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Abstract—Trajectory generation approaches for mobile robots
generally aim to optimize with respect to a cost function such
as energy, execution time, or other mission-relevant parameters
within the constraints of vehicle dynamics and obstacles in the
environment. We propose to add the cost of state observability to
the trajectory optimization in order to ensure fast and accurate
state estimation throughout the mission while still respecting
the constraints of vehicle dynamics and the environment. Our
approach finds a dynamically feasible estimation-optimized tra-
jectory in a sequence of connected convex polytopes representing
free space in the environment. In addition, we show a statistical
procedure that enables observability-aware trajectory optimiza-
tion for heterogeneous states in the system both in magnitude
and units, which was not supported in previous formulations.
We validate our approach with extensive simulations of a visual-
inertial state estimator on an aerial platform as a specific
realization of our general method. We show that the optimized
trajectories lead to more accurate navigation while eliminating
the need for a separate calibration procedure.

I. INTRODUCTION

Successful mobile robot control requires accurate and ro-
bust state estimation. While state estimation algorithms have
received significant attention from the robotics community, it
is also possible to improve state estimation from the planning
perspective. A carefully selected trajectory based on informa-
tion gain can provide better information to the exteroceptive
sensors of the system. This so-called active perception has
been shown to noticeably reduce failure modes of estimators
in the past [3, 4, 25].

On the other hand, the accuracy of state estimation often
depends not only on the perceived exteroceptive information
but also on the proprioceptive system input. For mobile robots
these inputs are typically inertial readings of acceleration and
angular velocity, and they are a direct result of the executed
trajectory and the vehicle dynamics. The proprioceptive system
inputs are particularly important for more complex sensor
fusion frameworks which include self-calibration states and
multiple sensors. To render high-dimensional state vectors
observable, non-zero system inputs are generally required [16].
As a result, to improve the estimator’s accuracy, trajectory
planning should take the required system input for observabil-
ity into account.

Hausman et al. [8] demonstrated an approach to gener-
ate trajectories that render specific states better observable
in a system performing online self-calibration. The method
respects the system’s dynamical constraints and supports way-
point navigation problems, but assumes a free space without

Fig. 1. Minimum-snap and E2LOG-optimized trajectories for a UAV
navigation task. The E2LOG trajectory optimizes our proposed observability-
based cost function for a visual-inertial navigation system while remaining
inside a corridor of convex polytopes. The additional movement produces
better observability of proprioceptive self-calibration states, leading to 2×
lower position estimate error in a simulated EKF at the end of the trajectory.

obstacles. In this paper, we remove the obstacle-free require-
ment and provide a method that optimizes a trajectory for
state observability while moving through a free space corridor
described by a sequence of convex polytopes. We also describe
a scaling procedure that accounts for the varying units, param-
eter value distributions, dynamics, and measurement model in
a system with multiple self-calibration states. This procedure
allows us to generate trajectories that balance the goals of
converging multiple self-calibration states.

We demonstrate our approach using a visual-inertial state
estimator on an aerial platform. The proposed approach,
however, is not specific to a particular system or estimator
type but optimizes the trajectories by analyzing the nonlinear
system dynamics and measurement model.

The key contributions of our approach are:

• An optimization framework including a multi-state bal-
ancing strategy to optimize trajectories for estimation of
high-dimensional state vectors.

• A suitable formulation of the trajectory optimization in
obstacle-free corridors using Bézier curves.

• Explicit application of the above general approach to a
visual-inertial system on an aerial platform.



We evaluate the proposed method in extensive simulation
experiments. We show that multi-state optimized trajectories
effectively balance the self-calibration goals of the individual
states, achieving competitive results to trajectories optimized
for each state in isolation. We demonstrate that an optimized
trajectory from our framework outperforms common heuristic
self-calibration trajectories and a state-of-the-art optimization
method. Our results on the navigation task yield 2× better po-
sition error than a common energy-efficient trajectory, showing
the benefits of optimizing for navigation and self-calibration
simultaneously using our approach.

II. RELATED WORK

Past work on planning for state estimation can roughly
be divided into two groups: exteroceptive, or environment-
based, and proprioceptive, or movement-based. Exteroceptive
methods focus on analyzing the environment around a robot
and biasing the motion planning towards the most informative
areas, generally by maximizing an information theoretic metric
[3, 13, 15]. More recent work considered dense photometric
image information by seeking highly textured surfaces [4].

Proprioceptive methods, which include the method shown in
this paper, focus on the how the robot should move to obtain
the most accurate state estimates regardless of environment.
Much work in this area selects a specific realization of a
state estimator and minimizes the final state uncertainty. With
simple systems it may be possible to obtain an analytic solu-
tion [21], but more commonly on complex systems a sampling-
based approach with simulation is used [1, 2]. However, sim-
ulating the state estimator exposes the trajectory optimization
method to any shortcomings of the state estimator, particularly
with regard to linearization inconsistency as demonstrated
in [11]. These methods also inherit the potentially large
computational cost of the state estimator.

In [18] the authors propose a continuous measure of observ-
ability from the non-linear observability analysis suggested in
[9]. This method analyzes the system dynamics and sensor
model directly and is not specific to any particular state esti-
mator. For states directly appearing in the sensor model, [12]
made use of this measure of observability to generate observ-
ability aware trajectories. The approach in [8] extends these
methods to the quality of observability of hidden states, i.e.
states that do not appear in the measurement model. However,
the method in [8] only optimizes trajectories for estimation of
a single self-calibration state at a time, and does not handle
environmental obstacles. In this paper, we remove those two
limitations by introducing a multi-state scaling technique and
a trajectory representation based on Bézier curves that allows
optimization with guaranteed obstacle avoidance.

In [10], the authors present an alternative approach to
observability analysis based on the volume of the set of
indistinguishable trajectories for a given input sequence. While
their approach has some compelling advantages, such as ac-
counting for unknown noise inputs, it requires in-depth manual
derivations for each system analyzed, and is not amenable to
analyzing subsets of self-calibration states. In contrast, our

method provides a “recipe” that produces a cost function
in any user-chosen states from the system dynamics and
measurement equations.

III. PROBLEM FORMULATION

We assume a nonlinear system of the following form:

ẋ = f(x,u, δ), z = h(x, ε),

where x is the state, u are the control inputs, z are the outputs
(sensor readings) and δ, ε are noise values caused by modeling
errors and non-perfect actuators. We summarize the states that
have constant dynamics and are independent of the system
inputs and other state variables as self-calibration states xsc.

A. Nonlinear Observability Analysis
The observability of a system is defined as the possibility

to compute the initial system state given a sequence of inputs
u(t) and measurements z(t). A system is globally observable
if there exist no two points x0(0), x1(0) in the state space with
the same input-output u(t)-z(t) maps for any control inputs. A
system is weakly locally observable if there is no point x1(0)
with the same input-output map in a neighborhood of x0(0)
for a specific control input [18].

One way to determine whether or not a nonlinear system is
weakly locally observable is based on the rank of the nonlinear
observability matrix [9], constructed using the Lie derivatives
of the sensor model h(x):

O(x,u) =
[
∇Lh

0 ∇Lh
1 ∇Lh

2 . . .
]T
, (1)

where Lh
i is the i-th Lie derivative of the sensor model h(x),

defined recursively as:

Lh
0 = h(x), Lh

i+1 =
∂

∂t
Lh
i =

∂Lh
i

∂x
f(x,u), (2)

and ∇Lh
i =

∂Lh
i

∂x . In nonlinear systems, the nonlinear observ-
ability is only a local property that depends on the state and
the input. In this definition, the observability of a system is
considered as a binary property, which makes it unsuitable for
gradient-based optimization methods.

IV. EXPANDED EMPIRICAL LOCAL OBSERVABILITY
GRAMIAN (E2LOG)

In order to optimize trajectories for state estimation, we
use the notion of quality of observability [8, 18]. A state is
considered poorly observable if it leads to a small change
in the output, even when extensively perturbed [18]. On the
other hand, if a state causes a significant change in the output,
even when marginally perturbed, this state is considered well
observable. Well-observable states are easy to estimate even
in the presence of high measurement noise [29].

Following the derivation presented in [8] and using the
Taylor expansion of the sensor model about a point t0, one can
show that the Jacobian of the sensor model h(x) with respect
to the state x around the time t0 is:

∂

∂x
ht0(t) =

n∑
i=0

(t− t0)
i

i!
∇Lh

i (t). (3)



In addition to showing the effect of the states that directly
influence the measurement, Eq. 3 also reveals the effects of
the varying control inputs and the states that are not included
in the sensor model.

In order to model the interactions between the influences
that different states can have on the output, we use the
local observability Gramian [18]. We introduce the following
notation for brevity:

Kt0(t) =
∂

∂x
ht0(t) =

∂

∂x
ht0(x(t),u(t)). (4)

Following [8], we use the Taylor expansion of the sensor
model to approximate the local observability Gramian:

Wo(T,∆t) ≈
∫ T

0

Kt(t+ ∆t)TKt(t+ ∆t)dt, (5)

where ∆t is a fixed horizon, chosen empirically, that enables
us to see the effects of the system dynamics.

We refer to this approximation of the local observability
Gramian as Expanded Empirical Local Observability Gramian
(E2LOG). To measure the quality of observability we use the
smallest singular value of the E2LOG Wo(T,∆t). Intuitively,
the observability Gramian can be seen as a (cross-correlated)
measure of the sensitivity of the measurements with respect to
state variations. Maximizing the smallest singular value leads
to maximizing the observability of the least observable dimen-
sion of xsc. In contrast, maximizing the condition number or
trace of the E2LOG are less appropriate. The condition number
captures only the ratio between the most observable and least
observable subspaces. Similarly, maximizing the trace may
reward trajectories that render one state very well observable
while other states are unobservable.

In contrast to the empirical local observability Gramian
(ELOG) proposed in [18], the E2LOG formulation is able
to capture input-output dependencies that are not visible in
the sensor model. This property is achieved by incorporat-
ing higher order Lie derivatives and evaluating the Taylor
expansion over a short time horizon. These states can only
be captured in the ELOG if the trajectory is generated by
integrating the sequence of controls u, but this results in
numerical integration errors, especially for high-order systems.
We refer the reader to [8] for more details on E2LOG.

V. MULTI-STATE E2LOG
In general, entries in the Kt matrices Eq. 4 may have widely

different magnitudes. These magnitudes depend on many fac-
tors, including the physical units, measurement model, system
dynamics, and the expected values of the self-calibration
states. As mentioned in [18], scaling of these states is needed
to ensure that the E2LOG smallest-singular-value metric bal-
ances the influence of all states equally. We introduce a column
scaling in the form of

K ′t = Kt diag(s)−1 (6)

as each column of Kt reflects the sensitivity of the measure-
ment function with respect to one state. The values of s are
determined empirically by the following procedure:

• Generate a set of n physically plausible random trajec-
tories ranging from stationary to near the physical limits
of the dynamic model.

• For each trajectory, randomly sample m sets of realistic
self-calibration parameter values.

• For each trajectory-parameter pair, evaluate K at p points.
• Let si be the standard deviation of all entries in the ith

column of all n ·m · p generated K matrices.
This procedure approximates a uniform sampling from the
distribution of K matrices for the given system. In Sec. VIII,
we demonstrate that for our example system, this scaling
process in a joint optimization for all self-calibration states can
produce trajectories that perform nearly as well as trajectories
optimized for the individual states in isolation.

This procedure aims to eliminate issues caused by different
scales of the elements om the Kt matrices. In particular, states
that minimally contribute to the magnitude of change of the
measurement may be swamped by other states than have much
larger absolute values (e.g. position of the vehicle in the world
frame vs. the accelerometer bias). In our experiments, this
problem caused our nonlinear optimization tools to fail at
optimizing the trajectory jointly for multiple states according
to the E2LOG objective, returning results close to the initial
guess. By applying a scaling factor to the columns of the
Kt matrix, we retain important properties of Kt such as the
ratio between different partial measurement derivatives w.r.t.
different states, while improving the behavior of E2LOG as an
optimization objective. It is sufficient to perform this procedure
once for a given system setup and use the stored s vector for
different problem instances.

VI. POLYNOMIAL TRAJECTORY BASES FOR
OPTIMIZATION

In this section, we introduce trajectory optimization methods
for optimizing E2LOG for differentially flat systems. The class
of differentially flat systems includes many vehicles which
might require online self-calibration, such as cars, tractor-
trailers, fixed-wing aircraft, and quadrotor helicopters [20, 22].
However, we emphasize that the E2LOG cost function itself
is not restricted to differentially flat systems.

For a differentially flat system, there exists a set of flat
outputs y such that, given a trajectory y(t), the system states
x(t) and control inputs u(t) can be computed as functions of
the flat outputs y and a finite number of their derivatives:

x = ζ(y, ẏ, ÿ, ...,
(n)
y ), u = ψ(y, ẏ, ÿ, ...,

(m)
y ). (7)

This assumption allows us to plan trajectories in the space of
flat outputs that guarantee kinematic feasibility as long as the
trajectory is sufficiently smooth.

The two trajectory representations described here both result
in piecewise polynomial trajectories, but favor different tasks.
For generating closed-loop self-calibration trajectories, we
use a null-space representation that reduces the number of
optimization variables. For planning trajectories through a map
with obstacles, we use a Bézier curve formulation, where we



can constrain the trajectory to lie inside a corridor of pairwise
intersecting convex polytopes using only linear constraints on
the decision variables.

A. Piecewise Polynomial Null-Space Basis

A d-degree, q-piece piecewise polynomial takes the form:

y(t) =


pT1 t(t) if t0 ≤ t < t1
...
pTq t(t) if tq−1 ≤ t ≤ tq,

(8)

where pi ∈ Rd+1 is the vector of polynomial coefficients for
the ith polynomial piece, and t is the time vector, i.e.:

t(t) =
[
t0 t1 . . . td

]T
.

As detailed in [8, 23], waypoint and continuity constraints on
the trajectory can be represented as a linear system:

A
[
pT1 . . . pTq

]T
, Ap = b. (9)

With a high enough degree d, this system is underdetermined.
We can therefore represent any solution by the form:

p = p∗ + Null(A)ρ, (10)

where p∗ is any particular solution of Ap = b, such as
the minimum-norm solution provided by the Moore-Penrose
pseudoinverse. This converts an optimization problem over
the space of waypoint- and continuity-satisfying piecewise
polynomials from a constrained, q(d + 1)-dimensional prob-
lem into a smaller, unconstrained problem over the null
space weights ρ. The one-dimensional formulation given here
extends naturally to higher-dimensional outputs. Since the
E2LOG objective function does not have an easily computed
gradient with respect to the polynomial coefficients p, we
approximate the gradient by forward differences; therefore
reducing the number of variables speeds up optimization
significantly.

B. Bézier Basis

In practical robot deployments, it may be useful to have
the ability to self-calibrate while performing some other
task, rather than pausing to execute a closed-loop calibration
trajectory. For a mobile robot, this means the robot should
optimize its trajectory for self-calibration while moving from
a start position to a goal position and avoiding environmental
obstacles. However, planning with polynomial coefficients as
optimization variables is not well suited to problems with
complex configuration space obstacles, and this property ex-
tends to the null-space basis. In previous work on polynomial
trajectories [24], the authors check collisions at a finite set
of sampled points, and resolve them by adding waypoints
from a known safe piecewise linear trajectory. However, this
method may fail to detect collisions in between the sample
points, and each resolved collision requires re-solving the
optimization problem with more variables. Instead, we use a
Bézier curve basis similar to [6, 26] that provides collision
avoidance guarantees.

We assume that a map of configuration-space obstacles
is available and that a high-level planner has identified a
corridor of pairwise-overlapping convex polytopes containing
some kinematically feasible path from start to goal position
in the map. Such a corridor can be found using, e.g., the
method of [5]. We seek a trajectory from start to goal that
minimizes our E2LOG cost function while remaining inside
this corridor. From a high-level planner, we obtain the start
and goal positions pstart, pgoal ∈ Rk, and a sequence of n
convex polytopes C:

C = P1, . . . ,Pn, Pi = {x ∈ Rk : Aix ≤ bi}, (11)

where (Ai ∈ Rm×k, bi ∈ Rm) is the half-space representation
of the polytope Pi. Furthermore, we require that a path from
pstart to pgoal exist in C:

Pi ∩ Pi+1 6= ∅, pstart ∈ P1, pgoal ∈ Pn. (12)

Note that the requirement of overlap between adjacent Pi is
sufficient to ensure that a path exists because we are working
with a differentially flat system. Also note that there is no
limit on the amount of overlap between any pair Pi,Pj and
that Pi need not be bounded in general.

We seek an n-piece polynomial trajectory such that the
ith polynomial piece is contained in Pi. Bézier curves provide
a natural basis for expressing such trajectories. A degree-d
Bézier curve is defined by a sequence of d+ 1 control points
xi ∈ Rk and a fixed set of Bernstein polynomials, such that

f(t) = b0,d(t)x0 + b1,d(t)x1 + · · ·+ bd,d(t)xd (13)

for t ∈ [0, 1], where each bi,d is a degree-d polynomial with
coefficients given in [14]. This form may be interpreted as a
smooth interpolation between x0 and xd. The curve begins at
x0 and ends at xd. In between, it does not pass through the
intervening control points, but rather is guaranteed to lie in
their convex hull. This follows directly from the fact that, on
the interval [0, 1], the Bernstein polynomials are nonnegative
and form a partition of unity [14]; thus any point in the form
of Eq. 13 is a convex combination of the control points xi.
Thus, when using control points as decision variables instead
of monomial coefficients, constraining the control points to lie
inside the polytope Pi guarantees that the resulting curve will
lie inside Pi also. Polytope constraints take the form:

Aixj ≤ bi, j ∈ [1 . . . d+ 1] (14)

for each control point xj in the polynomial piece correspond-
ing to the ith polytope.

Enforcing arbitrary levels of continuity in piecewise Bézier
curves is also easy. The derivative of f(t) as denoted in Eq. 13
is another Bézier curve of degree d−1, with control points that
are scaled forward differences of the control points of f(t):

f ′(t) = db0,d−1(t)(x1 − x0) + · · ·
+ dbd−1,d−1(t)(xd − xd−1)

(15)

This is a linear transformation of the control points. We
may apply this relationship recursively to generate equality



constraints on the control points of adjacent pieces up to the
desired level of smoothness. (Note that bh,d(0) = 0 for h 6= 0
and bh,d(1) = 0 for h 6= d.)

In comparison to the null-space formulation, the Bézier
basis is desirable because it enforces a collision-free path
through the corridor using only linear constraints. However,
the number of optimization variables is larger than in the
null-space formulation, and additional nonlinear constraints
are still needed to enforce dynamic limits. Thus, optimization
in the Bézier basis is somewhat slower than in the null-space
basis. It is also true that the Bézier basis is conservative:
for a polytope P , there exist control points x0, . . . , xd such
that some xi /∈ P but the Bézier curve through x0, . . . , xd
lies inside P . However, for the system in this paper, the
conservatism of the Bézier basis does not prevent our method
from finding trajectories that perform well in experiments.

Both the null-space and Bézier bases require that the user
specify the time interval for each polynomial piece. For the
closed-loop self-calibration problem this is of little concern,
but in the Bézier basis it introduces an undesirable coupling
between the size of the polytopes Pi and the speed of the
vehicle moving through those polytopes. This issue can be
addressed by several means: 1) allocating different durations
to each polytope according to a size-based heuristic, 2) subdi-
viding large polytopes until all polytopes are roughly the same
size, 3) “growing” the polytopes so their overlap is maximized,
which allows the optimizer more freedom to control the
relative sizes of the polynomial segments, or 4) including time
allocations as additional optimization variables. Of these, 3) is
preferable because it relaxes the polytope-polynomial coupling
without increasing the size of the optimization problem.

C. Numerical Optimization Method

The E2LOG objective function is nonconvex in both the
null-space and Bézier bases. We are therefore limited to local
optimization methods. We use the MATLAB implementation of
Sequential Quadratic Programming (SQP), which can enforce
nonlinear constraints such as maximum motor thrust via
barrier functions. Empirical tests showed that SQP performs
faster than interior-point methods on our example problems.
Multi-start optimization can be used to obviate the concern of
picking an unusually bad initial guess.

In closed-loop self-calibration problems using the null-space
basis, we generate initial guesses of ρ by randomly sampling
from a normal distribution and discarding samples that violate
the nonlinear physical constraints. However, for corridor prob-
lems in the Bézier basis, the initial guess is nontrivial. One
could solve a feasibility linear program to satisfy the continuity
and polytope constraints, but this solution is not guaranteed
to satisfy the nonlinear physical constraints, and often does
not in practice. Instead, we minimize an integrated-squared-
derivative cost function using quadratic programming as in
[26] and use the solution as an initial guess. The order and
relative weights of the derivatives in this cost function should
be chosen based on an analysis of the system dynamics as
they relate to the differentially flat variables.

VII. VISUAL-INERTIAL STATE ESTIMATOR AND
QUADROTOR

As an example application of our method, we consider a
quadrotor helicopter equipped with an Inertial Measurement
Unit (IMU) and a camera. The IMU contains a gyroscope,
yielding rotational velocity about the three body axes, and an
accelerometer, yielding the sum of acceleration and gravity
in the same axes. The camera is input to a visual odometry
algorithm (e.g. [17]) which yields the system’s 3D position
in undefined scale, and scale-free attitude estimations with
respect to its own visual frame. The visual-inertial sensor
suite is popular and performs well in practice. It also requires
estimating a high-dimensional set of calibration parameters in
different physical units and scales, creating a challenging task
for trajectory optimization.

The full system state consists of the following:

x =
(
pi
w, vi

w, qi
w, bω, ba, λ, pc

i , qc
i , pw

v , qw
v

)
, (16)

where pi
w, vi

w and qi
w are the position, velocity and orientation

(represented as a quaternion) of the IMU in the world frame,
bw and ba are the gyroscope and accelerometer biases, λ is the
visual scale, and pc

i , qc
i are the relative position and orientation

between the camera and the IMU in the IMU frame. qw
v can

be seen as the direction of the gravity vector in the visual map
[16] which drifts over time due to accumulated errors in the
visual framework. pw

v is the analogous visual drift in position.
This setup is also known as a loosely coupled visual-inertial
odometry approach and is described in more detail in [28].

The state is governed by differential equations described
in [16, 27]. To account for their temporal variations, the IMU
biases are modeled as random processes. In this setup, the
self-calibration states xsc are the gyroscope and accelerometer
biases bω,ba, the visual scale λ, pose of the camera sensor
in the IMU frame pc

i , qc
i and the drift states pw

v , qw
v .

Using the visual-inertial state vector in Eq. 16, the system
dynamics, and assuming the connection between the IMU
and the camera is rigid, we define the visual sensor model
following [28]:

zpv
= hp(x,nzpv

) = pw
v + λCT

(qw
v )(p

i
w + CT

(qi
w)p

c
i ) + nzpv

,

zqv = hq(x,nzqv
) = qc

i ⊗ qi
w ⊗ qw

v + nzqv
,

where nzpv
and nzqv

are white Gaussian measurement noise
variables and C(q) is the rotation matrix obtained from the
quaternion q. The nonlinear observability analysis in [16]
and [29] shows that the system is observable up to the
global position and heading only with appropriate inputs. The
nonlinear observability matrix of this system has maximal rank
after including the 4th Lie derivative, hence, this is the order
of the Taylor expansion we use for generating the E2LOG in
our experiments.

We select a quadrotor helicopter as the example robot to
carry the visual-inertial system. Visual-inertial systems are
especially popular on quadrotors due to their light weight
and low power requirements. As shown by Mellinger and
Kumar [22], the quadrotor dynamics are differentially flat in
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Fig. 2. Comparison between trajectories jointly optimized for all self-calibration states (blue triangles), trajectories separately optimized for individual
self-calibration states (green stars), and randomly generated trajectories that excite the system near its physical limits (purple circles). x-axes represent E2LOG
cost for individual state only. y-axes represent EKF estimation error of individual state at trajectory termination. Shaded ellipses indicate one-σ principal
component boundaries of each trajectory class.

the flat outputs of x, y, z position and yaw θ. The remaining
extrinsic states, i.e. roll and pitch angles, are functions of these
outputs and their derivatives. To ensure physically plausible
trajectories we place inequality constraints on thrust-to-weight
ratio (≤ 1.5) and angular velocity (≤ π rad

s ). These values are
well within the limits of a small quadrotor.

VIII. EXPERIMENTAL SIMULATION RESULTS

We evaluate the proposed method on a simulated quadrotor
helicopter equipped with the visual-inertial system described
in Sec. VII. We demonstrate the system on two tasks: a closed-
loop self-calibration trajectory using the null-space basis and
a corridor navigation trajectory using the Bézier basis. In both
cases, we represent trajectories as degree-7 polynomials with
C4 continuity and require that all derivatives be zero at the
beginning and end points. The integration step and the time
horizon (∆t) for E2LOG are 0.1s.

To judge the effectiveness of a trajectory for self-calibration,
we implement a state estimator for the visual-inertial system,
simulate the system and estimator over the duration of the
trajectory, and finally measure the accuracy of the estimator’s
belief relative to known ground truth values. As a realization of
the state estimator, we employ the popular Extended Kalman
Filter (EKF). In particular, we use the indirect formulation
of an EKF [19] where the state prediction is driven by IMU
measurements. We choose this state estimator due its ability
to work with various sensor suites and proven robustness in
the quadrotor scenario.

In order to fairly evaluate trajectories across a distribution
of plausible values for self-calibration states, our experiments
simulate the EKF multiple times per trajectory with randomly
sampled ground truth self-calibration state values and ran-
domly sampled initial estimation errors in the EKF state. The
distributions from which we sample are listed in Table I.
Aggregating results over multiple random simulations reduces
the effect of picking an unusually favorable or unfavorable set
of ground-truth states. All input and measurement noise are
zero-mean Gaussian with the following standard deviations:
σ = 7.4× 10−3 deg/s in the gyroscope, σ = 8.3× 10−3

m/sec2 in the accelerometer, σ = 0.01 m in the visual position,
and ≈ ±0.2 deg in the visual attitude.

param. distribution error dist. unit description
bω N (0, 0.286) N (0, 0.029) deg/s gyroscope bias
ba N (0, 0.1) N (0, 0.02) m/s2 accelerometer bias
λ N (1, 0.1) N (0, 0.05) ratio visual scale
pci N (0, 0.1) N (0, 0.02) meter vision-IMU position
qci ∈ (S)3 ≈ 3 deg vision-IMU attitude
qwv ∈ (S)3 ≈ 1 deg vision-world attitude

TABLE I. Distributions of randomly sampled self-calibration parameters and
initial self-calibration estimate errors for simulation experiments.

A. Self-Calibration

For the self-calibration task, we optimize a 6-piece, 15-
second polynomial in the null-space basis, starting and ending
at the origin. The trajectory is constrained to lie within a
2.5× 2.5× 1.5-meter box and subject to the thrust and an-
gular velocity constraints. The box constraint is small enough
to easily fit in a typical indoor environment.

As a baseline for comparison, we generate competitive
random trajectories by randomly sampling sets of large null-
space weights and discarding trajectories that violate the
physical limits. The analysis in [10] suggests that trajectories
with large angular velocities lead to well observable self-
calibration states. Each random trajectory is then used as
the initial guess for the SQP-based optimization procedure
described in Sec. VI, yielding a set of optimized trajectories.

1) Validation of multi-state E2LOG scaling: To validate our
proposed multi-state E2LOG scaling procedure, we compare
a set of trajectories jointly optimized for all self-calibration
states against trajectories individually optimized for the sub-
matrix of a single self-calibration state. Results are shown
in Fig. 2. Note that we do not optimize for the state pwv as
the global position of this system is unobservable [16]. In
each scatter plot, the x−axis corresponds to the E2LOG cost
function for the individual calibration state, and the y−axis
corresponds to the error of the individual state estimate in the
EKF at the end of the trajectory. Final error for each trajectory
is averaged over five sets of randomly sampled ground truth
self-calibration parameters. We see that, while the jointly opti-
mized trajectories do not score as highly on the individual-state
E2LOG cost functions, they perform equally well or nearly as
well in the EKF error metric. This suggests that the multi-state
E2LOG successfully balances the goals of optimizing each
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Fig. 3. Trajectories used for the comparison in Fig. 4. Each trajectory lasts 15 seconds and is tight against at some physical or box constraint.
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Fig. 4. Quartile box plots summarizing final (top) and integrated (bottom) error of EKF state estimates, aggregated over 30 simulated runs. E2LOG: trajectory
jointly optimized for all self-calibration states using our framework. trace: trajectory minimizing final trace of EKF covariance in all self-calibration states.
PL-rand: random trajectories near the system physical limits. star, fig-8: common manually designed heuristic self-calibration trajectories.

self-calibration state. Note that, in initial experiments without
column scaling, SQP frequently terminated at a solution near
the initial guess, indicating that the unscaled cost function is
poorly conditioned with respect to the optimization variables.

Both the individual and joint optimized trajectories signif-
icantly exceed the performance of random trajectories on the
ba, pci , and qwv parameters. On qci , all three classes perform
roughly equally, but we note that the typical estimation error
of 0.2 degrees is very low and can be considered successfully
converged in all cases. On λ, the joint optimized trajectories
perform equally well as the random trajectories, but here the
estimation error of 0.3% is also quite small.

2) Comparison to EKF-trace-minimization and heuristics:
To explore the characteristics of these trajectories in greater
detail, we randomly pick one representative joint-optimized
trajectory and one random trajectory, and compare them to
several competitive baselines, with results over many simu-
lated EKF runs with randomized self-calibration parameters
(N = 30) displayed as box plots.

As a baseline for comparison, we generate one trajectory
that minimizes the integrated trace of the covariance matrix
in a simulated EKF [7]. This trajectory is optimized using

the null-space formulation with the same parameters and con-
straints used for the E2LOG-optimized trajectories. (Note that
it is not feasible to generate many EKF-optimized trajectories
in the manner of Fig. 2 because optimizing for the EKF
trace took over 50× longer than optimizing for E2LOG.) We
also compare against the common heuristic self-calibration
trajectories star and figure-8. These trajectories are designed
manually and spatially scaled so they are just within the same
physical constraints used in the optimization procedure. All
trajectories are visualized in Fig. 3.

Results are shown in Fig. 4. The multi-state E2LOG-
optimized trajectory performs best in both integrated and final
error in all self-calibration parameters, except for final error in
ba where the EKF-trace optimized trajectory is slightly better.
Note that each boxplot represents one trajectory, so larger
interquartile range indicates that the accuracy of state estimate
when executing that trajectory varies widely depending on the
ground truth values and initialization. These results indicate
that the E2LOG-optimized closed-loop trajectory renders the
self-calibration states more well observable than other trajec-
tories.

An especially interesting result is the trajectories optimized
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Fig. 5. Self-calibration trajectory optimized for estimation of the visual
scale parameter λ. The trajectory fully exploits, but does not violate, the box
constraints to provide best input (acceleration in this case) to the system.

for the visual scale parameter λ. An example is shown in
Fig. 5. The optimizer exploits the entire optimization space to
provide best information–linear acceleration input in the this
case–while respecting the box and dynamic constraints.

B. Planning in a corridor

We demonstrate the corridor planning application in a
manually-designed corridor of moderate complexity. As a
baseline, we use a minimum-snap trajectory, computed using
quadratic programming as in [26]. Minimum-snap trajectory
planning is widely used for quadrotors [22, 24]. However, the
energy-minimizing characteristic that makes these trajectories
desirable for graceful flight or aggressive maneuvers can also
lead to trajectories that do not excite the system sufficiently to
render the self-calibration states well observable. We compare
this to a trajectory from our framework, optimized for the
multi-state E2LOG of all self-calibration states. The corridor
and trajectories are visualized in Fig. 1 at the beginning of this
paper. The min-snap trajectory is characteristically smooth. In
contrast, the E2LOG-optimized trajectory displays significant
additional movement to excite the system while remaining
safely inside the corridor.

We compare the two trajectories’ fitness for self-calibration
by simulating the EKF multiple times (N = 30) for both
trajectories with randomly sampled ground truth xsc and
initialization errors according to Table I. To present the results
concisely, we use the root-mean-square error of the EKF
position estimate as a proxy for the overall accuracy of
the self-calibration estimate. This corresponds with the end
purpose of self-calibration, which is to improve the estimation
quality of the robot’s fundamental configuration-space states.

Results are shown in Fig. 6. We plot the mean RMS error
of the position estimate at each timestep. The shaded bands
indicate the standard deviation of RMS errors across the trials
at each timestep. These plots show that the E2LOG-optimized
trajectory is generally able to improve its position estimate
over time by correcting the initial self-calibration estimate
errors in the EKF. In contrast, the min-snap trajectory displays
poor convergence. The wider standard deviations indicate that
the EKF is unable to correct the initialization errors and is thus
highly sensitive to the correctness of the initial calibration.
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Fig. 6. RMSE of position estimate in EKF averaged over 30 simulated trials
for min-snap and E2LOG-optimized trajectories shown in Fig. 1. Ground truth
self-calibration states and EKF initialization errors are randomly sampled for
each trial. One-σ bands illustrate the variation in estimation accuracy over
different trials.

IX. CONCLUSION

In this work, we introduced a framework to optimize
robot trajectories for estimation of self-calibration states. Our
E2LOG cost function employs a short-horizon Taylor expan-
sion to capture the interactions between the self-calibration
states, system dynamics, and measurements, allowing us to
optimize for states that do not directly appear in the measure-
ment model. We also described a statistical scaling technique
to jointly optimize for multiple self-calibration states with
varying units, ranges, and measurement functions, allowing
us to balance the goals of estimating each of the five self-
calibration states in a visual-inertial odometry system.

We described two trajectory representations: a piecewise
polynomial null-space basis for optimized self-calibration loop
trajectories, and a Bézier spline basis for calibration-aware
navigation through a corridor of intersecting convex polytopes.
We demonstrated our method in extensive simulation experi-
ments with an EKF-based visual-inertial odometry system. Our
experiments showed a strong correlation between the E2LOG
cost function value and the estimation accuracy of self-
calibration states in an EKF, and validated that our statistical
scaling technique produces trajectories that balance conversion
of all the self-calibration states simultaneously. We showed
that a single joint-optimized trajectory from our framework
outperforms a trajectory minimizing the EKF covariance trace
and common heuristic self-calibration trajectories, while tak-
ing significantly less time to optimize than the EKF-based cost
function.

For the corridor navigation problem, we showed example
results from our method using the Bézier curve trajectory
representation and analyzed the overall performance of the
trajectories by considering the error of the vehicle position
estimate. Our optimized trajectory finished with 2× better
RMS position error than a minimum-snap trajectory, showing
that a calibration-aware trajectory can help a mobile robot
maintain an accurate overall state estimate while moving
collision-free through the environment.
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