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Abstract—In this paper we present a unified collision-
avoidance algorithm for the navigation of arbitrary agents, from
pedestrians to various types of robots, including vehicles. This
approach significantly extends the WarpDriver algorithm [27]
specialized for disc-like agents (e.g. crowds) to a wide array of
robots in the following ways: (1) the new algorithm is more robust
by unifiying the original set of Warp Operators for different non-
linear extrapolations of motion into a single, general operator;
(2) the algorithm is generalized to support agent dynamics and
additional shapes beyond just circles; and (3) with addition of
few, simple soft constraints, the algorithm can be used to simulate
vehicle traffic. Thanks to the generality of the unified algorithm
without special case handling, the new capabilities are tighly
integrated at the level of collision avoidance, rather than as
added layers of multiple heuristics on top of various collision-
avoidance schemes designed independently for pedestrians vs.
different types of robots and vehicles.

I. INTRODUCTION

Collision avoidance is a fundamental component of multi-
agent navigation, and its study has received much attention due
to interest in many fields such as robotics, urban planning, Al,
collective motions in biology, computer animation, etc. As a
result, there exists a large collection of different approaches,
many of which are adaptations for specific applications.

A common simplification for most current approaches is that
collision avoidance between holonomic, disc-shaped agents
(e.g. humans) is assumed to conserve constant velocity for
the purpose of collision prediction. In robotics for instance,
the velocity-obstacle [8l 23} [12, 24], and inevitable-collision-
state [9 [7, [10] approaches are very popular due to their
assurance of collision-free motions inside their corresponding
time horizons. Methods presenting these three same charac-
teristics have also been widely investigated in graphics and
pedestrian dynamics [21, 18 [19} [14} |13} 20, [15]. However,
for many practical applications, these three assumptions could
lead to some limitations in their applicability and/or higher
complexity of the final solution. While a human could for
instance be considered holonomic at sufficiently low traveling
speeds, it is not the case of most robots or vehicles. While a
human again could be considered disc-shaped at low densities,
this too is not the general case (e.g. vehicles). Finally, while
an agent’s motion is likely to be linear in an open, empty

environment, this assumption is also not applicable with the
introduction of interactions with other agents and in particular
environment layouts. Among these, the dynamic constraints of
agents’ motion have been most studied, almost exclusively in
robotics, where this issue most needs to be addressed. Hence
the velocity-obstacle approach has seen multiplie adaptations
to address this issue [17, [26, 25, [16, 2, 14} [3]].

Since an agent’s dynamics is one source of non-linear
motions, this aspect also has received some attention [22]]
(also an adaptation of velocity obstacles). However, agents’
dynamics are not the only source of non-linear motions. With
the recent interest in robots interacting with humans (aka
“social” robots), it may become increasingly difficult to further
adapt most of the existing collision avoidance approaches to
account for the many assumptions on linear-motion behaviors.

Finally, the shapes of agents have received relatively little
attention as well (with two recent examples of adaptions of
velocity obstacles [[11}15]]). This neglect is likely due to the fact
that most mobile robots can be reasonably bounded by a disc
in 2D or a cylinder in 3D. However, with increasing interest in
autonomous vehicles, such assumptions can become problem-
atic or introduce inefficiency. In fact, the issue of interfacing
different collision-avoidance algorithms for specialized classes
of objects (e.g. pedestrians vs. vehicles), and transitioning
between them (e.g. vehicles on roads to vehicles in open
environments, such as exposition grounds) can introduce a new
level of complexity to the problem.

Given these challenges, including dynamics, non-linear mo-
tions, and arbitrarily shaped geometry, addressing all these
issues simultaneously poses an even greater challenge. In order
to solve these problems, we build on the concept of “Warp-
Driver” [27] and extend it into a unified algorithm with the
following combined characteristics: (1) built-in capability to
handle arbitrary sensing error (a base feature of WarpDriver),
(2) support for any sources of non-linear motion and agent
dynamics, (3) general applicability for a variety of agent
shapes, (4) ability to cope with any environment constraints,
and (5) a relatively low combined computational cost for the
aforementioned features (20% overhead).

To sum up, our contributions are as follow:
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Fig. 2. Collision avoidance example between two agents a and b. The
color gradient represents the constraint induced by b over a. The red dotted
line is a’s initial trajectory. The green dotted line is a’s corrected trajectory
(exaggerated). The solid red line between the dotted ones is the correction
agent a will perform (exaggerated).

o Unifying a number of ad-hoc WarpDriver’'s Warp Op-
erators related to non-linear motion into a single Warp
Operator based on a function modeling probable future
motion, of which we offer a sample implementation
incorporating agent dynamics and fast path-planning.

o Addition of support for various shapes based on fast
Minkowski sums of convex polygons with even numbers
of sides and where each pair of opposite sides is par-
allel and of equal length (lines, parallelograms, parallel
hexagons, parallel octagons, etc.)

« Introduction of simple modeling of path-constrained mo-
tion.

II. THE METHOD

In this section, we briefly summarize the original Warp-
Driver algorithm [27]], as well as the changes we make.

A. WarpDriver Algorithm

The WarpDriver algorithm introduced a modular and com-
putationally tractable way of avoiding collisions between
agents based on their collision probabilities. At its core, at
each timestep, it tries to find a trajectory for each agent that
has a lower chance of collision along it. During this process,
the navigated agent (perceiving agent) is reduced to a point
and all static and dynamic obstacles (perceived agents) are
represented through their probability of colliding with it.

In order to achieve this collision avoidance in real time
between thousands of agents and while keeping a clear im-
plementation, the algorithm adopts a modular pipeline. At a
glance, there are three main parts:

Overview of the algorithmic framework of WarpDriver.

o The first individually constructs the collision probabilities
between the perceiving agent and every other perceived
agent (blue and green dotted rectangles in Figure [I).

o The second part combines the collision probabilites of all
perceived agents such that the perceiving agent can tell at
any point in space and time what its chances of colliding
with anything are (red dotted rectangle in Figure [I).

o The third and final part is a solver that uses these collision
probabilities to compute a new trajectory with a lower
overall collision probability (right side of Figure [} and
Figure [2).

In order to keep implementation details as independent from
each other as possible, the algorithm adopts the following
conventions:

o The solver operates under the assumption that the per-
ceiving agent’s trajectory is linear, which means that all
non-linear factors in the agents’ motions are confined to
the collision probability construction step.

o All properties (e.g. size, speed...) of the agents are dealt
with separately to keep the design modular and simplify
extending the algorithm:

— Collision probabilities between a pair of agents are
computed cumulatively,

— using the lowest common factor between agents (their
co-existence in space and time, called Intrinsic Field,
blue dotted rectangle in Figure [I)),

— which is further warped by Warp Operators for each
agent property to be modeled (green dotted rectangle
in Figure [I).

With such an approach, a common, constant brick is used for
all interactions (Intrinsic Field) and is camulatively “sculpted”
(by Warp Operators) to form the collision probabilities be-
tween any pair of perceiving-perceived agents. Then, all these
interactions are combined into one using classical unions of
probabilities. Finally, the solver computes a new velocity re-
sulting in a trajectory with a lower overall collision probability.

In this work, we mainly focus on the step where collision
probabilities are constructed for a perceiving-perceived pair
of agents, leaving the union of probabilities and solver un-
changed.

B. Overview

In the following text, normal-face, lower-case fonts repre-
sent scalar values, and bold-face, lower-case fonts represent



vectors (e.g. in R3).

In practice, at timestep k& and for a set of agents A, at any
point in 2D space and time s € R?, the solver has access to the
collision probability p,_, 4\q,k(s) between a perceiving agent
a and all its neighbors A\ a, as well as the associated collision
probability gradient (Vp,— 4\q,%)(s). They are both computed
from pair-wise interactions through unions of probabilities,
where a pair-wise interaction between a perceiving agent a and
a perceived neighbor b yields a collision probability pg_p. 1 (s)
and a probability gradient (Vp,_p )(s), and is computed as
follows.

Let the scalar field I |Vs € R3,I(s) € [0, 1] be the Intrinsic
Fieldf W = W, o ... o W; the composition of given Warp
Operators {W1, ...,W,} (o denotes the composition operator),
and W' = W, o...oW, ! the inverse of W, where for any
Warp Operator W € {W1y, ..., W,,}, W~ is the inverse of W.
Note that the wording “inverse” is slightly abusive here and is
only meant to imply that each W ! undoes the corresponding
W in a geometrical sense.

Then, the pair-wise collision probabilities and their gradi-
ents between a perceiving agent a and a perceived agent b are:

Pasbp(s) = (W™ toloW)(s) (1)

(VPasbr)(s) = (W™ o (VI) o W)(s) 2

In this formulation, agents’ properties are implemented as
Warp Operators, independently of other mechanisms, making
it straightforward to extend the algorithm with new capabili-
ties. Hence, the present work focuses on the set of used Warp
Operators.

Originally, WarpDriver was proposed along with an initial
set of various Warp Operators as follows:

Position and Orientation : the 1W,, operator handles the
agents’ positions and orientations.

Velocity : the W, operator handles the agents’ instantaneous
velocities.

Environment Layout : if used, the W, operator models
the layout of the environment (e.g. intersections, curved
paths...).

Obstacle Interaction : if used, the W,; operator models how
static obstacles affect agents (e.g. stopping at a wall,
circumventing an obstacle...).

Observed Behaviors : if used, the W, operator tries to pre-
dict the trajectory of an agent based on its past trajectory
(independently of speed).

Time Horizon : the time horizon operator W, determines
how far into the future agents avoid collisions.

Radius : the W, operator sets the radii of agents.

Time Uncertainty : The W,, operator increases uncertainty
on other agents’ states as we look further into the future.

Velocity Uncertainty : Due to an agent’s speed, certain mo-
tion adaptations are easier (more likely) than others (e.g.
at higher speeds, it is easier to accelerate/decelerate than
turn); denoted W,,.

Fig. 3. Left: biarc-induced constraint. Right: sum of two 2-by-4 rectangles
at a 45° angle.

In this work, we:

« Remove the “position and orientation”, “environment
layout”, “obstacle interaction”, “observed behaviors” and
“velocity” Warp Operators which were used interchange-
ably in an ad-hoc fashion, replace them with two Warp
Operators W1, Wio (split to allow other Warp Operators
requiring access to world referential to be inserted) into
which any motion prediction function can be plugged
(in the present work we use a fast, pre-computed path-
planner), and add support for agents’ dynamic constraints.

o Add two Warp Operators Wy, and W, to handle agents’
shapes (and shape offsets).

o Add a Warp Operator W, to handle road boundaries as
soft constraints (which can be broken if the car needs to
steer off the road to avoid a collision as a last resort) for
traffic-like simulation.

III. GENERALIZED WARPDRIVER

In order to develop a more unified WarpDriver algorithm,
we have made a number of changes and introduced new
features that are summarized in this section: generalization
of non-linear motions, generalization of agents, and general-
ization of environment (applied to traffic).

As previously mentioned, we implement the proposed work
as Warp Operators to be included in the WarpDriver pipeline.
In Equation[T] I is a scalar field and thus takes a point in space
and time and outputs a probability: Vs € R3,I(s) € R. In
Equation [2] VI is a gradient over a scalar field and thus takes
a point in space and time and outputs a probability gradient:
Vs € R?,VI(s) € R Thus, in order to fully define a Warp
Operator, one needs to define three operations:

o Every Warp Operator W composing the chain W on the
right of I and VI in Equations[I] and 2] takes and outputs
coordinates in space and time W : R® — R3.

o Every inverse Warp Operator W~' composing the in-
verse chain W~! on the left of I in Equation [I| takes
and outputs a probability W~ : [0, 1] — [0, 1].

« Every inverse Warp Operator W~' composing the in-
verse chain W1 on the left of VI in Equation [2| takes
and outputs a probability gradient W1 : R? — R3.

Therefore, for each Warp Operator W described in this

section, we give W (s) Vs € R3, W~1(p) Vp € [0, 1], and
W~1(g) Vg € R3. A the end of this section, we summarize
the changes by giving the finalized chain of Warp Operators.



A. Additional Notations and Terms

Here is a list of notations and terms used in the rest of the

exposition:

e -, X, % and * respectively denote the dot product, cross
product, component-wise multiplication and convolution.

o Three commonly used vectors are x = (1,0,0), y =
(0,1,0), and t = (0,0, 1), respectively representing the
axes for 2-dimentional positions and time in the current
referential. They also make it simple to access the three
components s - X, s-y, and s - t of a vector s € R.

o An agent’s referential refers to a coordinate system in
R3 where the origin is at the agent’s intended center of
rotation, the agent “faces” along the local x vector, y is
to the agent’s “left”, and t remains the “up” vector.

e Vu,v € R3 angle(u,v) € R is the direct angle between
vectors u and v.

o Vu,v € R3, V0 € R, rotatey (u, 0) € R? rotates vector u
around vector v by angle 6.

B. Generalization of Non-linear Motions

The original WarpDriver algorithm had a number of Warp
Operators that dealt specifically with trajectories. The “posi-
tion and orientation” and “velocity” operators allowed to make
linear motion prediction, while the “environment layout”,
“obstacle interaction”, and “observed behaviors” operators
(respectively for environment-related curved paths, changes of
motion due to walls, and extrapolation of pattern-like motions)
were substituted for “position and orientation” when needed.

This on-the-fly substitution, external to the collision-
avoidance mechanism, means that these operators cannot be
properly combined (e.g. interacting with obstacles while on a
curved path).

Thus, we replace these alternating operators with a single
mechanism, which constructs an agent’s future likely trajectory
by using a function v which returns the velocity v(s), Vs €
R3 (also v(s) € R3, and v(s) - t = 1) that agent a would
follow in the absence of constraints at position and time s.
The likely trajectory is a collection of n positions and times
Lok = {s1,...,8,} € (R®)™ where s is the position of agent
a at timestep k in world referential, and Vi € [1,n—1],s8,11 =
s; +uw(s;) where u is the duration between consecutive s;.

Then, we define two operators W;; and W5, which respec-
tively warp a point from the perceiving agent’s referential into
world referential, and from world referential into the perceived
agent’s referential.

With two interpolation functions pos,(t) € R3 and
orig(t) € R, which given the likely trajectory L, j, respec-
tively return the perceiving agent’s position along L, j, at time
t, and its corresponding orientation at that time:

Wii(s) = (posa(t) - X, posa(t) -y, 1),
szl(p) =D
lel(g) = rotateg (g, —oriq(t)),
witht =s - t.

Here, W1 (s) needs no rotation, since in practice it is only
ever evaluated on the perceiving agent’s center of rotation.

Similarly, with interpolating functions pos;(t) € R3 and
orip(t) € R which respectively return the perceived agent’s
position and orientation in world referential at time ¢ € R
from Ly

Wia(s) = rotateg (s — posy(t), —orip(t)),
ngl (p> = pa
W' (g) = rotate(g, oriy(t)),

Obviously, function v benefits from being fast to compute.
This function is meant to be a genral interface for any mo-
tion prediction algorithm (which might be highly application-
specific), and in this work we connected it to our path-planner
which returns the direction of the shortest path between a
current position and a destination; as this path-planner makes
as many computations as possible ahead of time, in our test
cases v is computed on average in less than 0.3us. The
implementation details for this precomputed path-planner can
be found in the Appendix.

C. Generalization of Agents

In order to apply WarpDriver to agents other than pedestri-
ans, we need to be able to deal with shapes other than circles
as well as the agents’ dynamics.

1) Shapes: The formal way to deal with shapes is through
the Minkowski sum of the Intrinsic Field. For memory, the
Intrinsic Field was defined in WarpDriver as the lowest com-
mon denominator between agents, that is their co-existence
in space and time. In practice, this scalar field results from
a convolution between two functions. The first one is a
sensing-error function, which so far is the bivariate normal
density function (and Warp Operators can model additional
uncertainty): Vz,y € R, f(z,y) = iem’p(f(%)). The
second function is the Minkowski sum of two circular agents,
simply a disc-shaped step function of normalized radius 1:

1, if /a2 +9y2<1

Ve,y € R, g(z,y) = .
Y 9(z.y) {0, otherwise

The Intrinsic Field is then defined as:

Vs € R?, I(s) = {(f*g)(s-x,s-y), ifs-t.e [0, 1] 3)
0, otherwise

This computation, involves a convolution with a possi-
bly non-trivial error function, and the Minkowski sum in
general depends on the agents’ relative orientation. Setting
agents’ shapes to discs here makes the Intrinsic Field con-
stant throughout the simulation and allows its precomputation
(WarpDriver’s original approach). We wish to leave it pre-
computed, thus motivating our decision to implement shapes
through a Warp Operator.

It can be noted that since the Intrinsic Field as well as
the scalar fields resulting from warping it are volumetric
objects, and circles/lines/rectangles have simple symmetries,
Minkowski sums between them can be implemented in a Warp



Operator W, by successively “cutting” and “stretching” the
scalar fields.

Assuming a circle-like (in the (x,y) plane) volumetric
object that is not reduced to a point and centered at the origin
o (i.e. the Intrinsic Field), one cut-and-stretch operation will
make it into a line (with a non-null thickness), another such
operation into a parallelogram (either an agent’s own shape or
the sum of two line agents), yet another into a parallel hexagon
(the sum of a parallelogram and a line), and a final one into
a parallel octagon (sum of two parallelogram agents). In fact,
this could be continued to model the Minkowski sum of any
number of agents whose shape is a convex polygon with an
even number of sides where opposite sides are parallel and of
equal length.

We start by assuming that each agent a is characterized

by a set of cut vectors C; = {cf,,...,c5,} € (R®)",
a set of stretch vectors C; = {c,,...,c5,} € (R%)",
and a set of stretch distances C¢ = {cil, el e R

along the corresponding stretch vectors. For example, for a
wall a of total width 3m facing along the local x axis,
cs = {(1,0,0)}, ¢ = {(0,1,0)}, and C? = {1.5}. For a
car a of width 1.8m and length 4.6m facing along the local x
axis, C¢ = {(1,0,0),(0,1,0)}, C: = {(0,1,0),(1,0,0)}, and
cd ={0.9,2.3}.

Then at time ¢t € R, with 8 = angle(oriy(t), oria(t)),
for a perceiving agent a and a perceived agent b, we note
the combined set of cut vectors Cg , {cf,...,c¢} =
{rotate(c®, 9) | c® e CiHUCE, the combmed set of stretch
vectors C; {c§,...,c2} = {rotatey(c®,0) | c* €
c:ryces, and the combined set of stretch distances Ca p =
{cd,...,cd} = CI|JCL. The rotations used during the con-
struction of the combined sets of cut and stretch vectors deal
with the relative orientation between both agents. In order to
account for the combinatorial interactions between the cut vec-
tors, we define CAg’b = {¢§,...,¢5} using a helper sequence
H where H1 = {cfc;, —cfci}, and Vi € [2,n], H; =
{c® + cfcs, ¢ — clef | ¢® € H;_1}. In fact, H; contains
the vertices of the polygon constructed by the first ¢ cut-and-
stretch operations. Then, ¢§ = c§, and Vi € [2,n], ¢ = Tel®
where ¢ = center(argmax;.cg, ,|/cf - c*[|)). Note that we
use a function center which computes the centroid of its
input vectors, since argmax returns a set of either one or two
elements, the latter case happens when we try to cut through
(and perpendicularly to) the middle of a face of the so-far-
computed polygon.

With the previous definitions, Wy, is then computed as
follows:

Wsh (S) = 80,
W, (p) = p,
Wf;ll (g) = gnv

where:

s, =sands;_1 = (0, 0, s; - t) + a€&f + 7c;,
_ (s; xci)-t (s; X €§) -t

RCETE t’ﬁ_(c;‘xég).t’
{B G if18l > ¢l + €
’7:

% , otherwise

go = gand g; = rotate(gi—1, —angle(cs, €5)).

Since the cut-and-stretch operations are defined through
their cut and stretch direction vectors, this Warp Operator
works in the case where the center of rotation of the agent
is at the center of its circle/line/rectangle shape. To handle
cases where this is not true (e.g. the local center of rotation
of a typical car is at the middle of its rear axle), we add an
offset Warp Operator W,,.

Denoting the perceiving (resp. perceived) agent a’s (resp.
b’s) shape centroid in that agent’s referential by o, (resp. 0p),
W, is computed as follows:

Wo(s) = s + rotatet (04, 6) — 0p,
W, (p) = p,

W, (g) =&
witht = s - t and 6 = angle(oriy(t), oriy(t)),

An example sum of two 2-by-4 rectangles at a 45 angle can
be seen on the right of Figure 3]

2) Dynamics: In order to enforce agents’ dynamic proper-
ties, we define a function d which, given the current speed and
acceleration, bounds a target acceleration (e.g. resulting from
collision avoidance) to the agent’s capabilities. This function
is then used in two places.

The first place is after the algorithm’s solver: at timestep
k, given an agent a’s previous velocity v, ;_1 € R?, and the
acceleration computed by the solver Av, ;. € R?, the agent’s
new velocity is v, = Vg x—1 + d(Av, k). This part enforces
the dynamic properties of the perceiving agent on its own
motion.

The second place is inside function v (from Section [III-B)
which constructs agents’ likely future trajectories, thereby
making sure the perceived agents’ constraints over the per-
ceiving one also comply with their dynamics.

In this paper, d is implemented based on “openxc-vehicle-
simulator ” from the OpenXC Platform [1].

D. Environment Constraints

Environment constraints other than layout (already dealt
with in a general way in Section are rather application-
specific. However, there still is one type which is fairly
common, which is a constraint forcing agents to stay on a
given path.

For this purpose, we model paths as biarc curves[6], that is a
series of connected curves, each composed of two circle arcs.
Each arc is defined by its center ¢, radius 74, half-width
Were, and start and end angles Os;qr¢, Oeng. This representation
allows to easily construct paths (each section has four control



points similarly to cubic Bezier curves), has C 1 smoothness,
and most quantities that might be needed in further compu-
tations (e.g. distance to curve or distance along curve) are
straight-forward and fast to compute. Consequently, for each
arc in such constructed paths, we create a corresponding agent
with the following Warp Operator W:

Wa(s) = {O‘

Ware ‘g| ) if 05 S [ostarta eend]

)

0, otherwise
W, (p) =,
W, ! (g) = yrotate(g, 0s),

where 7 € [0, 1] is a tuning parameter, and:

Q= ||ﬁ|| — Tarc,
0s = angle(x, B),

B=s-

Using +, it is possible to tune how much importance we allow
the path. With v = 1, the path will have as much of an
impact on collision avoidance as other agents. With a lower
value, a car that couldn’t avoid a collision with another agent
by braking could exit the lane as an alternative strategy, for
instance. An example biarc-induced constraint can be seen on
the left of Figure [3]

(Carc X, Carc Yy, S t)

E. Finalized Chain of Warp Operators

With the changes and additions made in this section, the
chain of Warp Operators W used for Equations [T] and 2]
becomes:

W =W, 0o Wy o Wy o Wr o W, 0o Wo 0 Wig o W, 0 Wiy

IV. RESULTS

In this section, we present some experimental results on
the prototype implementation of the algorithm as described in
this paper, with both simulation results and a discussion on
computational costs vs. benefits.

A. Benchmarks

Since our method is meant to be general, with no distinc-
tions between environment layout constraints, agent shapes,
nor dynamics, we have designed a set of situations fused into
one continuous track-like setting, where a car-like agent drives
along the track and transitions between the following four
cases:

Pedestrian crossing : A group of 10 pedestrians crossing the
road after a right-angle turn at an intersection (Figure [4]
left).

Sharp turn : A sharp right-angle turn after having reached
maximum speed (Figure ] right).

Roundabout : A roundabout in a crowd of 300 pedestrians
walking with no regard for the road, and with randomly
assigned destinations (Figure [5)).

Open-space : An open space with two cars and two buses in
a cricle (waiting for the main car to complete the circle)
trying to reach antipodal positions while in a crowd

of 200 pedestrians with randomly assigned destinations
(Figure [6).
All cars and buses are subject to the previously mentioned
dynamics [1]], and have a preferred speed of 10m/s (subject
to slowdowns based on interactions with other agents and
environment). Pedestrians are not subject to dynamics, and
have a preferred speed of 1.4m/s.

For qualitative comparison purposes, we also show some
results using the publically available ORCA algorithm [24]. It
is a velocity-obstacle based method, operating on holonomic,
disc-shaped agents with linear motions, and we conservatively
set the radius of the car and bus agents so that it contains these
vehicles.

With this algorithm, the size of the car agent disc is
greater than the width of the road, and therefore saturates the
algorithm’s solution space. Thus, we only show simulation
results for ORCA on the “Open-space” part of the track
(however, the first three parts of the simulation greatly rely
on non-linear motions, for which the benefits of WarpDriver
have already been shown in [27]).

e :i \

et

Fig. 4.  Left: car stops in advance for pedestrians to cross the road. Right:
car slows down before sharp turn to the right.

1) Pedestrian Crossing: In this simple situation (Figure [4
left), the car decelerates to around 2m/s when engaging on the
intersection. This results from the combination of two factors.
The first is the car’s ability to perceive the pedestrians after
the turn thanks to the non-linear knowledge of its own future
path (turning and following the road), the result of which is
the car’s reacting to the pedestrians, although it could either
turn around them or slow down. The second is the presence of
path constraints related to the road the car is following, which
keep the car from leaving the road, thereby slowing it down
instead.

2) Sharp Turn: In this second situation (Figure EL right),
after having reached its desird speed, the car slows down to
4.5m/s before the turn. This is due to the interplay between
non-linear future motion, road constraints, and the car’s dy-
namics. The car’s non-linear future motion is based on both
the curve of the road and its dynamics, and at its preferred
speed this motion would take it out of the road. In order to fit
into the road constraints, the car slows down until its future
motion coincides with the road.

3) Roundabout: In this next situation (Figure |§[), the car
is made to mostly disregard the pedestrians by artificially
lowering the collision probabilities they impose (similar to
the tuning parameter 7 in Section [III-D)), such that most of
the collision avoidance effort falls on the pedestrians. As a
result, as the car approaches the roundabout, the pedestrians
start moving out of the road to let the car pass. This behavior is



Fig. 5. Car arriving at roundabout, artificially made to mostly disregard
pedestrians, which as a result clear the road ahead.

mostly due to the non-linear nature of the car’s future motion,
allowing the pedestrians to know where the car will pass.

4) Open Space: In this complex final situation (Figure [6),
a few main observations can be made. The first is that despite
the size and dynamics-related limitations of the vehicles, and
the number of pedestrians, all agents stay collision-free. The
pedestrians specifically, get out of the way of the vehicles
and sometimes just stay on their side while they pass by,
taking advantage of their shape. The second is that due to
their size and lower ability to turn, the buses cross paths in
the center of the circle, while cars either circumvent them or
pass aferwards. Finally, the classical advantages of non-linear
motion prediction also apply, with no observable “sweeping”
of agents on front of the vehicles; in the case of linear
prediction, agents would try avoiding collisions by steering
towards the inside of the vehicles’ turning maneuver even had
they been safe to begin with (although note that it is difficult
to observe this phenomenon in the corresponding simulation
with ORCA since, having no dynamics, vehicles under ORCA
change directions instantaneously).

In the ORCA simulation of this part of the scenario however
(Figure [7), only one of the cars and neither of the buses
manages to reach the center of the crowd, likely due to the
crowd’s density and the size of the car/bus agents’ radii. There
is also the artifact of the vehicles’ spinning, though this is a
relatively minor issue as bounding the acceleration using d
from Section would likely partially solve this (partially
because an agent could enforce dynamic constraints on itself
but not on the motion prediction applied to its neighbors).

B. Computational Cost and Analysis

The complexity of the full algorithm is 0(n?) with n the
number of agents, assuming each agent interacts with every
other agent. A “Sweep and Prune”-like N-body culling scheme
on a grid, proposed along the original WarpDriver algorithm
allowed to reduce this complexity. In this scheme, each agent
estimates a “hull”: a conservative region of space where the
collision probabilities it imposes on neighbors are lkely to
be non-null (and certainly null outside of this region). Then
on a 2-dimensional grid, each agent registers itself in each
cell intersecting its estimated hull. As a result, agents can
sample collision probabilities only for agents registered in the
corresponding cells. This scheme in effect imposes a linear-
time upper bound on the algorithm: as a crowd’s density has an
upper bound, there is an upper bound to the number of agents
simultaneously registered in each cell. Furthermore, due to
the conservative estimation of the hulls, simulations with and
without this culling scheme give the same results. Then, with

a target of 15-20 fps framerates, the algorithm could simulate
upwards of 5,000 agents.

We can easily compute the overhead of the systems in-
troduced in this paper, by looking at the differences in the
computation time of agent interactions with the new Warp
Operators enabled/disabled while using the same neghbor-
selection scheme. In WarpDriver, interactions are solved in the
following order: (1) commonly used values are precomputed
(e.g. the L, from Section [[I-B)), (2) constraint hulls are im-
printed onto the grid, (3) the actual interactions are computed
(i.e. Warp Operators, union of fields, solver), and finally (4)
the constraint-hull grid is cleared. Table [[] shows this overhead
as g—;‘, where d; is the computation time of the considered
phase of the system, and d; is the total simulation time with
all Warp Operators enabled. These values are then given for
the four phases with the newly introduced Warp Operators
disabled (i.e. W = Wy, o Wy, 0 Wy, 0 Wy 0 W, 0 Wy, i€
only circular agents and linear motions supported, no path con-
straints) and then enabled. As can be seen in this table: (1) the
operations related to the constraint-hull grid have equivalent
duration (expected since the same culling was performed), (2)
the precomputation is noticeably longer with our complete
system (~19x, expected, since this is where the L, j are
computed) but this duration remains negligible compared to
the interaction computation, and (3) the computation of the
new Warp Operators is only ~17% more expensive. Overall,
there is about 20% computational overhead over a simple, base
WarpDriver algorithm supporting only disc-like agents with
linear motions.

TABLE I ,
RELATIVE COMPUTATION TIMES (-2Beration duration
mazimum duration
Method Precomp. | Make hulls | Interact | Clear hulls Total
Disabled 0.0041 0.1420 0.6117 0.0726 0.8304
Enabled 0.0785 0.1374 0.7147 0.0694 1

C. Discussion

In this work, we have addressed several key aspects central
to collision avoidance: non-linear motions, agent dynamics,
and agent shapes. Each of these factors has received attention
in the past individually. Extensions to well-known algorithms
for handling these cases, mostly based on velocity obstacles,
usually come with a significant computational and implemen-
tation overhead.

For instance, even in the seemingly simple case of interac-
tions between circular, line-like, and rectangle-shaped agents,
nine shape-pair cases need to be constructed, if using an
approach similar to [S]]. Similarly, for algorithms that take
into account agent dynamics or other sources of non-linear
motion prediction, a noticeable overhead is introduced by
the discretization of the velocity obstacles. Furthermore, the
complexity of each resulting algorithm also makes it difficult
to combine them (with algorithms or other properties, such
as support for sensing error). Finally, for specific applications,
the addition of corresponding features (e.g. safety distances
for road traffic) or the interfacing of different algorithms
also subject the resulting systems and implementations to a
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Six consecutive stills from circle of buses and cars moving to antipodal positions while inside a crowd of pedestrians with random destinations.

Top-left: cars and buses waiting for the main car to arrive and complete the circle.

Fig. 7.

Three consecutive stills at 10s intervals from the Open-space part of the simulation scenario using ORCA. Only one of the cars (the one starting

from the left) manages to reach the center of the crowd, while none of the buses do.

variety of race conditions, leading to potential instability of
the systems.

The Generalized WarpDriver addresses all these issues with
minimal computational overhead by introducing a unified for-
mulation applicable to all agent shapes, dynamics constraints,
and non-linear motion, as shown in the benchmark examples
(see the supplementary video).

V. CONCLUSION

In this paper, we have presented a generalization of Warp-
Driver, by: (1) presenting one single (though split in two
for modularity), unified non-linear Warp Operator, instead of
multiple specialized implementations and their combinatorial
interaction, (2) introducing support for agent dynamics and
common shapes, and (3) adding support for path constraints.
Most importantly, not only do we offer support for these
features individually, but also in a unified formulation. They
can each be implemented in separate Warp Operators, but
ultimately when each agent computes its next state, all these
operators contribute to the construction of a single scalar field,
thereby removing race conditions due to cascading of pair-wise
interactions. Finally, these features can be implemented at a
low computational cost, with only 20% overhead compared to
a base WarpDriver implementation.

The current implementation of this work that can benefit
from more optimization is the culling of neighboring agents,
as the current scheme is inefficient with regard to interactions

involving various shapes (difficulty of quickly constructing
hulls). It would also be interesting to further compose multiple
shapes into highly complex geometry, for example possibly
with Warp Operators that branch into hierarchies of operator
chains); this may help handling much more complex agent
interactions (e.g. small robot moving between the wheels of a
plane, while a medium robot would be limited by the fuselage
and engines).
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