
CAD2RL: Real Single-Image Flight Without a
Single Real Image

Fereshteh Sadeghi
University of Washington

fsadeghi@cs.washington.edu

Sergey Levine
University of California, Berkeley

svlevine@eecs.berkeley.edu

Environment

feedback

t = 0 t = 1 t = 2 t = 3 t = 4 t = H…

Action

Collision

with wall

Collision

with Furniture

No Collision

D
if

fe
r
e
n
t
 P

la
t
fo

r
m

s

time

Training entirely in simulation Test in real world

Fig. 1. We propose the Collision Avoidance via Deep Reinforcement Learning algorithm for indoor flight which is entirely trained in a simulated CAD
environment. Left: CAD2RL uses single image inputs from a monocular camera, is exclusively trained in simulation, and does not see any real images at
training time. Training is performed using a Monte Carlo policy evaluation method, which performs rollouts for multiple actions from each initial state and
trains a deep network to predict long-horizon collision probabilities of each action. Right: CAD2RL generalizes to real indoor flight.

Abstract—Deep reinforcement learning has emerged as a
promising and powerful technique for automatically acquiring
control policies that can process raw sensory inputs, such as
images, and perform complex behaviors. However, extending
deep RL to real-world robotic tasks has proven challenging,
particularly in safety-critical domains such as autonomous flight,
where a trial-and-error learning process is often impractical. In
this paper, we explore the following question: can we train vision-
based navigation policies entirely in simulation, and then transfer
them into the real world to achieve real-world flight without a
single real training image? We propose a learning method that
we call CAD2RL, which can be used to perform collision-free
indoor flight in the real world while being trained entirely on
3D CAD models. Our method uses single RGB images from
a monocular camera, without needing to explicitly reconstruct
the 3D geometry of the environment or perform explicit motion
planning. Our learned collision avoidance policy is represented by
a deep convolutional neural network that directly processes raw
monocular images and outputs velocity commands. This policy
is trained entirely on simulated images, with a Monte Carlo
policy evaluation algorithm that directly optimizes the network’s
ability to produce collision-free flight. By highly randomizing the
rendering settings for our simulated training set, we show that
we can train a policy that generalizes to the real world, without
requiring the simulator to be particularly realistic or high-fidelity.
We evaluate our method by flying a real quadrotor through in-
door environments, and further evaluate the design choices in our
simulator through a series of ablation studies on depth prediction.
For supplementary video see: https://youtu.be/nXBWmzFrj5s

I. INTRODUCTION

Indoor navigation and collision avoidance is one of the

basic requirements for robotic systems that must operate in

unstructured open-world environments, including quadrotors,

mobile manipulators, and other mobile robots. Many of the

most successful approaches to indoor navigation have used

.

mapping and localization techniques based on 3D percep-

tion, including SLAM [3], depth sensors [44], stereo cam-

eras [37], and monocular cameras using structure from mo-

tion [8]. The use of sophisticated sensors and specially mount-

ing multiple cameras on the robot imposes additional costs on

a robotic platform, which is a particularly prominent issue

for weight and power constrained systems such as lightweight

aerial vehicles. Monocular cameras, on the other hand, require

3D estimation from motion, which remains a challenging

open problem despite considerable recent progress [13, 20].

In this paper, we explore a learning-based approach for indoor

navigation, which directly predicts collision-free motor com-

mands from monocular images, without attempting to explic-

itly model or represent the 3D structure of the environment.

In contrast to previous learning-based navigation work [5],

our method uses reinforcement learning to obtain supervision

that accurately reflects the actual probabilities of collision,

instead of separating out obstacle detection and control. The

probability of future collision is predicted from raw monocular

images using deep convolutional neural networks.

Using reinforcement learning (RL) to learn collision avoid-

ance, especially with high-dimensional representations such as

deep neural networks, presents a number of major challenges.

First, RL tends to be data-intensive, making it difficult to use

with platforms such as aerial vehicles, which have limited

flight time and require time-consuming battery changes. Sec-

ond, RL relies on trial-and-error, which means that, in order to

learn to avoid collisions, the vehicle must experience at least

a limited number of collisions during training. This can be

extremely problematic for fragile robots such as quadrotors.

A promising avenue for addressing these challenges is to

https://youtu.be/nXBWmzFrj5s

train policies in simulation, but it remains an open question

whether simulated training of vision-based policies can gener-

alize effectively to the real world. In this work, we show that

we can transfer indoor obstacle avoidance policies based on

monocular RGB images from simulation to the real world by

using a randomized renderer, without relying on an extremely

high degree of realism or visual fidelity. Our renderer forces

the network to handle a variety of obstacle appearances and

lighting conditions, which makes the learned representations

invariant to surface appearance. As the result, the network

learns geometric features and can robustly detect open spaces.

In contrast to prior work on domain adaptation [35, 41], our

method does not require any real images during training. We

demonstrate that our approach can enable navigation of real-

world hallways by a real quadrotor using only a monocular

camera, without depth or stereo. By training entirely in sim-

ulation, we can also use a simple and stable RL algorithm

that exploits the ability to reset the environment to any

state. Figure 1 shows a diagram of our CAD2RL algorithm.

The algorithm evaluates multiple actions at each state using

the current policy, producing dense supervision for the Q-

values at that state. Training the Q-function to regress onto

these Q-values then corresponds to simple supervised learning.

This algorithm sidesteps many of the hyperparameter tuning

challenges associated with conventional online RL methods,

and is easy to parallelize for efficient simulated training.

The main contribution of our work is an approach for

training collision avoidance policies for indoor flight using

randomized synthetic environments and deep RL. We designed

a set of synthetic 3D hallways that can be used to generate

large datasets of randomized scenes, with variable furniture

placement, lighting, and textures. Our synthetic data is de-

signed for the task of indoor robot navigation and can also be

used as a testbed for RL algorithms. Our proposed RL method

is also a novel contribution of this work, and is particularly

simple and well-suited for simulated training.

We present an extensive empirical evaluation that assesses

generalization to the real world, as well as ablations on

a supervised proxy task that studies which aspects of the

randomized simulation are most important for generalization.

Our simulated comparative evaluation shows that our approach

outperforms several baselines, as well as a prior learning-based

method that predicts turning directions [14]. Our real-world

experiments demonstrate the potential for purely simulation-

based training of deep neural network navigation policies. Al-

though the policies trained entirely in simulation do experience

some collisions in the real world, they outperform baseline

methods and are able to navigate effectively around many

kinds of obstacles, using only monocular images as input.

We therefore conclude that simulated training is a promising

direction for learning real-world navigation for aerial vehicles

as well as other types of mobile robots.

II. RELATED WORK

Any robotic system that must traverse indoor environments

is required to perform basic collision avoidance. Standard

methods for collision-free indoor navigation take a two step

approach to the problem: first map out the local environment

and determine its geometry, and then compute a collision-free

path for reaching the destination [39]. This approach benefits

from independent developments in mapping and localization

as well as motion planning [38, 27, 4]. The 3D geometry

of the local environment can be deduced using SLAM with

range sensors [3], consumer depth sensors [44, 16], stereo

camera pairs [37], as well as monocular cameras [8]. In [25],

laser range scanned real images are used to estimate depth in

a supervised learning approach and then the output is used

to learn control policies. In [15] simultanouse mapping and

planning using RGB-D images is done via a memory network.

Reconstruction from monocular images is particularly chal-

lenging, and despite considerable progress [20, 13], remains a

difficult open problem. In a recent approach, IM2CAD, CAD

model of a room is generated from a single RGB image [18].

While the synthetic data generated by [18] could be used

for various robotics simulations, the computational overhead

makes it less suitable for autonomous indoor flight, where

quick inference for finding open spaces is more critical than

categorical exact 3D models.
In our work, we sidestep the challenges of 3D reconstruction

by proposing a learning algorithm that can directly predict the

probability of collision, without an explicit mapping phase.

Learning has previously been used to detect obstacles for

indoor flight [5, 19], as well as to directly learn a turn

classifier for outdoor forest trail following [14]. In contrast

to the work of [5], our method directly learns to predict the

probability of collision, given an image and a candidate action,

without attempting to explicitly detect obstacles. However,

our approach still affords considerable flexibility in choosing

the action: a higher-level decision making system can choose

any collision-free action based, for example, on a higher-level

navigational goal. This is in contrast to the prior work, which

simply predicts the action that will cause the vehicle to follow

a trail [14]. Unlike [14], our method does not require any

human demonstrations or teleoperation.
Besides presenting a deep RL approach for collision avoid-

ance, we describe how this method can be used to learn a

generalizable collision predictor in simulation, such that it can

then generalize to the real world. Simulated training has been

addressed independently in the computer vision and robotics

communities in recent years. In computer vision, a number of

domain adaptation methods have been proposed that aim to

generalize perception systems trained in a source domain into

a target domain [42, 17]. In robotics, simulation to real-world

generalization has been addressed using hierarchies of multi-

fidelity simulators [12], priors imposed on Bayesian dynamics

models [11]. At the intersection of robotics and computer

vision, several works have recently applied domain adaptation

techniques to perform transfer for robotic perception systems

[41, 35, 34]. In contrast to these works, our method does

not use any explicit domain adaptation. Instead, we show

how the source domain itself can be suitably randomized

in order to train a more generalizable model, which we

experimentally show can make effective predictions on a range

of systematically different target domains.
Our method combines deep neural networks for processing

raw camera images [22] with RL. In the seminal work of

Pomerleau [29], a fully connected neural network is used for

generating steering commands for the task of road following

using raw pixels and laser range finder. Recently, a similar

approach was proposed by [7] for a self-driving car. We also

generate direction commands from raw visual inputs. How-

ever, unlike these prior works, we use RL and do not require

any human demonstration data. Furthermore, our method com-

mands the vehicle in 3D, allowing it to change both heading

and altitude. Vision-based RL has previously been explored in

the context of Q-iteration [33], and more recently for online Q-

learning using temporal-difference algorithms [26]. However,

these methods were evaluated primarily on synthetic video

game domains. Several recent works have extended deep RL

methods to real-world robotics applications using either low-

dimensional estimated state [10] or by collecting an exhaustive

real-world dataset under gridworld-like assumptions [43]. In

contrast, we propose a simple and stable deep RL algorithm

that learns a policy from raw monocular images and does not

require seeing any images of the real-world test environment.

III. COLLISION AVOIDANCE VIA DEEP RL

Our aim is to choose actions for indoor navigation that

avoid collisions with obstacles, such as walls and furniture.

While we do not explicitly consider the overall navigation

objective (e.g. the direction that the vehicle should fly to reach

a goal), we present a general and flexible collision avoidance

method that predicts which actions are more or less likely

to result in collisions, which is straightforward to combine

with higher-level navigational objectives. The input to our

model consists only of monocular RGB images, without depth

or other sensors, making it suitable for low-cost, low-power

platforms, though additional sensory inputs could be added in

future work. Formally, let It denote the camera observation

at time t, and let at denote the action, which we will define

in Section III-A. The goal of the model is to predict the Q-

function Q(It,at):

Q(It,at) =

t+H∑

s=t,a∼π

γs−tR(Is,as), (1)

where γ ∈ (0, 1) is the discount factor, and actions are

assumed to be chosen by the current policy π, which we

discuss in Section III-A. The horizon H should ideally be

∞, but in practice is chosen such that γH is small. R is the

reward function and is equal to zero if collision event happens.

Collisions are assumed to end the episode, and therefore can

occur only once. Otherwise, the reward at time s is defined

as min(1, ds−r
τd−r

), where r is the radius of the vehicle, ds is

the distance to the nearest obstacle at time s, and τd is a

small threshold distance. This reward function encourages the

vehicle to stay far from any obstacles. We could also use the

latest Q-function estimate to label the last time step t + H ,

but we found this to be unnecessary to obtain good results.

Q(It,at) is learned using reinforcement learning, from the

agent’s own experience of navigating and avoiding collisions.

Once learned, the model can be used to choose collision-free

actions at simply by maximizing the Q-function. Training is

performed entirely in simulation, where we can easily obtain

distances to obstacles and simulate multiple different actions

to determine the best one. By randomizing the simulated

environment, we can train a model that generalizes effectively

to domains with systematic discrepancies from our training

environment. We will first describe the formulation of our

model and reinforcement learning algorithm, and then present

details of our simulated training environment.

A. Perception-Based Control

Our perception-based policy uses an action representation

that corresponds to positions in image space. The image It is

discretized into an M ×M grid of bins, and each bin has a

corresponding action, such that at is simply the choice of bin.

Once chosen, the bin is transformed into a velocity command

vt, which corresponds to a vector from the camera location

through the image plane at the center of the bin at, normalized

to a constant target speed. Intuitively, choosing a bin at causes

the vehicle to fly in the direction of this bin in image space. A

greedy policy can use the model Q(It,at) to choose the action

with the highest expected reward. We will use π(I) = a to

denote this policy.

This representation provides the vehicle with enough free-

dom to choose any desired navigation direction, ascend and

descent to avoid obstacles, and navigate tight turns. One

advantage of this image-space grid action representation is the

flexibility that it provides for general navigational objectives,

since we could easily choose the bin using a higher-level navi-

gational controller, subject to the constraint that the probability

of collision not exceed some user-chosen threshold. However,

in order to evaluate the method in our experiments, we simply

follow the greedy strategy.

B. Initialization via Free Space Detection

In order to initialize our model with a reasonable starting

policy, we use a heuristic pre-training phase based on free

space detection. In this pretraining phase, the model is trained

to predict P (l|It,at), where l ∈ {0, 1} is a label that

indicates whether a collision detection raycast in the direction

vt corresponding to at intersects an obstacle. The raycast has

a fixed length of 1 meter. This is essentially equivalent to

thresholding the depth map by one meter. This initialization

phase roughly corresponds to the assumption that the vehicle

will maintain a predefined constant velocity vt . The model,

which is represented by a fully convolutional neural network

as described in Section III-D, is trained to label each bin

with the collision label l, analogously to recent work in image

segmentation [9]. The labels are obtained from our simulation

engine, as described in Section IV.

C. Reinforcing Collision Avoidance

The initial model can estimate free space in front of the

vehicle, but this does not necessarily correspond directly to

the likelihood of a collision: the vehicle might be able to

maneuver out of the way before striking an obstacle within

1 meter, or it may collide later in the future even if there

is sufficient free space at the current time step, for exam-

ple because of a narrow dead-end. We therefore use deep

reinforcement learning to finetune our pretrained model to

accurately represent Q(It,at), rather than P (l|It,at). To this

end, we simulate multiple rollouts by flying through a set

of training environments using our latest policy. Our score

map of M × M bins, explained in III-A, determines the

Fig. 2. Examples of rendered images using our simulator. We randomize textures, lighting and furniture placement to create a visually diverse set of scenes.

Fig. 3. We use a fully convolutional neural network to learn the Q-function.
Our network, shown above, is based on VGG16 with dilated operations.

space of actions. Based on our score map, we consider a

total of M2 actions a = {a1, ..., aM
2

} that can be taken

after perceiving each observation I. To generate the train-

ing set at each iteration, we sample a collection of states

by placing the agent at a random location and with ran-

dom orientation and generate a rollout of size K, given by

(I0,a0, I1,a1, ...,aK−1, IK). These states should in principle

be obtained from the state distribution of the current policy.

Using the model obtained from our pretraining step, the initial

policy is simply argmaxi∈{1,...,M2} P (l|I, ai). We found that

we could obtain good performance by sampling the states

independently at random, though simply running the latest

policy starting from an initial state distribution would also be

a simple way to obtain the training states. Once the training

states are obtained, we perform M × M rollouts from each

training state using the policy π for every possible action

ai, i ∈ {1, ...,M2} and evaluate the return of ai according to

Equation (1). Since evaluating Equation (1) requires rolling

out the policy for H steps for every action, we choose

H = 5 to reduce computation costs, and instead use a simple

approximation to provide smooth target values for Q(I, ai).
This policy evaluation phase provides us with a dataset of

observation, action, and return tuples (It,at, Q(It,at)), which

we can use to update the policy. Since we evaluate every action

for each image It, the dataset consists of densely labeled

images with Q values reflecting the expected sum of future

rewards for the current policy π.

Our method can be interpreted as a modification of fitted Q-

iteration [33], in the sense that we iteratively refit a Q-function

estimator to samples, as well as a variant of modified policy

iteration (MPI) [31] or Monte Carlo policy evaluation, in the

sense that we estimate Q-values using multi-step rollouts of the

current policy. To our knowledge, ours is the first algorithm

of this class to be extended to deep reinforcement learning

with raw image inputs. The particular details of the approach,

including the evaluation of each action at each state, are

specifically designed for our simulated training setup to exploit

the capabilities of the simulation and provide for a simple and

stable learning algorithm. We perform rollouts in simulated

training hallways. This allows us to perform multiple rollouts

from the state at each time step, perform ground truth collision

detection raycasts for pretraining, and removes concerns about

training-time collisions. Unlike conventional RL methods that

Fig. 4. Floor plans of the synthetic hallways. The last three hallways are
used for evaluation while the first 9 are used during training.

perform rollouts directly in the test environment [26], we

perform rollouts in simulated training hallways. However, this

also means that our model must have generalization from the

simulated training hallways to real-world environments at test

time. To that, we developed a randomized simulated training

environment, which we describe in the next section.

D. Network Architecture

In order to represent the Q-function and the initial open

space predictor, we use a deep fully convolutional neural

network with dilation operations, built on the VGG16 [40]

architecture following [9] as shown in Figure 3. The output

score map corresponds to a grid of 41 × 41 bins, which

constitutes the action space for deep reinforcement learning.

The network is trained with stochastic gradient descent (SGD),

with a cross-entropy loss function.

IV. LEARNING FROM SIMULATION

Conventionally, learning-based approaches to autonomous

flight have relied on learning from demonstration [2, 1, 30, 34].

Although the learning by demonstration approach has been

successfully applied to a number of flight scenarios, the

requirement for human-provided demonstrations limits the

quantity and diversity of data that can be used for training.

Since dataset size has been demonstrated to be critical for

the success of learning methods, this likely severely limits the

generalization capacity of purely demonstration-based meth-

ods. If we can train flight controllers using larger and more

diverse datasets collected autonomously, we can in principle

achieve substantially better generalization. However, in order

to autonomously learn effective collision prediction models,

the vehicle needs to see enough examples of collisions during

training to build an accurate estimator. This is problematic

in real physical environments, where even a single collision

can lead to damage or loss of the vehicle. To get the benefits

of an autonomous learning from the agent’s own experience

and overcome the limitations of data collection in learning

from demonstration method, we use a simulated training

environment that is specifically designed to enable effective

transfer to real-world settings.

We manually designed a collection of 3D indoor environ-

ments to form the basis of our simulated training setup. The

environments were built using the Blender [6] open-source 3D

modeling suite. Our synthetic dataset contains different hall-

ways, shown in Figure 4, and represent a variety of structures

that can be seen in real hallways, such as long straight or

circular segments with multiple junction connectivity, as well

as side rooms with open or closed doors. We use furnitures

with various type and size to populate the hallways. The walls

are textured with randomly chosen textures(e.g. wood, metal,

textile, carpet, stone, glass, etc.), and illuminated with lights

that are placed and oriented at random. In order to provide

a diversity of viewpoints we render pretraining images by

flying a simulated camera with randomized height and random

camera orientation.

The randomization of the hallway parameters produces a

very large diversity of training scenes, a sample of which can

be seen in Figure 2. Although the training hallways are far

from being photo-realistic, the large variety of appearances

allows us to train highly generalizable models, as we will

discuss in the experimental evaluation. The intuition behind

this idea is that, by forcing the model to handle a greater

degree of variation than is typical in real hallways (e.g.,

wide ranges of lighting conditions and textures, some of

which are realistic, and some not), we can produce a model

that generalizes also to real-world scenes, which might be

systematically different from our renderings. That is, the wider

we vary the parameters in simulation, the more likely we

are to capture properties of the real world somewhere in the

set of all possible scenes we consider. Our findings in this

regard are aligned with the results obtained in other recent

works [32], which also used only synthetic renderings to train

visual models, but did not explicitly consider wide-ranging

randomization of the training scenes.

V. EXPERIMENTAL RESULTS

Despite that reinforcement learning evaluations emphasize

mastery over generalization here our focus is on to evaluate

the generalization capability of our proposed approach. Testing

generalization is specially important from robotics perspective

since the autonomous agent should be able to generalize to

the diverse real-world settings. To this end, we evaluate our

performance by running several experiments both in synthetic

and real environments none of which had been seen during

the training time. We compared our results against a set

of baselines and also qualitatively evaluate our performance

in various real-world scenarios. Additionally, we present an

ablation study on a real-world RGB-D dataset to quantitatively

evaluate our proposed randomized simulator for simulation to

real-world transfer. In all the experiments (synthetic and real-

world flights), CAD2RL is trained on a fixed set of synthetic

3D models of hallways and in a fully simulated environment

without being exposed to any real images.

A. Realistic Environment Evaluation

In order to evaluate how well such a model might transfer

to a realistic environment, we used a realistic 3D mesh

provided by [21]. Testing on this data can provide us a close

proxy of our performance in a real indoor environment and

0 200 400 600 800 1000 1200

Flight distance (meter)

0.2

0.4

0.6

0.8

1.0

C
o
ll
is

io
n
-f

re
e
 f

li
g
h
t

(p
e
rc

e
n
ta

g
e
)

Straight

L-R-S

FS-pred

CAD RL
2

Fig. 5. Quantitative results on a realistically textured hallway. Our approach,
CAD2RL, outperforms the prior method (L-R-S) and other baselines.

also evaluates the generalization capability of our method

in a systematically different environment than our training

environments. Figure 6 shows the floorplan of this hallway,

as well as several samples of its interior view. We generated

60 random initialization point from various locations in the

hallways. These points are fixed and all baselines are evaluated

on the same set of points so that their performance is directly

comparable. Figure 6.a depicts the initialization points as red

dots. The velocity of the quadrotor is fixed to 0.2 meters per

time step in this experiment, and the maximum number of

steps is set to 6000 which is equal to 1.2 kilometers.

Our aim is to evaluate the performance of our trained policy

in terms of the duration of collision free flight. To do this,

we run continuous episodes that terminate upon experiencing

a collision, and count how many steps are taken before a

collision takes place. We set the maximum number of steps

to a fixed number throughout each experiment. We evaluate

performance in terms of the percentage of trials that reached a

particular flight length. To that end, we report the results using

a curve that plots the distance traveled along the horizontal

axis, and the percentage of trials that reached that distance

before a collision on the vertical axis. This provides an

accurate and rigorous evaluation of each policy, and allows

us to interpret for each method whether it is prone to collide

early in the flight, or can maintain collision-free flight at

length. Note that achieving completely collision-free flight in

all cases from completely randomized initial configurations is

exceptionally difficult.

In this experiment, we compare against two baselines ex-

plained below. We also report the performance of our base

Free Space prediction (FS-pred) controller to analyze the

improvement obtained by incorporating deep reinforcement

learning. In the FS-pred, the model described in III-B is used.

Straight Controller This lower bound baseline flies in a

straight line without turning. In a long straight hallway,

this baseline establishes how far the vehicle can fly without

any perception, allowing us to ascertain the difficulty of the

initialization conditions.

Left, Right, and Straight (LRS) Controller This baseline,

based on [14], directly predicts the flight direction from

images. The commands are discretized into three bins: “left,”

“right,” or “straight,” and the predictions are made by a deep

convolutional neural network from raw images. For training

the model, prior work used real-world images collected from

three cameras pointing left, right and straight that were car-

ried manually through forest trails. We simulated the same

training setup in our training environments. We finetuned a

VGG16 [40] model, pretrained with ImageNet classification.

This method can be considered a human-supervised alternative

to our autonomous collision avoidance policy.

1) Quantitative Evaluation: Figure 5 summarizes the per-

formance of our proposed CAD2RL method compared with

other baselines. Our method outperforms the prior methods

and baselines by a substantial margin. Qualitatively, we found

that the LRS method tends to make poor decisions at inter-

sections, and the coarse granularity of its action representation

also makes it difficult for it to maneuver near obstacles.

CAD2RL is able to maintain a collision-free flight of 1.2
kilometers in about 40% of the cases, and substantially out-

performs the model that is simply trained with supervised

learning to predict 1 meter of free space in front of the vehicle.

This experiment shows that although we did not use real

images during training, our learned model can generalize to

substantially different and more realistic environments, and

can maintain collision-free flight for relatively long periods.

2) Qualitative Evaluation: To be able to qualitatively com-

pare the performance and behavior of CAD2RL with our

perception based controller and the LRS method, we visualized

the trajectory of the flights overlaid on the floor-plan of the

hallway as shown in Figure 6. For this purpose, we sorted

the trajectories of each method based on the traveled distance

and selected the top 25 longest flights from each method.

The trajectory colors show the flight direction at each point.

The black dots indicate the locations of the hallway where

collisions occurred. This visualization shows that CAD2RL

could maintain a collision-free flight in various locations in

the hallway and has fewer collisions at the dead-ends, corners,

and junctions compared with the other two methods. LRS

often experienced collisions in corners and is more vulnerable

to bad initial locations. The policy trained with free space

prediction outperformed the LRS method, but often is trapped

in rooms or fail near junctions and corners. This illustrates

that the controller trained with RL was able to acquire a

better strategy for medium-horizon planning, compared to the

directly supervised greedy methods.

B. Real World Flight Experiments

We evaluated our learned collision avoidance model by

flying a drone in real world indoor environments. These flights

required flying through open spaces, navigating hallways, and

taking sharp turns, while avoiding collisions with furniture,

walls, and fixtures. We used two different drone platforms:

the Parrot Bebop 1.0 and the Bebop 2.0, both controlled via

the ROS Bebop autonomy package [28]. We perform real-

world flight in several different scenarios and evaluate our

performance both quantitatively and qualitatively.

1) Quantitative Evaluation: For quantitative evaluation, we

ran controlled experiments on the task of hallway following.

We fixed all the testing conditions while navigating the drone

with either of the CAD2RL and a baseline controller. The test-

ing conditions include the initial velocity, angular speed, drone

platform and the test environment. As was concluded from

the experiments in section V-A, FS-pred was the strongest

baseline, and we therefore included it as a comparison in this

experiment. We ran experiments in two different buildings,

Cory Hall and SDH (Sutardja Dai Hall), both located on

the UC Berkeley campus. These buildings have considerably

different floor plans, wall textures, and lighting conditions,

as can be seen in Figure 7.c and Figure 7.d. Our testing

environment in Cory Hall contained three turns and two

junctions, while the SDH test environment had one turn and

one junction. The width of the Cory hall hallway is ∼ 3 meters

while the SDH hallway is ∼ 2 meters wide.
Table V-B1 summarizes the results. The safe flight time

is given by the average length of a collision free flight

in terms of distance or time between collisions. CAD2RL

experienced fewer collisions and has longer expected safe

flight. This suggests that the CAD2RL policy makes fewer

mistakes and is more robust to perturbations and drift. Both

methods performed better in Cory, since SDH has narrower

hallways with glossy textureless walls as well as stronger air

currents. While we fixed the test environment and the flying

speed, the traveled distance and time is slightly different from

one algorithm to another due to the fact that the algorithms

generated different commands and navigated the drone to

slightly different locations in the hallways.
2) Qualitative Evaluation: We performed real world flight

in various indoor scenarios. We briefly explain each scenario

and sequence snapshots are shown in Figure 7.
(a) Flying near furniture, around corners, and through

a window: As shown in Figure 7.a. the drone starts from

one end of a hallway connected to a small lounge area with

furniture. The drone first flies toward the open lounge area,

and then turns toward a corner of the room. There, it detects

an opening in the wall which is visually similar to an open

doorway or window, and adjust its height to fly through it. The

drone then encounters a reflective glass door, which reflects

the hallway behind it. Since no such structures were present

during training, the reflective door fools the controller, causing

the drone to crash into the door. Note that the controller

navigates multiple structures that are substantially different,

both visually and geometrically, from the ones encountered

during simulated training.
(b) Flying up a staircase: Here, our goal is to evaluate

the generalization capability of the controller to changes in

elevation. A staircase provides a good example of this. To

avoid colliding with the stairs, the drone must continuously

increase altitude. As can be seen from the snapshots in the

Figure 7.b, the controller produces actions that increase the

altitude of the drone at each step along the staircase. Since

we used an altitude limit for safety reasons, the drone only

flew halfway up the staircase, but this experiment shows that

the controller could effectively generalize to structures such

as staircases that were not present during training.
(c) Navigating through narrow corridors: In this scenario,

the drone flies through a corridor. The drone successfully takes

a turn at Frames 1-4 in Figuree 7.c to avoid flying into a dead

end. The corridors in this test scenario are narrow (∼ 2 meters)

and have strong air currents due to air conditioning. n
(d) Flying through junctions and rooms: Here, the drone

(a)

(d) (e) (f)

(b) (c)

Fig. 6. Qualitative results on a realistically textured hallway. Colors correspond to the direction of trajectory movement at each point in the hallway as per
the color wheel. (a) Red dots show flight initialization points (b) Overlook view of the hallway (c) Red dots show the control points produced by CAD2RL.
(d) LRS trajectories (e) Perception controller (FS-pred) trajectories (f) CAD2RL trajectories.

TABLE I
REAL WORLD FLIGHT RESULTS.

Environment Traveled Distance Travel Time Collision Collision Safe Flight Safe Flight Total
(meters) (minutes) (per meter) (per minute) (meters) (minutes) Collisions

Cory FS-pred 162.458 12.01 0.080 1.081 12.496 0.924 13
Cory CAD2RL 163.779 11.950 0.0366 0.502 27.296 1.991 6

SDH FS-pred 53.492 4.016 0.130 1.742 7.641 0.573 7
SDH CAD2RL 54.813 4.183 0.072 0.956 13.703 1.045 4

navigates through a long hallway with junctions. At the end

it enters a doorway which is connected to a study room. The

controller successfully navigates the drone through the narrow

door and into the room without colliding with the chairs.

(e) Flying through a maze of random obstacles in a

confined space: We built a small U-shaped maze out of low

obstacles in the lab. This maze is built using chairs and pieces

of board with various appearance and colors. To prevent the

drone from simply flying over the obstacles, we limited the

altitude to 3 feet. Note that flying the drone at low altitude

is challenging, as the air turbulence becomes significant and

affects the drone’s stability. The cardboard shifts due to air

turbulence, and the open area is very narrow (∼ 1 meter),

making this a challenging test environment. The sequence in

Figure 7.e shows that the controller successfully navigates the

drone throughout the maze, making a turn near the red chair

and turning back into the maze, without colliding.

(f) Avoiding dynamic obstacles: In this scenario, the drone

begins in the lab with no obstacles and an altitude of around 3
feet. We then place a chair in the path of the drone, as seen in

frames 3-4 of Figure 7.f. The controller recovers and avoids

an imminent collision with the chair, passing it on the left.

The above qualitative evaluation study shows the gener-

alization capability of our trained model and demonstrates

the extent of the maneuvering skills learned by CAD2RL.

Although our model is specifically trained for the task of

hallway navigation, the limited number of furniture items

present in simulation also force the policy to be robust to

oddly shaped obstacles, and train it to change altitude to avoid

collisions. Navigating through the obstacles in the scenarios

(a), (b), (e), and (f) required collision avoidance with general

obstacles and other than just walls. We observed that our

model could perform reasonably well in these cases, and could

often recover from its mistakes, though particularly novel

situations proved confusing.

C. Ablation Study for Real World Transfer

In this section, we present an ablation study to identify how

important the randomization of the environment is for effective

simulation to real-world transfer. Since conducting statistically

significant real-world flight trials for many training conditions

is time-consuming and subject to confounding factors (air

currents, lighting conditions, etc.), we instead opted for a

proxy task that corresponds to free-space prediction from real

RGB images, with ground truth labels obtained via a depth

camera. The goal in this task is to predict, for each point in the

image, whether there is an obstacle within a certain threshold

distance of the camera or if the pixel corresponds to free

space. Although this proxy task does not directly correspond

to collision-free flight, the reduced variance of the evaluation

(since all methods are tested on exactly the same images)

makes this a good choice for the ablation study. While we

obtained reasonably good performance for avoiding collisions

in the hallways, more detailed depth estimation [36, 24, 23]

could also be used without loss of generality.
We used the same architecture as in Section III-B for the

free-space prediction network and trained free-space predictors

using rendered images from different simulated setups. We

compared the obtained results against a similar network trained

using our proposed randomized simulation. We used the same

number of images sampled similarly from various locations in

the hallways. The ablated networks are trained with images

rendered from (a) a simulator that used Fixed Textures and

(a) (b) (c) (d) (e) (f)

Fig. 7. Snapshots of autonomous flight in various real indoor scenarios. Frames ordered from top to bottom. Red dots show the commanded flight direction
by CAD2RL. (a) Flying near furniture, around corners, through a window; (b) Flying up a staircase; (c) Navigating in narrow corridors; (d) Navigating through
junctions, fly through rooms; (e) Flying through a maze of random obstacles in a confined space; (f) Avoiding dynamic obstacles.

0.0 0.2 0.4 0.6 0.8 1.0
Recal

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Fix Texture 3 Hallways

Fix Texture 9 Hallways

Realistic Textures and Geometry

Randomized Simulation 9 Hallways (Ours)

Fig. 8. Quantitative results for free-space prediction with different simulators.
The network trained on randomized hallways outperforms networks trained
on less randomized simulations and even on realistic textured hallways.

lighting, and only 3 of our training hallways (FT3); (b) Fixed

Textures and lighting using all 9 training hallways (FT9) (c)

the more Realistic Textures and Geometry hallway provided

by [21] (RTG) and (d) our approach, with randomized textures

and lighting from 9 hallways. While (a), (b), and (d) are

captured from synthetic hallways, in (c) the data is captured

via a SLAM-based reconstruction system from the Cory Hall

in the UC Berkeley campus. Therefore, this data has realistic

geometry textured with natural images, and allows us to

understand how the method would perform if trained on

reconstructed RGBD data.

Our dataset contains RGB-D images captured from 5 hall-

ways, in Cory Hall and SDH (Sutardja Dai Hall) located in

UC Berkeley, with various lighting and texture conditions. We

used a Kinect v2 and our dataset contains a total of 620 RGB-

D images. Several example images of this data are shown in

Figure 9. We used the depth channel to automatically annotate

the images with free-space vs. non-free-space labels.

For each pixel in the input image, the network produces

a probability value for free-space prediction. To evaluate the

accuracy of free-space prediction we sweep a threshold from

0 to 1 to label each pixel using our prediction network. We

compute the precision and recall at each threshold and plot

the precision-recall curve as the performance metric. Precision

is the number pixels correctly labeled as free-space divided

by the total number of pixels predicted as free-space, while

recall is the the number pixels correctly labeled as free-space

divided by the total number pixels belonging to the free-space

according to the ground truth. Since we use monocular images,

there is a scale ambiguity in the size of hallways as well as in

the range of sensible depths, which may not match between

the simulated and real images. To overcome this ambiguity and

to make a fair comparison, we labeled image pixels (for free-

space vs non-free-space) by varying the depth threshold from

1 to 4 meters (steps of ∼ 30cm) and computed the average

precision/recall corresponding for each threshold over 13 runs.

Figure 8 shows the results, with shaded areas showing the

standard deviation in precision. The network trained with the

synthetic data rendered by our proposed randomized simulator

outperforms the other networks. The images used for FT3 and

FT9 are rendered on the same hallways as RT9, except that

the textures and lighting are not randomized. As a result, these

networks do not learn texture and color invariant features and

Fig. 9. Examples of the collected pairs of RGB (top row) and depth (mid
row) data for the free-space test set. The free-space probability map predicted
by our approach is shown in the bottom row.

cannot generalize well to the real images. In RTG, the images

are rendered with realistic geometry and textures, and thus

they are less affected by the scale ambiguity. Furthermore, the

realistic textures in RTG are obtained from similar hallways

as the one we used for our RGB-D test set. Despite this, the

network trained on a realistic rendering of the same hallway

actually performs worse than the network trained on our

randomized simulator, by a substantial margin. For qualitative

analyis, we show the probability map of free-space prediction

obtained from our approach in the last row of Figure 8.

We see that high probabilities are assigned to free spaces.

Although the free-space prediction proxy task is not a perfect

analogue for collision-free flight, these results suggest that

randomization is important for good generalization, and that

more realistic renderings should not necessarily be preferred

to ones that are less realistic but more diverse.

VI. DISCUSSION

We presented a method for training deep neural network

policies for obstacle avoidance and hallway following, using

only simulated monocular RGB images. We described a new

simple and stable deep reinforcement learning algorithm for

learning in simulation. We also demonstrate that training

on randomized simulated scenes produces a model that can

successfully fly and avoid obstacles in the real world, and

quantitatively evaluated our randomized scenes on a proxy

free-space prediction task to show the importance of ran-

domization for real-world transfer. Our simulated evaluation

further shows that our method outperforms several baselines,

as well as a prior end-to-end learning-based method. Our aim

in this work is to evaluate the potential of policies trained

entirely in simulation to transfer to the real world, so as to

understand the benefits and limitations of simulated training.

To attain the best results in real environments, future work

could combine simulated training with real data. Extending

our approach via finetuning or domain adaptation is therefore

a promising direction for future work that is likely to improve

performance substantially, and lead to effective learned real-

world visual navigation policies using only modest amounts of

real-world training. Our approach could incorporate data from

other sensors, such as depth cameras, which should improve

the performance of the learned policies.

ACKNOWLEDGMENT

The authors would like to thank Larry Zitnick for helpful

discussions and insightful remarks. This work was made

possible by an ONR Young Investigator Program Award and

support from Google, NVIDIA, and Berkeley DeepDrive.

REFERENCES

[1] P. Abbeel, A. Coates, M. Quigley, and A. Ng. An application of
reinforcement learning to aerobatic helicopter flight. In NIPS,
2006.

[2] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous
helicopter aerobatics through apprenticeship learning. IJRR,
2010.

[3] Abraham Bachrach, Ruijie He, and Nicholas Roy. Autonomous
flight in unstructured and unknown indoor environments. In
EMAV, 2009.

[4] Andrew J Barry and Russ Tedrake. Pushbroom stereo for high-
speed navigation in cluttered environments. In ICRA. IEEE,
2015.

[5] Cooper Bills, Joyce Chen, and Ashutosh Saxena. Autonomous
mav flight in indoor environments using single image perspec-
tive cues. In ICRA, 2011.

[6] Blender Community. Blender: Open Source 3D modeling suit.
http://www.blender.org.

[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[8] K. Celik, S.J. Chung, M. Clausman, and A. Somani. Monocular
vision SLAM for indoor aerial vehicles. In IROS, 2009.

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Semantic image segmen-
tation with deep convolutional nets and fully connected crfs. In
ICLR, 2015.

[10] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan
How. Decentralized non-communicating multiagent collision
avoidance with deep reinforcement learning. arXiv preprint
arXiv:1609.07845, 2016.

[11] Mark Cutler and Jonathan P How. Efficient reinforcement
learning for robots using informative simulated priors. In ICRA,
2015.

[12] Mark Cutler, Thomas J Walsh, and Jonathan P How. Reinforce-
ment learning with multi-fidelity simulators. In ICRA, 2014.

[13] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam:
Large-scale direct monocular slam. In ECCV, 2014.

[14] Alessandro Giusti, Jérôme Guzzi, Dan C Cireşan, Fang-Lin He,
Juan P Rodrı́guez, Flavio Fontana, Matthias Faessler, Christian
Forster, Jürgen Schmidhuber, Gianni Di Caro, et al. A machine
learning approach to visual perception of forest trails for mobile
robots. IEEE Robotics and Automation Letters, 2016.

[15] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-
thankar, and Jitendra Malik. Cognitive mapping and planning
for visual navigation. arXiv preprint arXiv:1702.03920, 2017.

[16] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-
D mapping: Using kinect-style depth cameras for dense 3d
modeling of indoor environments. International Journal of
Robotics Research, 2012.

[17] Judy Hoffman, Sergio Guadarrama, Eric S Tzeng, Ronghang
Hu, Jeff Donahue, Ross Girshick, Trevor Darrell, and Kate
Saenko. Lsda: Large scale detection through adaptation. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, NIPS. 2014.

[18] Hamid Izadinia, Qi Shan, and Steven M Seitz. Im2cad. In
CVPR, 2017.

[19] Dong Ki Kim and Tsuhan Chen. Deep neural network
for real-time autonomous indoor navigation. arXiv preprint
arXiv:1511.04668, 2015.

[20] Georg Klein and David Murray. Parallel tracking and mapping
for small ar workspaces. In Mixed and Augmented Reality ACM
International Symposium on. IEEE, 2007.

[21] John Kua, Nicholas Corso, and Avideh Zakhor. Automatic
loop closure detection using multiple cameras for 3d indoor
localization. In IS&T/SPIE Electronic Imaging, 2012.

[22] Yann LeCun, Bernhard Boser, John S Denker, Donnie Hen-
derson, Richard E Howard, Wayne Hubbard, and Lawrence D

Jackel. Backpropagation applied to handwritten zip code recog-
nition. Neural computation, 1989.

[23] Fayao Liu, Chunhua Shen, and Guosheng Lin. Deep convolu-
tional neural fields for depth estimation from a single image.
In CVPR, 2015.

[24] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. Learn-
ing depth from single monocular images using deep convolu-
tional neural fields. IEEE transactions on pattern analysis and
machine intelligence, 2016.

[25] Jeff Michels, Ashutosh Saxena, and Andrew Y Ng. High speed
obstacle avoidance using monocular vision and reinforcement
learning. In ICML. ACM, 2005.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Mar-
tin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Na-
ture, 2015.

[27] K. Mohta, V. Kumar, and K. Daniilidis. Vision based control of
a quadrotor for perching on planes and lines. In ICRA, 2014.

[28] Mani Monajjemi. Bebop autonomy. http://bebop-autonomy.
readthedocs.io.

[29] Dean A Pomerleau. Alvinn, an autonomous land vehicle in a
neural network. Technical report, Carnegie Mellon University,
Computer Science Department, 1989.

[30] A. Punjani and P. Abbeel. Deep learning helicopter dynamics
models. In ICRA, 2015.

[31] Martin L Puterman and Moon Chirl Shin. Modified policy
iteration algorithms for discounted markov decision problems.
Management Science, 1978.

[32] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer games.
arXiv preprint arXiv:1608.02192, 2016.

[33] Martin Riedmiller. Neural fitted q iteration – first experiences
with a data efficient neural reinforcement learning method. In
European Conference on Machine Learning (ECML), 2005.

[34] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya
Shankar, Andreas Wendel, Debadeepta Dey, J Andrew Bagnell,
and Martial Hebert. Learning monocular reactive uav control
in cluttered natural environments. In ICRA. IEEE, 2013.

[35] Andrei A Rusu, Matej Vecerik, Thomas Rothörl, Nicolas
Heess, Razvan Pascanu, and Raia Hadsell. Sim-to-real robot
learning from pixels with progressive nets. arXiv preprint
arXiv:1610.04286, 2016.

[36] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. Learning
depth from single monocular images. In NIPS, 2005.

[37] Korbinian Schmid, Teodor Tomic, Felix Ruess, Heiko Hirschm-
ller, and Michael Suppa. Stereo vision based indoor/outdoor
navigation for flying robots. In IROS, 2013.

[38] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar. Vision-
based state estimation for autonomous rotorcraft mavs in com-
plex environments. In ICRA, 2013.

[39] Bruno Siciliano and Oussama Khatib. Springer handbook of
robotics. Springer Science & Business Media, 2008.

[40] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[41] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn,
Xingchao Peng, Sergey Levine, Kate Saenko, and Trevor
Darrell. Towards adapting deep visuomotor representa-
tions from simulated to real environments. arXiv preprint
arXiv:1511.07111, 2015.

[42] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko.
Simultaneous deep transfer across domains and tasks. In ICCV,
2015.

[43] Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker,
and Wolfram Burgard. Deep reinforcement learning with
successor features for navigation across similar environments.
arXiv preprint arXiv:1612.05533, 2016.

[44] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE
multimedia, 2012.

http://www.blender.org
http://bebop-autonomy.readthedocs.io
http://bebop-autonomy.readthedocs.io

	Introduction
	Related Work
	Collision Avoidance via Deep RL
	Perception-Based Control
	Initialization via Free Space Detection
	Reinforcing Collision Avoidance
	Network Architecture

	Learning from Simulation
	Experimental Results
	Realistic Environment Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Real World Flight Experiments
	Quantitative Evaluation
	Qualitative Evaluation

	Ablation Study for Real World Transfer

	Discussion
	Appendix
	Synthetic Environment Test
	Evaluation criteria
	Results and Analysis

	Free Space Prediction Evaluation
	Details on real environment tests
	Details about our Simulator Setup

