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Abstract—Robot grasping of objects based on variable stiffness
actuation not only improves the safety and robustness of the
grasp but also enhances dynamic manipulation. In this paper,
we present the design aspects of a variable stiffness gripper
and demonstrate how the controllable compliance of the fingers
can improve the performance in dynamic manipulation tasks
such as hammering/hitting. The proposed gripper consists of two
parallel fingers and repulsive magnets are used as the nonlinear
springs between gripper actuators and fingers. The position
and force-stiffness characteristics of the fingers are adjusted
simultaneously, by controlling the air-gaps between magnets.
Finally, the application of the gripper in a nail hammering task is
studied as an example of dynamic manipulation. For this purpose,
an optimal stiffness control problem is solved to maximize the
impact force of the hammering task through maximizing the
kinetic energy of the grasped object at the hitting instance.
Despite the simplicity of the design, experimental results indicate
the effectiveness of the gripper for dynamic manipulation.

I. INTRODUCTION

In the past few years, there has been a growing interest
in the development of Variable Stiffness Actuators (VSAs)
as an alternative to conventional stiff joints for robot arms.
Various mechanisms have been proposed to mechanically
adjust the joint stiffness using compliant elements such as
springs between the load and actuators [1]. Based on the task
requirements, the stiffness of a VSA can be either increased,
if the positioning accuracy is required, or decreased for a
compliant interaction.

Generally, the inherent compliance and energy storage ca-
pability of VSAs offers two main advantages: (i) Contrary to
stiff joints, the elastic elements of VSAs act as a low-pass
filter by absorbing the impact energy and preventing serious
damages to the robot/environment [2f]. This characteristic can
improve human safety in physical human-robot interactions;
(ii) Task performance in fast and highly dynamic motions can
be improved by exploiting the natural dynamics and energy
storage capability of the elastic elements [3]].

Although considerable research has been devoted to the
design of VSAs in the form of rotary joints, yet less attention
has been paid to the robot grippers with adjustable compliant
actuation. In fact, the development of fully VSA-based arms
with multiple degrees of freedom (DoF) requires an extra ac-
tuator at each joint which ultimately increases the complexity,
size and the weight of the system [4]]. Therefore, the design
of variable stiffness grippers is a potential solution to achieve
some of the key features of a fully VSA-based arm at a lower
cost and complexity. By equipping conventional stiff arms with

Fig. 1. The variable stiffness gripper with antagonistic magnetic springs.
variable stiffness grippers the dexterity, safety, and robustness
of object manipulation can be enhances, particularly when the
handling of fragile or potentially harmful objects is of interest
(e.g., sharp tools or hot liquids).

In this regard, Zhang et al. [5] included a passive nonlinear
compliant link into the design of a gripper to initially touch and
detect target objects by estimating external forces as a function
of link’s length and then progressively adapt the gripper fingers
to the shape of desired object based on the nonlinear stiffening
of the compliant link. However, the link compliance in their
design was not controllable and it only changed passively as
a function of the link length.

Kim et al. [6] employed a VSA, which was primarily
designed as a rotary joint, to develop a 1-DoF variable stiffness
gripper. They demonstrated the efficacy of having an ad-
justable stiffness capability in the manipulation of fragile and
heavy objects with compliant and stiff actuation, respectively.
Although most of the previously proposed rotary VSA joints
can be used as a potential actuator for a VSA-based gripper,
a more specific design is required to decouple the passive
motions of the fingers from each other. Structure-controlled
variable stiffness [7] and soft grippers (e.g., [8, 9]]) are other
interesting approaches to modulate the grasping stiffness.
However, the implementation of high bandwidth controllers,
which is essential for dynamic an fast controlled movements,
is challenging for these categories of gripper actuation.

In this paper, we first describe the mechanical design of a
variable stiffness gripper with two parallel fingers as shown in
Fig. 1] By decoupling passive motions of the fingers, external



forces acting on each finger can be estimated separately. Fur-
thermore, when an object is grasped, the simultaneous passive
deflection of the fingers in the direction of external forces can
be realized. This improves the safety and robustness of the
grasp, particularly during collisions with stiff environments
[LO]. The nonlinear compliant actuation, which is essential for
antagonistic VSAs, is generated by using permanent magnets
in a repulsive configuration. Thanks to the non-contact force
interaction between magnets, tolerance to misalignments and
low frictional hysteresis are obtained.

In addition to the design aspects, this paper presents the
application of the proposed gripper for dynamic manipulation.
The term dynamic manipulation refers to the methods which
exploit the natural dynamics of the grasped object, as a result
of arm movements, to improve the task performance [L1]. In
other words, dynamic and quick motions of the robot arm
give accelerations to the grasped object to perform tasks such
as ball juggling [12], hammering [13|] and re-grasping [14]].
The energy storage capability, in addition to the controllable
stiffness, empowers VSAs to realize dynamic tasks that require
releasing a large amount of energy over a short period of
time. In these applications, it is desired to achieve a maximum
kinetic energy (at a specific time or position) by releasing the
stored potential energy in the elastic elements.

Garabini et al. [13}[15]] studied the optimal control principles
of a 1-DoF rotary VSA during the execution of hitting tasks
by maximizing the link velocity at a given final position/time.
They showed that varying the stiffness during the execution
of hitting tasks significantly improves the performance (final
velocity of the link). Similarly, Braun et al. [16] utilized
a 2-DoF VSA arm and applied optimal control theory to
experimentally show the capability of VSAs to enhance ball
throwing by maximizing the projectile’s length.

In previous studies, VSAs are mostly designed and utilized
as rotary joints between the arm links. However, performing
dynamic manipulation with a variable stiffness gripper im-
poses extra constraints in terms of ensuring an appropriate
grasp during arm motions. Furthermore, the dynamics of
the grasped object is a function of not only the gripper
actuators but also the end-effector motions. Thus, in this paper,
we experimentally investigate the extent to which a variable
stiffness gripper mounted on a conventional stiff arm can be
used in dynamic manipulation. For this purpose, an optimal
stiffness trajectory problem is formulated for a hammering
task. The objective is to increase the impact force by max-
imizing the hammer’s kinetic energy at the hitting instance
of a wind-up motion. The results of numerical simulations
and the hammering experiment are presented and discussed
accordingly.

II. MODEL OF THE PROPOSED GRIPPER

A. Design Concept

Fig. [2] illustrates the concept of the proposed model for a
parallel jaws/fingers gripper with variable stiffness actuation.
In this model, each finger is driven by adjusting the end-
point positions of two nonlinear pre-loaded springs. Fingers
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Fig. 2.  Model of the proposed variable stiffness gripper with antagonistic

pre-loaded nonlinear springs. M1 and M2 represent the mechanism’s motors.

are mounted on passive (non-actuated) sliders whereas spring
end-points are mounted on actuated sliders. Two antagonistic
motors are enough to control the end-point positions of the
springs by considering a symmetric magnet motion (us = —uq
and uy = —uy in Fig. [2).

In a quasi-static approach, each finger tends to stay in the
equilibrium position and altering the distance between the
spring end-points leads to a change in force-deflection char-
acteristics of the finger. In other words, translational motions
of the fingers can be achieved by controlling the equilibrium
position, whereas, the antagonistic nonlinear springs provide
the capability of adjusting stiffness as a function control
inputs (u1,us,us3 and uy). Therefore, the position control of
spring end-points allows the stiffness control of the fingers as
well as adjusting their position (before grasping) or contact
force (after grasping) simultaneously. Linear position sensors
(e.g., sliding potentiometers) are required to measure fingers’
passive deflection from equilibrium (z;2) and accordingly
estimate external forces.

This design concept can provide the estimation of contact
forces on each finger separately. Furthermore, it offers linear
compliance along z. when an object is grasped and an external
contact force exerts at the object/fingers. In this situation, the
compliance of the gripper can protect the object and fingers
from high impact forces as discussed in our previous work
[10].

B. Grasp Force and Stiffness Modulation

With reference to Fig. and neglecting the effect of
gravity and friction, the static equilibrium of finger-1 will be
(u1 + ug)/2. Therefore, in the presence of external forces,
the passive deflection of finger-1 can be measured from its
position feedback x1 using (I)),

p1 =21 — (U1 +ug)/2 (D

Since the springs are pre-loadeded, the following quasi-
static relation holds,

Y F=Fun+fu+fr=0 2

where F.,; is the external force applying on finger-1 and
fr: denotes the repulsive force of i magnetic spring with an



end-point position of u; with a model which will be presented
in (B). The directions of these forces and accordingly their
signs in (@) can be determined based on the magnet locations
with respect to the finger. Therefore, for a given deflection of
p1, the force and stiffness can be estimated by the following
relations,

Fezt1(p1,u1, u2) = fr1 — fro 3)

dFeztl :@_@ (4)
dps dpr  dp:

where K is the finger stiffness as a function of its passive

deflection and control inputs. Due to the antagonistic design,

force and stiffness can be simultaneously modulated although

they are not independent.

Ki(p1,ui,us) =

C. Mechanical Design

The overall assembly model and components of the devel-
oped gripper are illustrated in Fig. [3] This gripper is designed
based on the proposed concept of Fig. 2] and permanent
magnets in a repulsive configuration are used as the pre-loaded
nonlinear springs. Magnetic springs are a good replacement
for their mechanical counterparts by providing the system
with compactness, lightness and low hysteresis effect [17].
Moreover, thanks to the non-contact force interactions between
actuators and loads, magnetic springs offer precise force
transmission and tolerance to misalignments. Such features led
to a considerable improvement in the compliant behavior of
the gripper in terms of reliability and robustness.

Miniature linear recirculating ball bearing sliders (Misumi,
part no. SE2BSZ10) are used to provide low frictional and
smooth translational motion of the actuated and passive (non-
actuated) magnets. The fingers are mounted on the moving
carts with passive magnets. Two sets of timing belt and pulleys
are used to control the positions of the actuated magnets
(pulleys with a pitch diameter of 25.4mm and 40 teeth). The
symmetric displacement of the fingers is achieved by attaching
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Potentiometer

1 5
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Fig. 3. The assembly model of the gripper. Belts are made transparent in
the image to enhance the model comprehensibility.

the outer actuated magnets to both sides of a belt and similarly
the inner actuated magnets to the other belt. The gripper’s size
and geometry are optimized based on the robot arm of Fig. [T}

If both of the fingers are placed on a single linear rail then
there will be a motion constraint imposed by the slider motions
due to their widths (us — uqg > w,,). This constraint will
affect the feasible force-stiffness bandwidth of the fingers,
particularly for small objects with small distances between
fingers, as discussed in [10]]. We have addressed this limitation
by mounting finger sliders on two separate parallel rails and
the resultant offset between them are taken into account by
an oblique design of the fingers (see Fig. [3). Furthermore, a
third linear rail is used between the two finger rails to increase
the gripper stroke since the widths of the magnets are smaller
than sliders.

Two identical servo motors (Dynamixel RX-24F) in position
control mode with a resolution of 0.29° are used to drive the
actuated magnets. This servo motor can provide a relatively
high speed which is essential for dynamic manipulation. Note
that two pulleys are mounted on each motor axis. One is
fixated on the shaft to transfer motor torque and the other
one is just an idler to maintain tension in the belt. The
displacements of the actuated magnets (u;. 4) are indirectly
measured via the angular positions of the servos and the
fingers’ positions (z1,2) are directly measured using sliding
potentiometer sensors. The analog outputs of these sensors
are converted to digital signals with 10-bit resolution for the
experiments.

Magnets are chosen as identical cylindrical neodymium
magnets with a diameter and thickness of 15 and 6mm,
respectively. The magnetization strength of these magnets
according to the manufacturer’s datasheet is approximately
6.05 x 10° (A/m). The size and flux density of the magnets
can be selected based on the stiffness-force requirements. This
requires the modeling of magnet repulsion force with respect
to the air-gap which is discussed in the next section.

D. Magnetic Repulsion Force

Analytical modeling of the attractive and repulsive forces
between magnets is not a trivial procedure because of their
nonlinearities and dependency to various parameters such as
geometry, orientation, flux density, and air-gap. A mathe-
matical model to estimate the magnetic repulsion between
two cylindrical magnets is presented in [18] by assuming
magnets as electric dipoles. To check the validity of the electric
dipoles model, repulsion forces versus air-gaps are measured
experimentally between a pair of magnets used in the gripper
mechanism. Figure [4] shows the experimental results and the
analytical curve for the gripper’s magnets. The significant
difference between the actual data points and analytical model
especially for small air-gaps (s/h < 2) is mainly due to the
assumption of electric dipoles. This makes the electric dipoles
model unsuitable for the case of our gripper since the desired
range of air-gap is usually not large for this application.

Figure [4] also depicts the results of Finite Element Method
which are obtained from FEMM software [19]. Numerical
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parameters of a = 4.9¢-6, b = 5.3e-5 and ¢ = 2.3e-7; (b) and (c) show the
model of actual magnets and electric dipoles, respectively.

results of FEM analysis are close to the actual measurements.
However, there is a consistent positive difference (FEM-
actual>0) which is due to the non-ideal magnetic field of
actual magnets. This indicates that FEM results are promising
for design purposes, however, an analytical model is essential
particularly for control purposes.

To obtain a mathematical model for the repulsion force, a
modified inverse power law expressed in (3)) is used for fitting
to the experimental data. This model is presented in relation
(3) which is selected according to the previous studies [T0] 20].

a
Iils) = s3+bs+c

a, b and c are the model parameters and s is the air-gap
between the magnets. Matlab nonlinear least-squares solver
“Isqnonlin” with trust-region method is used to estimate the
model parameters. The result of model fitting is shown in Fig.
[ and used as spring forces in the gripper model ( fx;). In this
paper, the analytical approximation of the magnet repulsion
(3) is used in the formulations and simulation of hammering
with dynamic manipulation which is presented in the next
section. However, this model can also be used to adjust the
desired force-stiffness characteristic during grasp operations
as formulated in (3) and (@).

(&)

III. HAMMERING WITH DYNAMIC MANIPULATION

In addition to improving grasp safety and robustness through
adjusting fingers’ passive compliance, the variable stiffness
fingers can be used to enhance the performance of a class of
dynamic manipulation tasks in which a high object velocity
larger than the end-effector velocity is required in a short
period of time. The controllable grasp stiffness allows the
system to store potential energy and release it over a short
time before reaching the target point. One common dynamic
manipulation task is hitting and the optimal arm trajectory for
hitting scenarios are usually a back and forth (wind-up) motion
before reaching the impact point [13} 13} [16].

As a case study, we show how the adjustable stiffness can
be used to increase the impact force of a hammering task at the
hitting point of a wind-up arm motion (see Fig.[3). This can be
achieved by solving a Trajectory Optimization Problem (TOP)
that seeks to find an optimal stiffness trajectory that minimizes
a desired cost function and satisfies a set of constraints. For
the case of hammering, the objective is to increase the impact

Fig. 5. Experimental setup for hammering with dynamic manipulation.
force by maximizing the hammer’s kinetic energy at the hitting
point (the nail’s head position).

A. Problem Formulation

Representation of the cost function for our hammering task
is quite straightforward and only depends on the kinematic
aspects of the grasped object (the hammer) at the hitting point
(the nail’s head). According to Fig. 2] and [7] to maximize the
hammer velocity at a terminal position of xy, TOP can be
formulated in the framework of optimal control as below,

minJ = —&f(zy) (6)

u1,2

subject to the object dynamics
x(t) = £(x(t), u(t), t) )
and constraints

wo/2 + wm/2 + w < ul(t) < Uimaz
Uzmin < uz(t) < Wwo/2 — Wi /2
|ﬂ1,2| S 7-'Lrnaz

fr1 > fu2 and frz > fra

where J is the performance criterion; x(t) is the state vector;
¢ is the velocity of the hammer with respect to end-effector
frame; wy, w, and w, denote the width of the fingers,
actuated magnets and grasped object, respectively (these ge-
ometries are shown in Fig. 2).

Regarding the problem constraints presented in (), the first
two ones are mainly imposed by the motion limitations of
the mechanism; the third one is the maximum motor speed
and the last constraint ensures an active contact between the
fingers and the grasped hammer. The numerical values for the
constraints of our case study are listed in Table[I]

The equality constraint of (7)) represents the hammer dynam-
ics which will be presented in section [[lI-C} Note that in the
presented formulation, for the sake of simplicity, the trajectory
of the arm joints has been considered to be predefined as

(8)



TABLE I
PARAMETER VALUES OF THE TOP CONSTRAINTS.

Umax

0.15nmvs

Parameter — wy
Value 21mm

Win, Wo

35mm

U2min

-30mm

Ulmaz

60mm

Smm

described in the next section. Thus, the optimization problem
will be solved only for the gripper actuators (up,us2). For a
more general hitting scenario with moving targets, for instance
ball juggling, one may consider the arm joints or the end-
effector pose as a design parameter as well and include their
constraints in the problem formulation.

B. End-Effector Trajectory

A predefined 1-DoF end-effector trajectory is used to sim-
plify grasped hammer dynamics and solve the TOP only for
the gripper actuators. To obtain a straight back and forth end-
effector motion similar to common hitting tasks and previous
studies [13| [15], a modified version of skew-normal density
function (9) has been used in the Cartesian space. Thanks to
the skewness factor (o), an asymmetric trajectory with a larger
velocity in the forward than backward motion is obtained that
is similar to what humans do during hammering. This helps
to the robustness of the grasping in the sudden change of
velocity direction at the switching point of the wind-up motion
by limiting the kinetic energy of the hammer before this point.

ab(t) = Ag(t)) B (at) )

where A is used to adjust the amplitude of the motion, and
1 2
e—t7/2

8t) = 7=
d(t) = %(1 +erf(
ty —t

(10)
t
\—@» (11)

=t + t (12)

where ¢(t) denotes the standard normal density function with
the cumulative function of ®(¢); erf is the error function; ¢’
is defined to map the original skew-normal function to the
desired time interval [0,T]; ¢; and ¢; denote the desired start-
ing and ending interval of the original skew-normal function,
respectively.

Figure [6] depicts the resulting displacement, velocity and
acceleration profile for the parameter values of o = —2.5,
A= —-012, T = 0.55s, t; = —3.1 and ¢35 = 0.9 which
will be used for numerical solution and implementation of the
hammering task. The orientation of the end-effector within
this motion is kept constant such that the gripper moves
only horizontally along the x. direction. This straight motion
in the Cartesian space significantly simplifies the hammer
dynamics during arm motions which will be discussed in
the next section. The trajectories of the arm joints for the given
Cartesian motion are obtained from the inverse kinematics
relation of the arm.

Note that A, T, and « values for the chosen trajectory are
tuned experimentally such that for a constant low-stiffness
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Fig. 6.  The back and forth motion of the end-effector for hammering

experiment in terms of end-effector (a) displacement, (b) velocity and (c)
acceleration.

setup a relatively high hammering velocity at the terminal
position can be achieved. This constant low-stiffness setup is
used for comparison purposes with the solution of the TOP
to evaluate performance improvement via an optimal stiffness
trajectory.

C. Grasped Object Dynamics

In the formulated TOP, the equality constraint (7)) represents
the hammer dynamics imposed by the arm motions and gripper
actuators. Thus, an analytical expression of the grasped object
dynamics must be derived before solving the TOP. Figure
illustrates a planar grasp with the variable stiffness gripper
which is mounted on a robotic arm with n (rotational) joints
and a generalized coordinates of q€R". Two frames are
defined including the base Op—xpyp 2, and end-effector frame
O¢—TcYeze. The hammer dynamics in can be rewritten
into state-space representation for the TOP, with x; and x5 as
the object position and velocity with respect to the end-effector
frame O,, respectively.

X1
Xo

In general, the absolute translational velocity of the object

:X2:I_')f)

(13)
=p;

Fext

Fig. 7. Schematic of a planar grasp using the variable stiffness gripper



with respect to the end-effector frame can be written as (T4),
P, = R'p, =R (T,a+S(wo)re,, + R#1,0,0]") (14)

where R is the rotation matrix of frame O, with respect to
Oyp; J,, is the (3 x n) Jacobian matrix associated with end-
effector linear velocity; w? is the absolute angular velocity of
the gripper expressed in the base frame; S(.) denotes the skew-
symmetric matrix operator and @ is the relative speed of the
object with respect to the end-effector frame (note that ©; =
o since a firm grasp is assumed). Furthermore, according to
the relationship between angular velocity and rotation matrix
[21], the following relation holds,

RS(w))R" = S(Rw?) = S(w}) (15)
Thus, (T4) can be rewritten as (16),
p; = R"J,q+ S(wi)re , + [44,0,0]" (16)

where w¢ is the absolute angular velocity of the gripper in
O, frame. The translational Newton-Euler formulation can be
expressed in the end-effector frame as below,

m(pg + S(wé)ps — RTg) = f° (17)

where p¢ is the absolute translational acceleration of the
object with respect to the end-effector frame (O.); m is the
combined mass of the object and fingers; g is the gravity
vector; £¢ = [f5, fy, f¢]T is the input force vector. However,
given the straight horizontal end-effector trajectory of (9), the
effect of gravity is eliminated and the angular velocity of the
hammer will be zero. Thus, (I6) and can be simplified
and the state-space representation of the hammer dynamics
can be written as below,

{xl =x, = RTJ,q + [#1,0,0]T

. .. 1
Xo = pS = Efe

(18)

Note that for our TOP, the equation of motion is only
needed to be considered in z. coordinate, since it is along
the compliant motions of the fingers and the hammering task.
Thus, for the right side of the equation of motion (T8) in z.
coordinate we have

4
£ =" fri+ Foin + Fosgn(in) + Fomt

i=1

19)

where fi; is the force exerted from the magnetic spring i;
F. .. is the projection of external forces along x. axis; F,, and
F; are viscous and Coulomb friction coefficients, respectively.
Due to the low static friction of the recirculating balls of
the sliders, the Coulomb friction was found to be very small
and thus it was neglected. However, a viscus coefficient of
F, = 0.45Ns/m was identified based on the decay rate of
free oscillations of a finger after releasing it from an arbitrary
initial deviations.

D. Numerical Solution

Given the end-effector motions, we aim to solve the TOP
(6) for the gripper actuators u; 2(t). To solve TOPs, based on

the level of complexity, analytical or numerical solutions may
be used. In general, there are three numerical methods for
solving TOPs numerically including dynamic programming,
indirect, and direct methods. Garabini et al. [15] investigated
the optimal control problem of VSAs in a kicking task using a
direct method by discretization and multiple shootings method.
Barun et al. [16] utilized an iterative linear quadratic regulator
(iLQR) algorithm to solve an optimal control problem with
an objective to maximize ball throwing distance with a 2-
DoF VSA arm. Zhakatayev et al. [22] used a nonlinear model
predictive controller to track generated reference trajectories
of an optimal control problem.

In this study, the non-linearity of the hammer dynamics and
constrained range of magnet displacements impose significant
challenges to solve the associated TOP analytically. Therefore,
a numerical direct method is utilized to transcribe the TOP to a
nonlinear programming problem (NLP) [23]]. The transcription
is done by parameterizing the unknown trajectories as B-
splines and then rewriting the optimization problem in terms of
the B-spline parameters. Our goal is to verify the effectiveness
of the proposed approach to predict intuitive, but not trivial,
solutions before utilizing it in more complex tasks where end-
effector motion is included as a design trajectory as well.

A Spline is a curve composed of a set of polynomials
which are connected at their break-points, satisfying a given
degree of smoothness. Splines can be represented using B-
spline functions in a computationally efficient form. A B-
spline is defined as

Ne¢
f(t) =" apBi,(t) (20)
k=1

where oy, is the k" free parameter of the B-spline; By, ,.(t) is
the spline basis function; IV, is the number of free parameters
which equals to N, = N X (r—s)+s; N denotes the number
of polynomial pieces constructing the spline; r is the order
of polynomial pieces and s is the smoothness condition at
the break points (r must be at least equal to s). Since the
computation of the derivative of a B-spline is straightforward,
the derivative constraints can be easily computed. The pa-
rameters [V, r, and s should be tuned such that a sufficient
degree of freedom for a given trajectory is ensured. In our
TOP, three main problem trajectories including the hammer’s
displacement (p¢) and th actuated magnets’ displacement
(u1,2) are parametrized using the B-spline function (20). The
associated parameters of these trajectories used in this study
are listed in Table [

TABLE II
PARAMETRIZED TRAJECTORIES WITH B-SPLINES.
Trajectory  Pieces (N) Order (r) Smoothness (s)
pé 10 5 4
Uy 4 3 2
U, 4 3 2

By parameterizing the unknown trajectories using B-splines,
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the transcription approach transforms the TOP expressed by
(@), [, and (8) into a NLP as below,

min F(z) 21
zERNe
subject to
VA
b<| Az | <ub (22)
G(2)

where z is the vector of B-spline free parameters (o, ..., ap,);
A is the matrix representing linear constraints; G(z) denotes
nonlinear constraints which in this case includes the hammer
dynamics. As the TOP converted to an NLP, the cost function
and constraints are evaluated and enforced at collocation points
which are generally denser than the breakpoints. In this study,
a total number of 25 equally spaced collocation points are
defined within the task time interval [0,77]. This transcription
method may lead to a suboptimal solution since optimality is
determined in the subspace of B-splines defined by NV, r, and
s. Thus, changing these parameters may affect the suboptimal
solution.

The transcription was done by OPTRAGEN toolbox [24]
and Galerkin projection method is used to impose the non-
linear dynamics (I8) as an equality constraint. To solve the
transcribed optimization problem, SNOPT software package
[25] was used, since the resulting NLP had a large number of
sparse linear constraints. To enhance the numerical solution
of such problems, SNOPT employs a sequential quadratic
programming method with limited-memory quasi-Newton ap-
proximations to the Hessian of Lagrangian.

The obtained solutions for the optimal displacements of

the actuated magnets (u; and uy) are shown in Fig. [B] With
reference to Fig. 2] when an object is grasped, by decreasing
u1, the air-gaps between the outer actuated magnets and the
fingers will be decreased resulting in a larger grasp force
and higher stiffness. In terms of inner magnets, however,
increasing uo leads to a smaller air-gap between the inner
actuated magnets and the fingers and ultimately a lower grasp
force. From the obtained optimal trajectories and end-effector
motions, it can be interpreted that stiffness starts increasing
as the backward speed of the end-effector increases. After
reaching the maximum speed, the stiffness decreases such that
a maximum potential energy can be stored in the magnetic
springs at the point where the direction of the movement
changes. Again by increasing the forward speed, the stiffness
increases to force the hammer move faster along the end-
effector direction of motion. Finally, after reaching the max-
imum forward speed, the stiffness reduces to let the hammer
continues moving even after the deceleration and stopping the
end-effector.

IV. IMPLEMENTATION

Figure [3] depicts the experimental setup consisted of the
variable stiffness gripper mounted on the end-effector of a
6-DoF lightweight robot arm (SCHUNK PowerBall LWA
[26]). A small hammer is used to hammer a nail into a
foam pad with a rigid base. The end-effector tracked the
straight back and forth trajectory presented in Fig. [6] while
the gripper servo motors were used to control the positions of
the actuated magnets (uq and us). Three trials with different
grasp stiffnesses were conducted: (i) a constant high-stiffness
setup, (ii) a constant low-stiff setup that was previously used in
Section [[II-B] for the design of the end-effector trajectory, and



Fig. 9. Trial sequence of the hammering task with variable stiffness actuation. Actuated magnets are marked with the transparent rectangles. Green arrows
denote increased stiffness whereas the blue ones correspond decreased stiffness. Experimental video: https://youtu.be/-QA6ptfptes

(iii) a variable stiffness associated with the optimal stiffness
which was numerically obtained by solving the TOP ().
An image sequence of the hammering task with the optimal
variable stiffness is shown in Figure [9]

The hammer displacement with respect to the base frame
is shown in Fig. for the three cases of stiffness setup.
From the experimental measurements, it can be observed that
the maximum penetration of the nail into the foam for the
variable stiffness is 2mm more than the constant low stiffness.
Note that the position of the nail is located at -lmm in
X-coordinate. According to the results, it can be concluded
that using an adjustable grasping stiffness the performance of
dynamic manipulation tasks such as hitting can be improved.
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Fig. 10. Experimental results for the 3 cases of stiffness setups. The graph
shows the displacement of the hammer with respect to the base frame in X-
coordinate. The nail is located at -Imm and the TOP seeks to maximize the
compliance displacement of the hammer at the hitting instance by maximizing
its velocity at this point.

There were some limitations for the proposed gripper in
performing dynamic manipulation tasks. First, it should be
noted that the improvement in the objective function highly
depends on the dynamic features of the actuators. For instance,
high bandwidth gripper motors and fast magnet positioning
can better improve the performance of the task. Second, the
feasible range of stiffness during manipulation is affected by
the minimum required grasping force since the force and
stiffness modulation are not independent (as discussed in
section II.B). A large grasping force is required if we only
rely on the friction between the finger-tips and the grasped
objects that limits the feasible range for low stiffness setups.

To address this issue, high frictional materials at the fingertips
or mechanically engaged shapes can be used for grasping.

V. CONCLUSION

This article presented a two-finger variable stiffness gripper
and its application to dynamic manipulation. In the design of
gripper, antagonistic permanent magnets are used as nonlinear
springs to modulate position and force-stiffness characteristics
of the fingers, simultaneously. By measuring the finger dis-
placements, contact forces acting on each of the fingers can be
estimated independently. Furthermore, mechanism compliance
can improve the safety of grasp if an external force exerts at
the grasped object/fingers.

The application of the proposed gripper is discussed for
dynamic manipulation, where the controllable stiffness is
exploited to improve the performance of a hammering task.
The optimal trajectories of the gripper actuators were obtained
numerically based on an optimal control framework and the
results are validated experimentally. The results demonstrate
the effectiveness of the gripper with adjustable stiffness for
hitting tasks. Therefore, by equipping conventional stiff arms
with the proposed variable stiffness gripper, some of the key
features of a fully VSA-based arm can be realized at a lower
cost and complexity.

In the future, we intend to extend our design by considering
more fingers and higher degrees of freedom (planar com-
pliance [27]). Furthermore, the application of the adjustable
grasping stiffness in robot handover of objects to human is
another interesting topic that can be investigated [28].
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