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Abstract—We present an algorithmic framework for stochastic
model predictive control that is able to optimize non-linear sys-
tems with cost functions that have sparse, discontinuous gradient
information. The proposed framework combines the benefits of
sampling-based model predictive control with linearization-based
trajectory optimization methods. The resulting algorithm consists
of a novel utilization of Tube-based model predictive control.
We demonstrate robust algorithmic performance on a variety of
simulated tasks, and on a real-world fast autonomous driving
task.

I. INTRODUCTION

Autonomous robots are increasingly being asked to solve
safety critical tasks in highly dynamic and non-linear environ-
ments. In order to competently operate in such environments, a
robot needs to be able to plan and execute trajectories utilizing
the full range of its dynamic capabilities, while ensuring that
it achieves any relevant task objectives. Theoretically, the
generation of flexible, safe, and high performance behaviors
for non-linear systems can be achieved through an optimal
control or stochastic optimal control framework. In optimal
control, a high level cost function is specified, and then the
generation of a trajectory and control plan is achieved by
minimizing the cost with respect to the system dynamics.
When a dynamics model is unknown a-priori, this approach
is referred to as model-based reinforcement learning. This
optimization based approach can be especially effective in a
model predictive control (MPC) framework, where planning
and execution are continuously interleaved.

Although optimal control theory provides an elegant math-
ematical framework for controlling robotic systems, and has
many practical successes, specification of a cost or reward
function is a non-trivial and time consuming problem [20].
This is because the solutions to optimal control problems are
heavily constrained by the system dynamics, and are therefore
very difficult to obtain. The result is that cost and constraint
function specifications often become more about creating
smooth cost functions with few local minima, as opposed to
creating an easy to interpret encoding of a high-level behavior.
For simple tasks, this is merely frustrating. However, in actual
deployments of autonomous robots in complex environments,
it could be crippling. In autonomous driving, for instance, it
is impossible to test how a certain cost function would work
in all of the scenarios an autonomous vehicle could encounter.
Therefore, engineers designing robotic systems must have
confidence that the representation of the robot’s objective will

lead to the desired behavior in all circumstances, without
extensive tuning.

One possible solution to this challenging problem is to
use gradient-free, sampling based optimal control methods,
such as cross-entropy or path integral control [8, 21, 10].
Recently, these frameworks have been applied in MPC settings
[25, 6, 4], where they have demonstrated the ability to control
high-dimensional, non-linear systems. Since these methods
do not require a gradient, they can theoretically utilize very
simple encodings of tasks descriptions with sparse gradient
information. For example, in this paper we consider cost
functions encoded with weighted indicator functions:

N∑
i=1

wi1Ci(x). (1)

These types of functions have the advantage of clearly encod-
ing whatever task is specified, and it is possible to compose
many of them together since there are no gradients that can
interfere with each other. However, the fact that the gradient of
these functions is zero wherever it is defined, makes it difficult
to use these cost functions with any type of gradient-based
optimization.

In contrast to gradient-based optimization methods,
sampling-based MPC can, in theory, handle cost functions
of the form of Equation 1. In practice, unfortunately, when
using cost functions with such sparse objective information,
sampling based MPC methods are brittle and prone to failure
in the face of unexpected disturbances and non-linear dynam-
ics. The fundamental problem is that sampling based methods,
while gradient free, are still iterative local search methods.
This is simply because it is intractable to fully sample high
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Fig. 1: Effect of disturbances on sampling based MPC. In (a),
an autonomous vehicle has a good sampling distribution. In
(b) the vehicle executes the control, but hits a disturbance,
resulting in (c) the sampling distribution leads to high cost.



dimensional state spaces, and as a result such methods require
a good initialization in order produce reliably good results.
In an MPC setting, the initialization takes the form of a
warm start, where if (u0,u1, . . .uT−1) is the current control
solution, then (u1,u2, . . . ) will be used to initialize the next
iteration. Implicit in this procedure is the assumption that the
actual next state is close to the predicted next state. In the
presence of disturbances, that assumption may fail. Figure 1
gives an example. Without a consistent gradient signal to lead
the sampling distribution back to the low cost region, the
sampling procedure may get stuck in a bad local minimum
or diverge entirely.

In this paper, we develop a novel solution to the robustness
problem that is inherent in sampling based MPC. Our key
contribution is to augment a sampling based MPC method with
an ancillary controller for disturbance rejection by utilizing
Tube-MPC [16, 15]. Tube-MPC was originally developed as a
way to guarantee robustness for constrained linear systems in
the presence of disturbances, and was later extended to non-
linear systems. The original version of non-linear Tube-MPC,
which we utilize in this work, consists of two model predictive
controllers. The first controller, termed the nominal controller,
attempts to solve the primary optimal control problem for an
idealized nominal state, and the second controller, called the
ancillary controller, has the goal of rejecting disturbances in
order to keep the actual system state close to the nominal state.

II. RELATED WORK

Sampling-based approaches to motion planning and control
have a long history in robotics. RRTs and variants thereof
[12, 9] have emerged as the dominant frameworks for motion
planning, and the winning robot in the 2005 DARPA Grand
Challenge [22] used an on-line path planning method based
on trajectory sampling. Motion planning methods sample in
state or path space, and typically only produce kinematically
feasible plans, which have to be executed with a low level
controller. This can be a problematic paradigm when operating
noisy systems near their dynamic limits, since failure may
occur if a planned path is not feasible or if disturbances push
the trajectory off the initially planned path. Within the motion
planning literature, our work is most closely related to [14],
which also endeavors to control a system state by keeping
it within a tube. However, this method restricts behavior to a
finite library of pre-generated maneuvers, and requires both the
initial library generation and a stabilizing feedback controller
to be pre-specified. In our method, we only need to be given
a dynamics model and cost function.

Outside of motion planning, sampling based control algo-
rithms can be directly derived from stochastic optimal control
theory. For example, a number of sampling based methods
have been derived using a bayesian approximate inference
approach to stochastic optimal control [19, 13], path integral
control theory [21, 8, 5, 25], and the cross-entropy method
[4, 24, 10, 11]. Despite all of the success in these areas, on-line
sampling of trajectories with un-stable, non-linear dynamics

in the presence of disturbances remains a key problem, and is
usually addressed via ad-hoc cost function tuning.

In this work, we make use of non-linear Tube-MPC to
prevent the divergence of the importance sampling distribution
in sampling-based MPC. In addition to [15], which used a
second MPC as an ancillary controller, there have been several
non-linear variants of Tube-MPC which utilize alternative
methods to devise a non-linear ancillary controller [18, 7, 3].
In [17], the advantages and disadvantages of Tube-MPC are
discussed, and several modifications to the original scheme are
suggested, which we also utilize in our approach.

The purpose of these earlier works is fundamentally differ-
ent than our goal in this paper. Previous Tube-MPC approaches
aimed to improve performance or provide guarantees for
traditional MPC methods (e.g methods that utilize gradient
based optimization in order to stabilize a system or track a
trajectory). This work is the first usage of Tube-MPC for
solving general optimal control problems, with a sampling
based nominal controller. Our goal with combining these
methods is not to simply improve performance, but to enable
the solution of entirely new classes of stochastic optimal
control problems.

III. PRELIMINARIES

We consider general discrete time non-linear systems of the
form:

xt+1 = F(xt,ut + εt) + wt, (2)

where x ∈ RN is the state, and u ∈ RM is the control input.
The term ε ∈ N (0,Σ) is a disturbance directly on the control
input which is a reasonable assumption for robotic systems
where an outputted control signal is used as a set-point for a
lower level controller. The term w is an external disturbance,
which exists due to a combination of modeling error and
purely stochastic or unobserved environmental effects. In this
paper our goal is to optimize systems with running costs of
the following form:

L(x,u) = C(x) + λuTΣ−1u, (3)

C(x) = k(x)TQk(x) +

N∑
i=1

wi1Ci
(x). (4)

Our assumption is that the control cost is inversely propor-
tional to that control channels variance, so that very noisy
inputs are cheap to control and vice versa. For the state
dependent portion of the cost, the term k(x) is a (preferably
simple) state feature, Q is a positive definite weight matrix,
wi is a cost weighting, and 1C is the indicator function for
the set C, which is 1 if x ∈ C and 0 otherwise.

The goal of the first portion of the cost is to encode some
overarching directive to the robot (e.g. go a certain speed),
and the second portion of the cost acts to encode constraint
like objectives into the system, and has a zero (or undefined)
gradient. Using this type of cost function has a variety of
benefits: these costs are readily interpretable and easy to
encode, even though they are technically soft constraints they
act like hard constraints in the sense that all of the penalty is



obtained immediately upon crossing the constraint boundary.
However, unlike hard constraints, they have the additional
benefit that the importance of different constraints can be
delineated by setting different weights.

IV. ROBUST SAMPLING BASED MPC

In this section we describe our robust sampling based MPC
method, which is based on Tube-MPC. The linear version of
Tube-MPC utilizes a nominal controller, a nominal state, an
ancillary controller, and the actual system state. The nominal
controller is able to select the initial nominal state (subject
to it being nearby the actual system state) and the nominal
solution, both of which are readily computable via the solution
of a quadratic program. The ancillary controller then takes the
form of a simple linear feedback gain, which maintains the
actual state of the system in a tube around the nominal state
solution.

In non-linear Tube-MPC, which is the basis for our ap-
proach, much of the convenience of the solution for the linear
case is lost. However, the algorithmic structure and the end
result remain the same. We consider the two systems:

x̄t+1 = F(x̄, ū), (5)
xt+1 = F(x,u + ε) + w. (6)

These systems are identical, except that one is disturbed via
noise, and the other is disturbance free. The nominal controller
then takes the form of a non-linear model predictive controller,
which can consider general costs and constraints, and it com-
putes a solution {(x̄0, x̄1, . . . x̄T−1, x̄T ) , (ū0, ū1, . . . ūT−1)}.
The nominal system is allowed to ignore system disturbances,
so we can have x̄0 6= x0, where x0 is the actual state of the
system. The role of the ancillary controller is to then track the
nominal system state. We implement the ancillary controller
as a gradient based MPC method which solves a standard
tracking problem.

Unlike the linear Tube-MPC case, the nominal controller
does not consider the initial nominal state as an input variable,
however in certain instances, the nominal state can be reset
back to the actual state. As in the linear case, it can be shown
that the actual system state stays within a tube centered about
the idealized nominal state. However, the bound on the size
of the tube is difficult to compute in practice, and in this
study we are more concerned with demonstrating the practical
ability of Tube-MPC to prevent the divergence of sampling
based controllers. Therefore we do not concern ourselves with
computing this bound. There are then 3 components of the
Tube-MPC algorithm that we need: (1) a nominal controller,
(2) a method for setting the nominal state, and (3) an ancillary
controller. We use an information theoretic interpretation of
model predictive path integral control (MPPI) [26], so we will
hereon refer to our method as Tube-MPPI.

A. Nominal Controller - Model Predictive Path Integral

The nominal controller is required to be a sampling based
method so that it can handle the types of sparse cost functions
that we are interested in. We use an information theoretic

interpretation of path integral control implemented in an MPC
setting (MPPI). In MPPI, we consider stochastic trajectory
optimization problems of the form:

U∗ = argmin
U

EQ

[
φ(xT ) +

T−1∑
t=0

L(xt,ut)

]
, (7)

Where φ is a terminal cost, and L a running cost in the form
of (3). The term Q is the distribution corresponding to the
dynamics: F(x,u + ε). These dynamics consider sources of
noise directly acting on the control input, but not sources due
to modeling error or environmental disturbances. Note that we
are actually optimizing with the assumption that there is some
noise in the system, even though the nominal system is noise
free. We do this because the assumption of noisy inputs is
necessary in order to utilize sampling based methods derived
from stochastic optimal control theory, and we do not consider
it to be detrimental: since noise is present in the actual system
it does not hurt to plan for it even if the theory does not
explicitly require it.

In the information theoretic approach to MPPI, the trajec-
tory optimization problem is transformed into a probability
matching problem. Suppose that U = {u0,u1, . . .uT−1} is a
sequence of commanded inputs, and then let V be the resulting
sequence of perturbed inputs such that:

V = U + E , E = {ε0, ε1, . . . εT } (8)

With each εt ∼ N (0,Σ). Then, by using an information
theoretic lower bound, it is possible to show that there exists
an “optimal” distribution over controls, in the sense that tra-
jectories sampled from that distribution have a lower expected
cost than any other distribution. It can be shown [26] that this
takes the form:

q∗(V ) ∝ exp

(
− 1

λ
S(V )

)
p(V ),

p(V ) =
1(√

2π‖Σ‖
)T−1

exp

(
T−1∑
t=0

vT
t Σ−1v

)
,

S(V ) = φ(xT ) +

T−1∑
t=0

(
k(x)TQk(x) +

N∑
i=1

wi1Ci(x)

)
.

The goal is to then minimize the KL-Divergence between
the controlled and optimal distribution, which results in the
formula:

U∗ =

∫
q∗(V )V dV, (9)

where the optimal controls take the form of an expectation
with respect to the optimal distribution q∗(V ). This equation
is impossible to compute directly, but it can be approximated
using an iterative importance sampling method where the k+1



iterate is related to the kth iterate via:

Uk+1 = Uk +

N∑
i=1

w(Ei)Ei, (10)

w(E) =
1

η
exp

(
− 1

λ

(
S(Uk + Ei) + λ

T−1∑
t=0

uTΣ−1εt

))
.

(11)

where Ei is the disturbance sequence that generates the ith
trajectory sample out of a total of N samples. Notice how
the negative exponentiation in the importance sampling weight
enables the algorithm to remove trajectories with significantly
higher cost than other samples from the solution. This is
important for the kinds of cost functions that we are con-
sidering, since trajectories that do not trigger the indicator
cost terms will be weighted much less than trajectories that
do. Using a GPU, it is possible to parallelize the sampling,

Algorithm 1: Nominal Controller (MPPI)

Parameters: F: Transition Model;
K,T : Number of samples, timesteps;
Σ, φ, C: Cost functions/parameters;
while not done do

x̄0 ← SetNominalState();
for k ← 0 to K − 1 do

x← x0;
Sample Ek =

(
εk0 . . . ε

k
T−1

)
, εkt ∈ N (0,Σ);

for t← 1 to T do
x̄← F(x̄, g(ūt−1 + εkt−1));
Sk += C(xt) + λūt−1Σ−1εkt−1;

Sk += φ(x);

ρ← mink [Sk];
for k ← 1 to K do

w̃k ← exp
(
− 1
λ (Sk − ρ)

)
;

η += w̃k;

for t← 0 to T − 1 do
Ū ← Ū + 1

η

∑K
k=1 w̃kEk;

X̄ ← Simulate(g(Ū));
PublishSolution(g(Ū), X̄);
for t← 1 to T − 1 do

ūt−1 ← ūt;

which makes it possible to run MPPI with expensive non-
linear dynamics. Algorithm 1 describes in psuedo-code the
MPPI algorithm. Control constraints are handled by augment-
ing the dynamics with an element-wise clamping function
g(u) = max(min(umax, u), umin). Note that this procedure
only changes the system dynamics, and therefore does not
affect the convergence of the MPPI algorithm.

One of the keys to MPPI, as well as other sampling based
methods, is re-using the left-over portion of the previously
optimized control sequence to warm-start the optimization at

the next time-step. This enables the method to run on-line,
but also makes it vulnerable to catastrophic failures if there
are large disturbances coupled with sparse cost information.
This is because the planned control sequence, (u1,u2, . . .uT ),
is assumed to be near optimal for initial conditions drawn
from x̂ ∼ F(x0,u0 + ε), but the actual next state is drawn
from x ∼ F(x0,u0 + ε) +w. Even in linear systems, a small
change in the initial condition can lead to a large change in
resulting behavior. This means that if w pushes x into a region
where the distribution induced by F(x,u+ε) has small or zero
probability mass, then the planned control sequence may result
in a much different state sequence than anticipated. If there is
a consistent gradient signal to follow back to low cost regions,
then the algorithm can recover. But in our case, this gradient
signal does not exist, and the algorithm can easily become
stuck in local minima or diverge. Secton V-A demonstrates
how this can happen even for a simple linear system.

B. Setting the Nominal State

The nominal controller controls the state of the idealized
noise free nominal system, termed the nominal state. In the
original description of non-linear Tube-MPC, the nominal
state is initially set equal to the actual state, and then it is
simulated forward without ever receiving feedback from the
actual system. This scheme has two primary drawbacks, the
first being that the algorithm is completely reliant on the
tracking ability of the ancillary controller. In cases where the
ancillary controller fails, the nominal state and actual state will
diverge resulting in a failure of the overall control scheme. The
second issue is that most disturbances are not catastrophic to
the nominal controller, and in those cases it is preferable to
let feedback enter the nominal controller in order to re-plan
from the actual system state. In some cases, disturbances can
even be beneficial. If the fortunate situation occurs where a
disturbance improves the state, it should be taken advantage
of, not rejected.

In [17] a modification to Tube-MPC is suggested whereby
two copies of the nominal controller are run, one from the
nominal state and one from the actual system state. If the
nominal controller finds a better solution using the actual
state of the system, then the superior solution is used and
the nominal state is reset back to the actual system state
before moving onto the next time-step. We propose a similar,
albeit more relaxed version of this mechanism, where we
accept the solution from the nominal controller using the actual
system state as long as the cost is less than the nominal
state solution plus some threshold. The threshold is set as
follows: let {Ci0 , Ci1 , . . . CiM } denote the sets of constraints
that are considered safety critical, then the minimum of
{wi0 , wi1 . . . wiM } is set as the threshold. This mechanism
ensures that a disturbance can never push the solution of the
nominal controller into a constraint region. The procedure of
accepting or rejecting the solution and setting the nominal state
is shown in Alg. 2.



Algorithm 2: Nominal State Selection

Input: x̄: Current nominal state;
x: Current (actual) state;
K: Threshold for accepting solution from actual state;
Ū , X̄ ← MPPI(x̄);
U,X ← MPPI(x);
if S(U) ≤ S(Ū) +K then

x̄← x ;
Ū , X̄ ← U,X;

return x̄, Ū , X̄;

C. Ancillary Controller - iLQG

The last component of the Tube-MPPI controller is an
ancillary controller which solves a tracking problem in order
to keep the actual system state within a tube centered about
the nominal state. This is a standard tracking problem, where
there is a small initial error and a quadratic cost, and there
are numerous effective solutions. We elected to used iterative
linear quadratic gaussian control iLQG (as in [23]) as the an-
cillary controller, and found that it provided good performance
at a relatively small computational cost.

D. Implementation Details and CPU/GPU Utilization

In our real-time implementation, which we used for the
autonomous vehicle system, the two MPPI iterations run
together in a single loop where the bulk of the computation
is off-loaded to a GPU. Each instantiation of MPPI samples
1200 2 second long trajectories with a control frequency of
50 Hz, which requires over 100,000 queries of the non-linear
system dynamics per control cycle. The nominal controller
publishes solutions at a rate of 50 Hz. The ancillary controller
runs asynchronously on a separate CPU thread, and performs
optimization for the latest solution published by the nominal
controller. The ancillary controller optimizes for a shorter time
horizon (1 second), but runs at a faster frequency (100Hz).

V. EXPERIMENTAL RESULTS

We tested the Tube-MPPI algorithm on: a simulated linear
point mass system, a simulated helicopter landing task, and
both a simulated and real-world autonomous racing task.
Through-out these experiments we refer to 3 different experi-
mental conditions for MPPI:

i) Baseline-MPPI refers to MPPI operating on a system
where there is no additional disturbance beyond the con-
trol dependent noise assumed in the MPPI framework.

ii) Disturbance-MPPI refers to the normal MPPI algo-
rithm operating on a system with additional disturbances
besides the what has been assumed by the MPPI algo-
rithm. Depending on the system, this additional noise
takes the form of extra noisy control inputs or non-
control dependent noise.

iii) Tube-MPPI refers to the algorithm described in Sec. IV
operating on the same extra-noisy system as disturbance
MPPI.

Note that the Baseline-MPPI method is impossible to imple-
ment in reality, since it requires a perfect description of the
systems dynamics and noise distribution. We include it in the
experiments in order to highlight the fundamental role that
un-anticipated disturbances have on sampling based MPC.

A. Illustrative Example: Point Mass System

This illustrative example visually demonstrates the advan-
tage of Tube-MPPI in terms of stabilizing the optimization
for the nominal controller. Consider the simple 2-D double
integrator system:

xt+1 =

(
I2 I2∆t
0 I2

)
xt +

(
0

I2∆t

)
(ut + εt) . (12)

The goal is to move this system at a constant velocity while
staying within a ring centered about the origin, this can be
interpreted mathematically as:

C(xt) =
(√

v2x + v2y − vdes
)2

+ 1000 (1C(x)) , (13)

C = {x | 1.875 <
√
x2 + y2 < 2.125}. (14)

The level of noise that MPPI assumes present is ε ∈ N (0,Σ)
with Σ = I . For Disturbance-MPPI and Tube-MPPI the
actual noise present in the system is set ten times higher at
Σ̃ = 10I . Fig. 2 shows the accumulation of the warm-start
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Fig. 2: Point mass system results of for Baseline-MPPI
(top-left), Disturbance-MPPI (top-right), Tube-MPPI’s nom-
inal controller’s importance sampling (bottom left) (c), and
ancillary control plan (bottom right).

trajectories for each condition. These trajectories are obtained
by simulating the control sequence used to warm-start MPPI
at each iteration from the new initial state of the system. This
trajectory defines the mean of the sampling distribution (in the
linear case), so it is essential that it lies in a good region of
the state-space.

Baseline-MPPI performs perfectly, and the system state is
always kept within C. With Disturbance-MPPI the increased



noise in the system results in the state leaving C, and even-
tually diverging. The reason for this failure is that the system
disturbances push the warm-start trajectories into poor regions
of the state space, since sampling takes place locally around
the warm-start trajectory, it becomes likely that no trajectory
that stays within C is sampled. With Tube-MPPI, the nominal
control plan is prevented from leaving the constraint set due to
the condition for selecting the nominal state, this results in the
importance sampling behaving similarly to the Baseline-MPPI
condition, even with the increased system noise.

B. Simulated Helicopter Landing
In this simulated example we demonstrate the advantage of

using weighted indicator costs as atomic elements for building
objectives with a complex cost structure. We consider the task
of landing a helicopter on a circular pad subject to Gaussian
disturbances. For helicopter dynamics we use the non-linear
model described in [2]. The state space for this helicopter is
position (x, y, z), orientation (φ, θ, ψ), body frame velocity
(vx, vy, vz), and body frame angular velocity (p, q, r). The
control inputs are collective thrust uτ , roll rate up, pitch rate
uq , and yaw rate ur. The cost function for the landing task
then takes the form:

C(x) = xTQx +

8∑
i=1

wi1Ci
,

C1 = {x | (|φ| > .15 ∨ |θ| > .1) ∧ z < −9.5},
C2 = {x | (‖(vx, vy, vz)‖ > 5 ∨ vz > 2.5) ∧ z > −8},
C3 = {x | ‖(x, y)‖ > 1.0 ∧ z > −8},
C4 = {x | x < −1.0}, C5 = {‖(vx, vy, vz‖ > 12},
C6 = {x | z > max(−.5‖(x, y)‖ − 7.5,−50) ∧ ‖(x, y‖ > 1},
C7 = {x | |φ|+ |θ| > .33},
C8 = {x | z > −7.5 ∧ x /∈ C1 ∧ x /∈ C2 ∧ x /∈ C3},
w1 = w2 = w3 = w4 = 10000, w5 = w6 = 1000

w7 = 100, w8 = −10000.

The first three terms direct the helicopter to land in the proper
area with limits on the orientation and speed. The fourth term
disallows the helicopter from over-shooting the landing area,
the fifth and sixth terms prevent the helicopter from going
too fast or using too aggressive of a combined roll and pitch
angle, the seventh term directs the vehicle to stay above a
certain glide-path, and the last term is a reward for successfully
meeting all the landing criteria. The constraints are tightened
to allow for some error in the final landing criteria, since
we expect Tube-MPPI to keep the actual system close to the
nominal state, but with a small amount of error.

Note that creating a cost function with a smooth gradient
for this task, with either soft or hard constraints, would be
extremely challenging! Many of the conditions have non-
differentiable components (e.g. the max and norm operators)
and composing a cost with eight different non-linear terms
could easily result in local minima being created. In this case,
specifying the cost function is easy and intuitive, and results
in predictable behavior.

(a) (b) (c)

Fig. 3: Results of helicopter landing experiment for ((a))
Baseline-MPPI, ((b)) Disturbance-MPPI (worst trial by pitch
magnitude), ((c)) Tube-MPPI (worst trial by pitch magnitude).
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Fig. 4: Helicopter landing positions (left) and orientations
(right) for 100 random trials of Baseline-MPPI, Disturbance-
MPPI, and Tube-MPPI with large noise. Dashed lines are
specified landing area, colored line indicate 3-sigma bounds
for a Gaussian distribution fitted to the 100 trials.

MPPI assumes that there is noise in the control inputs with
Σu = Diag(0.75, 0.125, 0.125, 0.125), and for Disturbance-
MPPI and Tube-MPPI we inject additional noise into the sys-
tem by increasing Σu and adding the additional disturbances
for the velocities and orientation:

Σu = (1.25)I4, Σvx,vy,vz = (1.25)I3, Σφ,θ,ψ = (0.0125)I3

Figure 4 shows the results over 100 randomized trials for
Baseline, Disturbance, and Tube-MPPI. Baseline-MPPI per-
forms perfectly, and never violates any constraints while
landing the helicopter. Disturbance-MPPI ends most trials
with a satisfying landing. However, there are several large
outliers that significantly miss the target region, this would be
catastrophic on an actual helicopter system. The distribution
for Tube-MPPI closely mirrors that for Baseline-MPPI, but
with a higher covariance. With Tube-MPPI there are not any
outliers which miss the landing conditions by a significant
amount.

Figure 3 shows the resulting orientations for the trials with
the highest pitch magnitude, in the case of Tube-MPPI the
worst case pitch is still within an acceptable landing envelope,
whereas with Disturbance-MPPI the result would be the tail
contacting the platform before the wheels touched down. Table
I shows the mean, standard deviation, and worst case over the
100 trials for total distance from origin, roll angle, and pitch
angle at touch-down.

C. Simulated Autonomous Racing

In this simulation experiment, we used a Gazebo simulation
of 1/5 scale autonomous vehicles operating on a roughly



TABLE I: Helicopter Landing Statistics

Distance Roll Pitch
MPPI - Small Noise 0.66 +/- 0.025 0.02 +/- 0.03 -0.09 +/- 0.00
MPPI - Large Noise 0.77 +/- 0.25 0.0 +/- 0.08 -0.04 +/- 0.05

Tube - MPPI 0.69 +/- 0.15 0.02 +/- 0.05 -0.07 +/- 0.02

elliptical track [1], Fig. 5. In this simulation environment, we
do not have access to the underlying model, so we fit one
using a hybrid physics-neural networks approach. The state
space of the vehicle is x = (x, y, θ, r, vx, vy, θ̇), and the model
has the form: F(x,u) = xt +

(
WTφ(x,u) +N(x,u; θ)

)
∆t

where W is a linear weight matrix, and N(x,u; θ) represents
a neural network. This model is fit via a combination of
linear regression and stochastic gradient descent, and there is
a significant error between the learned model and the actual
system dynamics. This error is the source of disturbances in
this experiment.

Learning a model means that we cannot apply the Baseline-
MPPI condition (since we cannot remove the extra distur-
bances), so instead we compare our novel controller to a
version of MPPI that has been extensively tuned with a cost
function for this track. We refer to this as Tuned-MPPI. This
is an important comparison, as it quantifies our ability to use
an intuitive indicator function-based cost structure to approach
a level of performance only achievable previously through
extensive hand-tuning. The cost function for Tube-MPPI was:

C(x) = ‖vx − vdesx ‖2 + w11Ctrack(x) + w21Cslip(x) (15)

Cslip =

{
x
∣∣ ∥∥∥∥arctan−1

(
vy
|vx|

)∥∥∥∥ < 1.25

}
(16)

w1 = w2 = 10000 (17)

Ctrack is the set of points that lie inside the track boundaries.
The first component of the cost tells the vehicle to try and
achieve a desired velocity, the second component tells the
vehicle to stay on the track, and the last term tells the vehicle
to keep the slip angle below 1.25 radians (70 degrees). In the
case of Tuned-MPPI the cost function takes the form:

C = w1M(x,y) + w2‖vx − vdesx ‖2 + w3 tan−1

(
vy
vx

)2

(18)

+ βt
(
w41Ctrack(x) + w51Cslip(x)

)
(19)

w1 = 100, w2 = 4.25, w3 = 250, w4 = 10000 (20)
w5 = 10000, β = 0.9 (21)

The first term M(x, y) is a signed distance function for the
set Ctrack. This term helps push the sampling distribution back
towards the track if large disturbances are found. Note that

Fig. 5: Gazebo simulation environment

TABLE II: Racing Simulation Statistics

Avg. Lap Time Max Speed Max Slip
Disturbance -MPPI 11.87 +/- .47 5.22 +/- 0.06 0.04 +/- 0.04

Tuned - MPPI 8.33 +/- 1.05 7.53 +/- 0.04 0.09 +/- 0.15
Tube - MPPI 9.39 +/- 0.76 7.51 +/- 0.18 0.12 +/- 0.10

even with this term it is still necessary to add a time decay
on the hard-cost weighted indicator terms, which prioritizes
avoiding trajectories that immediately violate constraints.

For each experimental condition, the target speed was
gradually increased from 5 m/s until the algorithm could no
longer consistently complete 100 laps while staying on the
track. For Tuned-MPPI the maximum target speed was 8 m/s,
and for Tube-MPPI this was 9 m/s. For Disturbance-MPPI
there was a massive performance drop-off, with the maximum
target speed only reaching 5 m/s. The performance statistics
for each of the three trial conditions is shown in Table III. Both
Tube-MPPI and Tuned-MPPI achieve top velocities slightly
over 7.5m/s, and sub 10 second lap times. However, since
Tube-MPPI optimizes with slightly tightened boundaries it
takes a longer overall path around the track, which results
in longer lap times.

D. 1/5 Scale Autonomous Racing Experiment

In order to validate the performance of the Tube-MPPI
controller in the real-world, we tested the algorithm on the
task of aggressive driving using the AutoRally 1/5 scale
autonomous vehicle platform. This platform is approximately
1 meter long, weighs over 20 kilograms, and has a top speed
over 20 m/s. Previous works have demonstrated that the MPPI
controller (with tuned soft cost terms) is capable of navigating
this type of vehicle around a simple elliptical track [25, 26],
which we did our best to match in our simulation experiments.
Our real-world experiments use the same type of vehicle as
these prior works, but in a more challenging environment
(Fig. 8). This track features a variety of different radius
turns, and a long straight-away. An important detail of this
track is that there are several areas where the boundaries for
different segments of the track either touch or are very close to
each other. This makes designing a smooth cost or constraint
function based on a signed distance function difficult, since
such a function would have local minima that would encourage
the vehicle to drive over the track boundaries. However, using
only weighted sums of indicator functions we obtain a very
simple cost design based on a grid of binary values that
represent the set of points on the track. The cost function for
this task is the same as for the Gazebo simulation environment,
where there’s a term for speed, a term for staying on the track,
and a term for avoiding excessive slip angle. The desired speed
was set to 9 m/s, and we collected 12 laps around the test track,
which is approximately 2 kilometers worth of driving data.

Figure 6 depicts the trajectory traces of the 12 trial laps
around the track. This figure identifies one of the main benefits
of using sparse indicator cost functions: since the vehicle is
only penalized for leaving the track, it is free to use the
entire track surface in order to achieve its primary goal of
going fast. As a result, the position of the vehicle on the
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Fig. 6: Trajectory traces of test run with Tube-MPPI
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Fig. 7: Magnitude of the state divergence over a test lap.

track does not follow the center line, but significantly varies
depending on the upcoming track geometry (note that the
overall direction of travel is clockwise). A key component
of the Tube-MPPI algorithm is the tracking performance of
the ancillary controller. Figure 7 shows the magnitude of the
state divergence as the vehicle navigates the track over the
course of one lap. Overall, the magnitude of the positional
state divergence stays relatively small compared to the overall
track width. The mean state divergence for the lap shown is 14
centimeters, and the maximum is 47 centimeters over the trial.
Footage from the trials is available in the video supplement.

TABLE III: Racing Experiment Statistics

Avg. Lap Time Max Speed Max Slip
Tube - MPPI 32.02 +/- 7.27 8.52 +/- -0.26 0.88 +/- 0.48

Fig. 8: Test track for 1/5 scale vehicle.

VI. CONCLUSION

We have proposed a novel robust sampling-based MPC
framework based on a combination of model predictive path
integral control and nonlinear Tube-MPC. The benefit of
combining these methods is that the Tube-MPC procedure
stabilizes the importance sampling distribution, which means
that a gradient signal is not necessary to help the sampling
distribution recover from large disturbances. This enables the
use of very simple cost terms, such as weighted sums of in-
dicator functions, in formulating the optimal control problem.
Our method also takes advantage of the different hardware
(CPU/GPU) requirements of the nominal and ancillary con-
trollers. We carried out a variety of simulation experiments
which demonstrate the advantage of our method in terms of
solving the underlying problem of stabilizing the importance
sampling distribution, thereby enabling the use of simple cost
functions that are easy to compose into complex performance
criteria.

The focus of this paper was on the practical ability of Tube-
MPPI to optimize with simple, easily composed cost functions,
and we therefore did not focus on the theoretical aspects of
Tube-MPC. However, the theoretical guarantees of Tube-MPC
are an important component of making the proposed approach
a complete system. For instance, in the helicopter example we
would like to be able to estimate the size of the tube in order
to tighten the landing area constraints enough to ensure that
the helicopter never misses a landing. Future work will focus
on how to guarantee that a bound for the tube exists, and on
how to incorporate the bound into the optimal control problem
solved by the nominal controller.

Stochastic optimal control provides the most general and
elegant mathematical framework for generating behaviors for
autonomous systems, but generating cost functions that both
describe the task at a high level and are easy to optimize with
remains a key challenge. This paper is a step forward in easily
specifying and solving general classes of stochastic optimal
control problems.
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