
Robotics Multisense SL which is composed of a stereo camera
and a Hokuyo UTM-30LX-EW planar ranging laser (LIDAR).
The laser produces 40 line scans per second with 30 m
maximum range — while spinning about the forward-facing
axis. Every few seconds, it spins half a revolution and a
full 3D point cloud is accumulated. The stereo camera was
configured to capture 1024× 1024 images at 10 Hz and has a
0.07 m baseline. Within the unit, a Field Programmable Gate
Array (FPGA) carries out Semi-Global Matching (SGM) [9] to
produce a depth image from the image pair. The depth image
is used to estimate the depth of point features in Section V-B
as well as for other terrain mapping tasks. Figure 2 shows
an example of a left camera image and a depth image taken
during an experiment — indicating the challenging scenarios
we target.

IV. REQUIREMENTS

The purpose of the state estimator is to produce a low drift
estimate of the floating base of the robot model, which is
typically the main link of the robot with the IMU rigidly
attached to it. The estimate should have low latency (including
transduction and data transmission) which is important for the
velocity estimates used in the feedback loop of a controller. Low
drift or drift-free state estimation is also used in navigation tasks
(such as mapping and trajectory planning) as basic building
block for many autonomous systems.

Our system is designed such that our core estimator requires
only inertial and kinematic measurements to achieve low drift
(with varying drift rates for different gaits). The additional
sensing modalities of stereo vision and LIDAR can be incor-
porated in a manner which is complementary and provides

Fig. 2: Example of left camera image and depth image produced by
the robot’s stereo camera. This reflects the difficult lighting conditions
and challenging structure of the test arena. The scene is illuminated
with the sensor’s on-board lights.



redundancy to mechanical compliance and deformation in
the terrain (e.g., mud or loose stones). As the exteroceptive
sensors are captured with much lower frequency and higher
latency (Table I), care must be taken in how their inputs are
incorporated into the estimate.

V. APPROACH

We build upon an inertial-kinematic estimator recently
described in [5]. In this section, we overview the core approach
and use the same notation introduced therein. The 15 elements
of the robot’s base link state vector are defined by:

X =
[

xw b ẋb b θw b ba bω

]
(1)

where the base velocity ẋb b, is expressed in the base frame b,
while the position xw b and orientation θw b are expressed in
a fixed world frame w (the list of frames and their location
on HyQ is depicted in Figure 1). The orientation is expressed
as quaternion, but the attitude uncertainty is tracked by the
exponential coordinates of the perturbation rotation vector,
as described in [4]. The state vector is completed by IMU
acceleration and angular velocity biases ba and bω , which is
updated by an EKF from [8].

Measurements of acceleration and angular velocity are taken
from the IMU at 1 kHz. These are transformed into the base
frame (subject to the estimated biases) to estimate the base
acceleration ẍb b and angular velocity ωb b. Then, EKF is
propagated using a direct inertial process model.

IMU biases are typically estimated when the robot is
stationary and held static thereafter, as they are difficult to
infer on a dynamic robot1. When operating, the robot drift of
the yaw estimate is a significant issue. We have typically used
a Microstrain 3DM-GX4-25 IMU but more recently explored
using the KVH 1775, a tactical grade IMU equipped with a
Fiber Optic Gyroscope (FOG). For this reason, we compare
the estimation performance of both IMUs in Section VII.

A. Leg Odometry Module

Joint sensing contributes through a Leg Odometry (LO)
module [5], which also runs at 1 kHz. During the filter update
step, a measure for the base velocity ẋb b is computed as a
combination of the individual velocity measurements ẋb bf

from
each in-stance foot f , as follows:

ẋb bf
= − ẋb f − ωb b × xb f , (2)

where ẋb f and xb f are the velocity and position of foot f in
the base frame, respectively.

As the robot is not equipped with contact sensors, we use
the probabilistic contact classifier described in [5] to infer the
combination of feet which are in stable and reliable contact.
The velocity measure is then a weighted combination of the
individual components, proportional to the probability of a
particular foot being in reliable contact. An adaptive covariance
associated with the velocity measurement accounts for harsh

1In [14] the robot was commanded to stand still occasionally to back out
rotation rate bias estimates.
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Fig. 3: Visual odometry performance during a trotting sequence: the
robot first trots forward at 0.3m/s and then turns in place sharply
over a 5 s period. During the initial trotting phase, VO performance
is satisfactory. However, image blur causes the number of inliers to
fall and mean re-projection error to spike. During this part of the
experiment, no VO measurement packets are incorporated into the
main motion estimate.

impact forces (up to 600 N when trotting) and helps ensure a
smooth and accurate velocity estimate.

In experiments with trotting and crawling gaits, the proprio-
ceptive estimator achieved drift rates of approximately 3 cm
per meter traveled. This (or greater) accuracy is needed to build
accurate terrain maps (in motion) and to allow the robot’s rear
feet to achieve desired footholds (of 2–3 cm size) when sensed
by the robot’s forward facing sensors.

B. Visual Odometry Module

Visual Odometry (VO), and more broadly Visual SLAM, is
becoming more feasible on legged platforms. This is enabled by
more rugged sensors which are less susceptible to failure due
to the dynamic motion of the robot. Nonetheless, certain types
of robot motions (in particular ground impacts and aggressive
turns) cause motion blur, especially in low light conditions.

Chilian et al. [6] suggested that leg odometry and visual
odometry can be complementary, as difficult terrain often
contains texture. In our experience however, where locomotion
struggles (such as with a mis-timed footstep) it instead induces
motion blur and reduces VO performance (Figure 3). Latency is
another important issue to consider. As stated in [14], a camera
packet is typically received once every 50 inertial measurement
packets.

Our visual odometry pipeline uses the open source implemen-
tation of FOVIS [10]. While its performance is competitive with
more recent approaches, it could be straightforwardly replaced
by a more recent VO system such as ORB-SLAM [15]. Its only
input is a sequence of left/depth image pairs. It tracks FAST
features in a key-frame approach so as to estimate incremental
camera motion, from image frame k − 1 to frame k which we
denote T̂c c

k−1:k, where c indicates the camera frame. Using
the known camera-to-body frame transformation, Tb c , this can
be expressed at the corresponding estimate of the motion of



the body frame from k − 1 to k as:

T̂b b
k−1:k = Tb c T̂c c

k−1:k( Tb c )−1 (3)

We have considered a number of ways of incorporating this
information into the 1 kHz running estimate. The manner in
which it is incorporated can conflict with other signal sources.
Due to the accuracy of the gyroscope sensor, we currently
incorporate only the translation element and as a result that
orientation estimate can drift in yaw.

Velocity measurement: Initially we explored using the
VO signal as a second velocity source. Operating the camera
at its highest frequency (30 Hz), a measure of velocity can be
computed by differencing the incremental motion estimate

ˆ̇xb b =
x̂b b

k−1:k

(tk − tk−1)
(4)

where tk is the timestamp of image frame k. While this signal
does approximate velocity, this is unsatisfactory because of the
low frequency and high latency of the camera.

Frame-to-frame position measurement: A more straight-
forward approach is to use this relative motion estimate to infer
a position measurement of the robot relative to a previous state
of the filter.

Taking the posterior estimate of the EKF filter corresponding
to time tk−1, a measurement of the pose of the body at time
tk can be computed as follows:

T̂w b
k = Tw b

k−1 ⊕ T̂b b
k−1:k (5)

This can be incorporated as an EKF position measurement. Ma
et al. [14] used this approach to estimate the robot pose estimate
(at 7.5 Hz) and occasionally relied on LO when a failed VO
frame occurred. Probabilistic fusion of redundant signal sources
was not carried out. Instead, our goal is consistent estimation of
position and velocity at high frequency, which makes subtleties
of the integration important.

Consider Figure 4, which shows the position estimate
of the robot while trotting. Overlaid on the figure are red
markers indicating the timestamps of image frames. Any pose
estimate computed using VO would be below the Nyquist
frequency of the robot’s motion and demand very precise time
synchronization.

Position measurement over several frames: We choose
a less fragile approach which integrates the visual motion esti-
mate over several image frames and to compute a compounded
EKF position measurement. Specifically, we integrate the VO
estimate for a N -frame window T̂b b

k−N :k to form a position
measurement in the world frame as follows:

T̂w b
k = Tw b

k−N ⊕ T̂b b
k−N :k (6)

where N is the number of frames used for integration (typically
N corresponded to 2–3 s). This is similar to key-frame tracking
where tracking for an extended duration can improve accuracy
over frame-to-frame tracking. Finally the position portion of this
measurement, x̂w b

k, is then used to create an EKF correction
of the body position.
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Fig. 4: Height (z-dimension) of the robot’s base frame (top) and raw
z-axis accelerometer measurements (bottom) while trotting. Indicated
with red dots are timestamps of received stereo camera images. The
bandwidth of the base motion is much higher than for many wheeled
robots, while foot strikes cause acceleration spikes.

C. LIDAR-based Localization

To incorporate information from the LIDAR sensor, we use
Iterative Closest Point (ICP) registration of 3D point clouds
to estimate the robot’s pose. Using the terminology of [19],
this involves aligning a reading cloud to a reference cloud so
as to infer the relative position of the sensor which captured
the clouds. In particular, we want to measure (at time k) the
relative pose T̂w b

k between the robot’s base frame b and the
world frame w, and then incorporate it as an observation in
the EKF.

Registration of consecutive point clouds is often used to
incrementally estimate motion, but it accumulates error over
time. On the other hand, repeatedly registering to a common
reference cloud is difficult when the robot moves away from
its original position, as the overlap between the reference and
the current cloud decreases over time.

In [16], we proposed a strategy for non-incremental 3D
scene registration, which shows increased robustness to initial
alignment error and variation in overlap. That work extended
the libpointmatcher ICP implementation of Pomerleau et al.
[19] with pre-filtering of the input clouds and automatic tuning
of the outlier-rejection filter to account for the degree of point
cloud overlap. The approach, called Auto-tuned ICP (AICP),
leverages our low drift inertial-kinematic state estimate to
initialize the alignment (Section V-A) and to compute an
overlap parameter Ω ∈ [0, 1] which can tune the filter. The
parameter is a function of the maximum range and the field
of view of the LIDAR sensor.

Here, we use the AICP framework to prevent accumu-
lated drift and maintain accurate global localization. In our
experiments, we could reliably register point clouds with
only 11% overlap, which corresponded to a position offset
of approximately 13 m.

Forced reference update: When the overlap drops dra-
matically, a reference point cloud update is required. In this
work, we extend the AICP algorithm to trigger a reference point



Fig. 5: State estimator signal block diagram: the core inertial-
kinematic block (blue) runs on the control computer, while the other
modules run on the perception computer.

cloud update when Ω decreases below the empirical threshold
of 11%. When the threshold is crossed, the reference cloud is
updated with the most recent reading cloud, whose alignment
was successful. We follow three heuristics to determine if an
alignment is successful. First, the mean residual point-wise
error should be smaller than the threshold α:

MSE =
1

n

n∑
i=1

ri < α (7)

where r1, . . . , rn are the residual distances between the ac-
cepted matching points in the input clouds. Second, the median
of the residual distribution, Q(50), should be smaller than the
threshold α:

Q(50) < α (8)

Third, the quantile corresponding to the overlap measure should
be also smaller than α:

Q(Ω) < α (9)

The first two conditions are commonly used metrics of
robustness, while the third automatically adapts to the degree
of point cloud overlap. The parameter α was set to 0.01 m
during our experiments.

The limited frequency of the Hokuyo (40 Hz) and the speed
of rotation of the sensor define the density of the accumulated
point clouds. Increasing the spin rate reduces the density of
each cloud. When trotting at 0.5 m/s, a sensor spin rate of
15 RPM corresponds to a new point cloud every 2 s — with the
robot traveling about a body length in that time. Running on a
parallel thread, the AICP algorithm produces a pose correction
with a computation time of approximately 600 ms.

VI. IMPLEMENTATION DESIGN

Filtering a heterogeneous set of signals with different
frequencies and latencies requires careful consideration. A
block diagram of our system is presented in Figure 5, with
timing information for acquisition and integration in Table I.

At each iteration of the main 1 kHz inertial-kinematic loop,
we calculate the prediction step and then immediately output
the predicted state estimate (X k) to the control system to
minimize latency. Subsequently, a velocity measurement is
calculated using the 1 kHz leg odometry. This is applied to

the filter as a Kalman update. These two components run in
a single thread with no inter-process communication between
them.

The visual odometry and the LIDAR registration modules
operate at much lower frequencies and higher latencies. The
VO pipeline takes no input other than the camera imagery and
outputs the relative distance estimate at 10 Hz. The acquisition
time for our stereo camera is significant (125 ms) — partially
due to the SGM algorithm [9] (running on the FPGA) and
image transport.

The LIDAR scans are received with much lower latency, but
are then accumulated into a point cloud before the registration
algorithm computes an alignment. The corrected pose estimate
is then calculated and transmitted to the core estimator in the
same manner as for VO — albeit at much lower frequency.
Thus, both modules run as decoupled processes without
affecting the core estimator.

Considerations due to latency: The implementation of
the filter maintains a history of measurements so as to enable
asynchronous corrections with significant latency — specifically
the VO and LIDAR corrections. In Figure 6, we explain how
this filter works with a toy example (for simplicity, leg odometry
is left out of this discussion). In blue is the best estimate of
the state over the history at that moment in time. In red is the
effect of EKF update steps caused by measurements. In green
are portions of the filter history which have been overwritten
due to a received measurement.

Event #1: Before Event #1, the IMU process model will
have been predicting the state of the robot until Time A. At
this instant, a LIDAR correction is received which is based on
LIDAR line scans collected over a period of several seconds
stretching from Time B to Time C. This means that the
position correction estimate from the LIDAR over that period
is significantly delayed when it is finally computed. Also the
accumulation is dependent on the accurate IMU+LO state
estimate — which creates a coupling between these modules.

Event #2: The LIDAR measurement is incorporated as an
EKF correction which produces the posterior estimate T̂C

which causes the mean of the EKF to shift. The remaining
portion of the state estimate is recalculated to incorporate the
correction (such that the head of the filter becomes T̂A). The
green trajectory is overwritten (this is a crucial step).

Event #3: Over the next period of time the filter continues to
predict the head of the estimator using the IMU process model.
At Time D, a new visual odometry measurement is created
which measures the relative transformation of the body frame
between Time E and Time F as T̂b b

E:F . This measurement is
typically received with about 170 ms of delay.

Event #4: We wish to use this information to correct the
pose of the robot towards T̂F , as described in Section V-B.
The key step is that this correction to the filter is carried out
using the re-filtered trajectory (mentioned in Event #2). After
the correction is applied, the head of the filter becomes T̂D

and the estimator continues as normal.
The final sub-figure (on the right) shows the state of the head

of the filter over the course of the example. This is the running



T
A

T
B

T
C T

C

T
C

T
A

T
F

T
D

T
E

#1: at Time A:

Pre-LIDAR correction

#2: Time A:

Post-LIDAR correction

#3: Time D:

Pre-VO correction

T
D

#4: Time D:

Post-VO correction

Head State of Filter

During Experiment

T
D

T
A

T
F

T
F

T
F

ti
m

e
T

E

T
C

Fig. 6: Example illustrating how VO and LIDAR measurements can be incorporated into the filter despite having much higher latency
than the IMU process model. In blue is the best estimate of the trajectory at that instance, in green are parts of the trajectory which have
been recomputed after a position measurement was incorporated (in red). Elapsed time is indicated in the upward direction. All indicated
coordinate frames are of the base frame expressed in the world frame.

Fig. 7: Environments used to test repeatability (top) and to compare
algorithm variants in challenging scenarios (bottom).

estimate that would have been available to the controller online.

VII. EXPERIMENTAL RESULTS

To validate the described system, we performed experiments
in two different scenarios. First, to demonstrate accuracy and
repeatability, a repetitive experiment was carried out in a
laboratory environment using a Vicon motion capture system
to generate the ground truth.

Second, extensive testing was carried out in a poorly lit,
industrial area with a feature-less concrete floor, as well as
test ramps and rock beds (Figure 7, bottom). The environment,
the different locomotion gaits (trotting and crawling) and the
uneven terrains presented a large number of challenges to our
algorithms and demonstrated the importance of using redundant
and heterogeneous sensing. The robot’s peak velocity when
trotting was about 0.5 m/s, which is approximately half of
typical human walking speed.

We will refer to four different configurations: the baseline
inertial-kinematic estimator (IMU-LO) and three variants which
use either VO, AICP, or both. Except where noted, we used
the KVH 1775 IMU in our experiments.

A video to accompany this paper is available at https://youtu.
be/39Y1Jx1DMO8

A. Experiment 1: Validation and Repeatability

The robot was commanded to continuously trot forward and
backward to reach a fixed target (a particular line in Figure
7, top). Robot position and velocity estimates are used by
the controller to stabilize the robot motion while tracking the
desired position, as described in [1].

Periodically, the operator updated the target so as to com-
mand the robot to trot a further 10 cm forward. The experiment
continued for a total duration of 29 min. At the end of the
run, the robot had covered a total distance of about 400 m and
trotted forward and backward 174 times. The configuration
used on-line in the experiment was IMU-LO-AICP.

To measure body-relative drift we compute the average Drift
per Distance Traveled (DDT) relative to the ground truth pose.
The per-sample DDT is as follows:

DDT(k) =
||∆t̄bk−N :k −∆t̂bk−N :k||∑k

j=k−N ||∆t̄bj−1:j ||
(10)

which is the mean absolute position drift over the period k−N :
k (we used 10 s) divided by the ground truth path integral of
motion of the base link (the path integral tends to overstate
the distance traveled and understate DDT). For an entire run,
we calculate the median of this function, which is relevant
because a continuously low DDT is required for accurate
footstep execution and terrain mapping. For yaw drift, we use
the median absolute yaw drift per second.

In Table II, we show the results for the four configurations
using the KVH 1775. One can see that the IMU-LO-VO
combination reduces the DDT relative to the baseline – in
particular by reducing drift in z. IMU-LO-AICP removes global
drift and keeps DDT below 1 cm/m. Using all the sensors
(IMU-LO-VO-AICP combination) the drift is further reduced
to 0.72 cm/m. This result is comparable to the measurement
noise of the Vicon system and satisfies our requirements.

Comparison between IMUs: We present the results for
two different IMU configurations, using the industrial grade
Microstrain 3DM-GX4-25 in addition to the KVH 1775. For
the IMU-LO baseline, the median absolute rotation drift rate
is an order of magnitude greater than for the KVH (0.119 ◦/s).
However, by incorporating VO and AICP, we demonstrate that

https://youtu.be/39Y1Jx1DMO8
https://youtu.be/39Y1Jx1DMO8


Sensor Drift per Dist. Traveled [cm/m] Median Yaw
Drift [deg/s]Combination XYZ XY X Y Z

KVH 1775 FOG
IMU-LO 3.27 0.71 0.42 0.41 3.08 0.019
IMU-LO-VO 1.67 0.80 0.48 0.43 1.30 0.021
IMU-LO-AICP 0.89 0.66 0.35 0.41 0.42 0.014
IMU-LO-VO-AICP 0.72 0.56 0.32 0.30 0.31 0.014

Microstrain GX4-25 MEMS
IMU-LO 3.63 0.97 0.70 0.53 3.47 0.119
IMU-LO-VO-AICP 0.78 0.58 0.35 0.31 0.36 0.016

TABLE II: Median Drift per Distance Traveled (DDT) and Median
Absolute Yaw Drift from Experiment 1 (see Section VII-A).

Name Gait Duration Area m2 Laser Ramp
Log 1 crawl 869 s 20×5, F/B 5 RPM X
Log 2 crawl 675 s 20×5, F 5 RPM X
Log 3 trot 313 s 20×5, F/B 15 RPM X
Log 4 trot 330 s 20×5, F/B 10 RPM X
Log 5 trot 469 s 7×5, F/B 10 RPM X

TABLE III: Summary of the dataset used for Experiment 2, including
log duration, size of arena, type of motion (F/B = forward/backward
trajectory), laser spin rate, and terrain features.

we can reduce the rotation drift to be comparable with the
KVH sensor (0.016 ◦/s). Space limitations preclude a more
detailed discussion.

The results presented here show that incorporating VO
reduces the drift rate relative to the base line system, while
adding AICP achieves localization relative to a fixed map. So as
to test performance with uneven terrain and where the reference
point cloud must be updated, a second series of experiments
was carried out in a larger environment.

B. Experiment 2: Comparing Variants in a Realistic Scenario

The robot explores a 20× 5 m2 industrial area (Figure 7,
bottom). It navigates over uneven and rough terrain (ramps and
rock beds), crawling and trotting at up to 0.5 m/s. Turning in
place (as seen in Figure 3) represents an extra challenge for the
state estimation system. Lighting conditions vary dramatically
during data recording, from bright light to strong shadows and
from day to night-time. In some experiments, on-board lighting
was used. The dataset is summarized in Table III and consists
of five runs, for a total duration of 44 min and 300 m traveled.

No motion capture system is available in this space: to
quantitatively evaluate the state estimation performance on the
dataset, we built a prior map made up of a collection of 4
carefully aligned point clouds and we estimated drift relative
to it.

Given a trajectory of estimated robot poses from an experi-
ment, for every full laser rotation we align the point cloud to
the prior map. To evaluate the accuracy of the estimated pose
Te, we can estimate the correct pose Tc from this alignment,
which we assume will closely match the true ground truth pose.
The error ∆T is computed as follows:

∆T =

[
∆R ∆t
0 1

]
= TeT

−1
c (11)

with translation error as ||∆t|| and rotation error as the
Geodesic distance given the rotation matrix ∆R, as in [19].
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Fig. 9: Estimated error of the state estimator used in Log 1, using the
configuration IMU-LO-VO-AICP. The log is referred to Experiment 2a
and involved the robot crawling for a total of 40m.

a) Experiment 2a - Crawling Gait: In Experiment 1, we
have shown (while trotting) that integrating VO reduces the
pose drift rate between the lower frequency AICP corrections.
Here, we focus on the importance of using VO in addition to
AICP.

Figure 9 shows the estimated error over the course of Log
1, recorded in the arena of Figure 8. The robot started from
pose A, reached B and returned to A. The robot crawled for
40 m and paused to make 3 sharp turns. The experiment was
at night and used the on-board LED lights.

During this run, the reference point cloud was updated 4
times. After 860 s, the state estimation performance had not
significantly degraded, despite no specific global loop closure
being computed.

In Figure 10, one can see that the median translation error
was approximately 3 cm while the median correction made
by the EKF was about 3 mm — both with and without VO.
Because we do not observe a significant improvement in drift
rates, we choose not to recommend using VO while crawling.
This is because of the lower speed of motion and the reduced
drift rate of this less dynamic gait.

b) Experiment 2b - Trotting Gait: As mentioned previ-
ously, trotting is a more dynamic gait with a higher propriocep-
tive drift rate, which means that the VO could better contribute
when combined with AICP. Empirically, this can be seen in
the inset plot in Figure 8. In this case, the algorithm with
VO produces a smoother trajectory (in green) than without (in
yellow). This is important because the robot’s base controller
uses these estimates to close position and velocity control loops.
Discontinuities in the velocity estimate could lead to undesired
destabilizing foot forces and controller reactions.

In brief, for the trotting logs (Logs 3, 4, 5) the integration
of AICP allowed state estimation with an average 3D median
translation error of approximately 4.9 cm (Figure 10, left).
The integration of VO reduced the median translation error to
3.2 cm. Similar behavior can be seen for the magnitude of the
position correction (Figure 10, right). These results demonstrate
that continuous drift has been removed and that incremental
drift is minimal.



Fig. 8: A LIDAR map during a 17m trot across the test arena. Also shown are the trajectories for the 4 estimator configurations discussed
in this paper. The final combination (IMU-LO-VO-AICP) produces a smooth trajectory with continuously accurate localization (inset).

VIII. DISCUSSION AND LIMITATIONS

As described above, the proposed system is able to overcome
a variety of challenges and to support accurate navigation
despite the dynamic locomotion gaits. The current system
limitations are: a) the incremental error introduced by updates
of the reference cloud, b) the frequency of the LIDAR sensor
and resulting point cloud accumulation, and c) the susceptibility
of the VO system to occasionally fail during short periods of
poor lighting and the absence of visual features.

The system cannot recover from a) without a SLAM or loop
closure strategy. Because of the overlap analysis, AICP allows
us to change reference frame rarely, meaning that the drift in
the demonstrated experiments is under one centimeter.

Depending on the LIDAR spin rate, AICP corrections occur
at different frequencies, while accuracy is dependent on a
minimum point cloud density. Accumulating a cloud over
several seconds is problematic because of the state estimator
drift. At the speeds of locomotion tested here, this issue has
not been limiting, however at higher speeds a higher frequency
LIDAR may become necessary.

Concerning the visual odometry module, failures during
experiments occurred when there was limited illumination or
motion blur (e.g., Figure 2). In these cases, the VO system
merely resets until the next suitable frame is received.

IX. CONCLUSION

We have presented algorithms for the sensor fusion of inertial,
kinematic, visual sensing and LIDAR to produce a reliable
and consistent state estimate of a dynamically locomoting
quadruped built upon a modular Extended Kalman Filter.

In particular we indicated how our approach supports
dynamic maneuvers and operation in sensor impoverished
situations. The reliability of our approach was demonstrated
with dynamic gaits and speed up to 0.5 m/s. A particular
technical achievement has been reliably closing the loop with
this state estimator in dynamic gaits. During experiments lasting
over one hour, our system demonstrated to be robust and
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Fig. 10: Median translation error and magnitude of the AICP
correction with (green) and without (yellow) visual odometry for
Experiment 2 (see the dataset Table III). The smaller corrections
of the IMU-LO-VO-AICP combination indicate smoother estimated
trajectory.

continuously accurate with drift per distance traveled below
1 cm/m.

As we move forward with our testing, we will leverage
the lessons learned here in more challenging experiments. We
are interested in exploring more advanced visual mapping to
allow the robot to recover visual localization after events such
as sharp turns. Our initial testing indicates that many visual
mapping systems do not adapt well to our test scenarios.

As mentioned in Section V-B, our current filter marginalizes
out previous state variables. In future work we will explore
using windowed smoothing to incorporate measurements
relative to previous filter states.
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