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Abstract—Often times, natural language commands issued to
robots not only specify a particular target configuration or goal
state but also outline constraints on how the robot goes about
its execution. That is, the path taken to achieving some goal
state is given equal importance to the goal state itself. One
example of this could be instructing a wheeled robot to “go
to the living room but avoid the kitchen,” in order to avoid
scuffing the floor. This class of behaviors poses a serious obstacle
to existing language understanding for robotics approaches that
map to either action sequences or goal state representations.
Due to the non-Markovian nature of the objective, approaches
in the former category must map to potentially unbounded
action sequences whereas approaches in the latter category
would require folding the entirety of a robot’s trajectory into
a (traditionally Markovian) state representation, resulting in an
intractable decision-making problem. To resolve this challenge,
we use a recently introduced probabilistic variant of Linear Tem-
poral Logic (LTL) as a goal specification language for a Markov
Decision Process (MDP). While demonstrating that standard
neural sequence-to-sequence learning models can successfully
ground language to this semantic representation, we also provide
analysis that highlights generalization to novel, unseen logical
forms as an open problem for this class of model. We evaluate
our system within two simulated robot domains as well as on
a physical robot, demonstrating accurate language grounding
alongside a significant expansion in the space of interpretable
robot behaviors.

I. INTRODUCTION

The broad spectrum of tasks that humans would like to see
interpreted and executed by robots extends beyond realizing a
particular goal configuration. A slightly richer space of tasks
includes those that are looking to induce a constrained or
repetitive robot execution. In the former category, a person
may instruct a robot in the home to “go down the right side
of the hallway and to the bedroom,” restricting the space of
possible paths the robot might take to reach its destination.
Similarly, a command in the latter category may be “watch
the sink for dirty dishes and clean any that you see,” implying
that the robot should enter a loop of repeatedly scanning for
dirty dishes and cleaning any that appear. A robot system that
can adequately represent and enable untrained users to express
these complex behaviors would constitute a huge step forward
in the area of human-robot interaction.

Existing approaches such as Linear Temporal Logic (LTL)
[41, 35] allow these behaviors to be expressed as formal
logical functions, enabling the automatic generation of robot
controllers to execute these behaviors. While incredibly pow-

Fig. 1: In this robot demonstration we provided a natural
language command of “Go through the yellow room to the
blue room”. The command is mapped to the LTL formula
“♦(Y ∧♦B)”, which implies eventually satisfying the combi-
nation of going to yellow and subsequently reaching the blue
room. In this work we map from natural language commands
to such LTL formulae with sequence-to-sequence approaches.

erful, the average, non-expert user cannot be expected to hold
the requisite knowledge for expressing arbitrarily complex
behaviors via LTL. Consequently, we turn to natural language
as a familiar interface through which non-expert users may
convey their intent and desires while escaping the need for
low-level programming knowledge. Unfortunately, due to the
rich underlying semantics of LTL, there is no existing ap-
proach that takes open-ended natural language commands and
maps directly to general LTL expressions.

This paper presents an approach for enabling a robot to
learn a mapping between English commands and LTL ex-
pressions. We present the largest known dataset that maps
between English and LTL in a model environment. We employ
neural sequence-to-sequence learning models to infer the LTL
sequence corresponding to a given natural language input
sequence. While existing sequence-to-sequence models require
large amounts of data to perform tasks at scale (such as
English-French neural machine translation), we are not able to
easily access such vast quantities of data due to the associated
cost of obtaining annotations of natural language with their
equivalent LTL logical forms. Consequently, we also outline
a data collection pipeline through Amazon Mechanical Turk
and employ data augmentation techniques to expand the size



of the parallel corpus. Finally, we conduct an analysis of our
proposed sequence-to-sequence grounding models and their
ability to generalize to novel natural language commands and
generate LTL expressions never seen during training.

We evaluate our approach in simulation as well as using a
real robot. We collected a corpus of more than 700 sentences
mapping to LTL commands to a robot in a simulated 2D
environment, which is the largest natural language to LTL
corpus to the best of the authors’ knowledge. We showed
that we are able to correctly ground LTL expressions for a
wide variety of commands. We demonstrate our approach on
a simulated pick-and-place domain, and on a mobile robot (the
Turtlebot). Our approach extends the space of achievable robot
behaviors to include several non-Markovian objectives includ-
ing repetitive patrolling, going through specified locations, and
avoiding specified locations.

II. RELATED WORK

The question of how to effectively convert between natural
language instructions and robot behavior has been widely
studied in previous work [50, 34, 24, 14, 9, 47, 8, 18, 11, 1,
33, 28, 36, 27, 40, 7, 2, 19, 37]. So far, there have been three
categories of behavior specifications that these works have
mapped natural language to: action sequences, goal states, and
LTL specifications. They differ in terms of the following four
desiderata:

• Environment-agnostic: The same natural language in-
struction may lead to different primitive actions being
executed across different environments, or if the world
is stochastic. Grounding language directly to action se-
quences is environment-dependent; the other two (goals
and LTL) are not.

• Compact representation: Action sequences have length
proportional to the trajectory, whereas goals and LTL
formulae can be arbitrarily shorter.

• Non-Markovian specifications: Some typical robot behav-
ior cannot be easily expressed as a goal state, such as “put
down the knife before moving”. This is trivial to specify
in an action sequence, and is often expressible in LTL.

• Efficient planning: Action sequences require no planning
and are therefore trivially efficient. For reaching goal
states, efficient algorithms exist both within classical
and decision-theoretic planning (MDPs) [38, 29]. Control
policy synthesis for LTL is (doubly) exponential in the
formula length in the worst case [12], although it is
typically faster in practice, and many efficient fragments
and approximations have been proposed.

Since we want to ground language for non-Markovian spec-
ifications in potentially novel and stochastic environments,
we adopt LTL as our target specification in this paper, and
will only review grounding language to temporal logic in the
remainder of this section.

Kress-Gazit et al. [22, 24] pioneered the area of grounding
language to LTL, although the initial work was limited to
grounding a fragment termed “structured English”. Subse-
quently, Dzifcak et al. [14] designed a combinatorial categorial

grammar (CCG) that grounds a different fragment of English
to the more-general computational tree logic (CTL*); however,
this work suffers from the need to manually construct a
grammar. Lignos et al. [28] instead used off-the-shelf parsers
to interpret the full space of natural language, but do not
provide a method to learn from new robot-specific language,
and therefore their approach may be limited by the particular
corpus used by the existing parser. In contrast, Boteanu et al.
[7] collected a crowdsourced corpus of block-sorting instruc-
tions to train a Verifiable Distributed Correspondence Graph
model that mapped natural language to structured English. In
this work, we present a corpus that is an order of magnitude
larger, and apply the sequence-to-sequence framework that
allows grounding to the full space of LTL formulae (instead of
the GR(1) fragment). In an orthogonal direction, Raman et al.
[44] demonstrated the benefit of verifying LTL behavior by
identifying unsatisfiable parts of LTL formulae and reporting
which natural language commands resulted in these failures.
Although verifiable behavior is a significant advantage of using
LTL [23], we do not focus on verification in this work.

Modeling agent behavior with LTL has been of interest for
a while [31, 24]. There have been various variants of LTL
developed over the years for different reasons. We describe
a few here, for a more detailed treatment please refer Kress-
Gazit et al. [25]. To handle uncertainty, a probabilistic version
of LTL, Probabilistic Computation Tree Logic [16] has been
defined so as to evaluate over states of an MDP. Further, since
LTL has an infinite time horizon, approaches have tried to
shorten this time horizon so we verify properties to be valid
for a certain time horizon [48]. Geometric LTL (GLTL) [30]
is another such formulation for specifying goals for an MDP
using LTL formuale, such that the formulae are only valid for
a chosen time window. In this paper, we use GLTL to represent
temporal behaviors because it allows planning with traditional
MDP planners. However, our use of the neural sequence-to-
sequence framework grants us flexibility, and we may also
consider other variations of LTL to map natural language to,
and perform non-Markovian behaviors. We leave exploration
of other LTL variants for target specification from natural
language to future work.

III. APPROACH

In order to fully specify our system for converting natural
language to robot behavior, we begin by describing our prob-
lem setting and clarify its connection to the GLTL semantic
representation inferred by our grounding model. We then go
on to outline the recurrent neural network architectures used
for mapping between natural language and GLTL expressions.

A. Problem Setting

We formalize the problem of language grounding within
the context of an Object-oriented Markov Decision Process
(OO-MDP). A Markov Decision Process (MDP) [5, 42] is
a five-tuple 〈S,A,R, T , γ〉 where S defines the robot state
space, A specifies the actions available to the robot,R encodes
the underlying task through numerical rewards defined for



each state-action pair, T defines the probabilistic transition
dynamics of the environment, and γ is a discount factor. Given
an MDP as input, a planning algorithm will produce a policy
that maps from states to robot actions. Building on the MDP
formalism, an OO-MDP [13] refines the notion of state to
be a collection of object classes, each with their own set of
attributes. Additionally, the OO-MDP framework includes a
set of propositional logic functions, parameterized by instances
of object classes, that can be used to query objects within the
OO-MDP state.

Following the framework introduced by MacGlashan et al.
[33], we treat natural language as the specification of a latent
reward function that completes the definition of an otherwise
fully-specified MDP. We use a language grounding model
to arrive at a more consolidated, semantic representation
of that reward function, thereby completing the MDP and
allowing it to be passed to an arbitrary planning algorithm
for generating robot behavior. More specifically, we think of
each natural language command as specifying some latent
LTL formula encoding the desired behavior. The OO-MDP
propositional functions serve as possible atoms of the LTL
expressions, creating an expressive language for defining tasks.
In particular, LTL formulae are sufficiently expressive to
subsume semantic representations used in previous goal-based
language grounding work such as MacGlashan et al. [33] and
Arumugam et al. [2].

B. Geometric linear temporal logic (GLTL)

Linear temporal logic has the following grammatical syntax:

φ := atom | ¬φ | φ ∧ ψ | φ ∨ ψ | �φ | ♦φ | φUψ | © φ

atom denotes an atomic proposition; ¬, ∧, and ∨ are logical
“not”, “and”, and “or”; � denotes “always”, ♦ denotes “even-
tually”, U denotes “until”, and © denotes “next”. Semantic
interpretations of temporal logic operators can be found in
Manna and Pnueli [35].1

Following work done by Bacchus et al. [3] for specifying
reward functions over temporal sequences via LTL, Littman
et al. [30] introduced the geometric LTL (GLTL) variant that
replaces the standard LTL operators with “soft” substitutes.
Effectively, these probabilistic operators are equivalent to their
hard LTL counterparts but satisfying each operator is restricted
to some bounded window of time as determined by a draw
from a geometric distribution. More concretely, instead of
�p, representing that p always holds true indefinitely, GLTL
would have �µp for indicating that p holds for the next
k ∼ Geom(µ) timesteps. Similarly, ♦µp and qUµp correspond
to p becoming true in the next k timesteps and q holding true at
least until p becomes true in the next k timesteps respectively
where, again, k ∼ Geom(µ). While sacrificing the guarantees
and proofs of correctness typical of LTL, the probabilistic
nature of GLTL enables learning while specifying rewards in
a generalizable, environment-independent fashion. We include

1In this work we do not collect data on behavior requiring the “next”
operator, and therefore it never appears in our grounded formulae; however,
the same framework can be used if relevant data for “next” is collected.

more on how GLTL ties into our approach in Section III-A
and, for more information on GLTL itself, please consult [30].

Crucially, Littman et al. [30] connect GLTL back to MDPs
in a way that not only specifies the desired behavior without
overfitting to a single environment instance by folding the
stochastic semantics of the GLTL expression into the stochas-
tic transitions of the environment, enabling the application
of standard reinforcement learning and planning techniques.
In particular, each atomic proposition of a GLTL expression
has an associated three-state MDP consisting of an initial,
accepting, and rejecting state. From the initial state, there is a
single action in this specification MDP that will transition to
the accepting state if the proposition holds and move to the
rejecting state otherwise. Each GLTL operator represents some
fixed transformation or combination of these MDPs resulting
in a new specification MDP. Once an inferred GLTL expres-
sion is converted to its corresponding specification MDP, it is
combined with the separate environment MDP resulting in an
MDP whose solution represents a policy capturing the desired
behavior. For the full details of specification MDP construction
and combination with an environment MDP, please see [30].
We model the procedure of mapping from natural language to
GLTL expressions as a neural machine translation problem.

Although we choose GLTL paired with an MDP to find
policies corresponding to LTL expressions, our language
grounding system can work with any framework for computing
a satisfying controller for the robot, such as those described in
the related work [25]. Notice that the switch is commensurate
with defining a new machine translation problem with a target
language defined by the syntax of the alternative framework.

C. Mapping Language to GLTL

In order to handle the task of translating from natural
language to GLTL expressions, we turn to recent neural-
network architectures for sequence learning that have already
proven to be incredibly performant in other machine trans-
lation tasks. We are presented with a sequence taken from
some source language x = [x1, . . . , xN ] and would like
to infer a corresponding sequence of some target language
y = [y1, . . . , yM ]. Given a translation model with parameters
θ, we look to identify the most likely target sequence and
decompose its corresponding probability into the product of
partial translation probabilities:

p(y|x, θ) =
M∏
m=1

p(ym|x,y<m, θ) (1)

where y<m = [y1, . . . , ym−1].
Treating the space of natural language commands as a

source language and GLTL expressions as a target language,
we collect a parallel corpus and optimize the neural-network
architecture parameters θ (see Section IV-C for more details
on the data collection procedure). Specifically, we leverage the
recurrent neural network (RNN) encoder-decoder framework
[10, 46] extended by Bahdanau et al. [4].



Widely used across a variety of natural language tasks,
RNNs are models that map sequential inputs to high-
dimensional output spaces, using recurrent cells that maintain
an internal or hidden-state representation of the sequence
processed thus far [17, 10, 15]. Neural sequence-to-sequence
learning use two distinct RNN models, an encoder and de-
coder, to map between source and target language sequences.
An encoder processes an input sequence and, for each input to-
ken, produces an output and an updated hidden state. While the
hidden state stores a global summary of the overall sequence,
the output encodes local information computed from the
current hidden state and the current input token. After all input
tokens are fed to the encoder, there is a resulting sequence of
encoder outputs and hidden states. Subsequently, a decoder
model generates target language sequences by mapping an
input target language symbol to a probability distribution over
the target language vocabulary [6]. Connecting the two models
is the final hidden state of the encoder RNN cell (that is, the
hidden state after processing the entire input sequence) which
is used to initialize the hidden state of the decoder RNN cell
[10, 46]. The encoder hidden state is initialized with an all
zeros vector and a special start token is fed as the first input
to the decoder in order to initialize decoding.

In both the encoder and decoder of our model, we use
the Gated Recurrent Unit (GRU) [10] as the core RNN cell.
Briefly, a GRU is one type of RNN cell that, using the previous
hidden state st−1 and current input xt, performs the following
computations:

Reset gate: rt = σ(Wr · xt +Ur · st−1 + br) (2)
Output: gt=tanh(Wg ·xt +Ug ·(rt�st−1) + bg) (3)
Update gate: zt = σ(Wz · xt +Uz · st−1 + bz) (4)
State update: st = (1− zt)� st−1 + zt � gt (5)

resulting in an output vector gt and a new hidden state
st where (·) and (�) denote matrix-vector and Hadamard
products respectively. Intuitively, rt is a “reset” gate affecting
how hidden state information is combined with the current
input to produce the cell output, gt, and zt is an “update”
gate negotiating how much information is preserved within
the hidden state. All parameters in bold denote trainable
parameters of the cell that are optimized during training of
the entire architecture via backpropagation.

Given the GRU encoder and decoder, fenc and fdec, words
of the input sequence are first mapped to their corresponding
vector representations via an embedding lookup. Intuitively,
since the individual tokens can simply be represented as
integers, the word embeddings provide a high-dimensional
representation that is optimized as part of the neural network
and can be used to capture semantic information about each
individual word. Feeding each input embedding, x̂j, in se-
quence produces a corresponding sequence of encoder outputs,[
h1, . . . , hN

]
, and hidden states

[
s1, . . . , sN

]
. where each

hj , sj comes from:

hj , sj = fenc(sj−1, x̂j) (6)

Once the input sequence has been processed, the final
encoder hidden state, sN is used to initialize the RNN cell of
the decoder. During decoding, the previously inferred token
of the output sequence is mapped to a probability distribution
over the target vocabulary from which the next output token
is sampled:

p(yi|x,y<m, θ) = fdec(vi−1, ŷi−1) (7)

Here ŷi−1 denotes the embedding for the previously de-
coded token, ŷi−1. In all of our experiments, we use a greedy
decoding scheme and treat the token in the distribution with
highest probability as the inferred token, ŷi.

Subsequent work by Bahdanau et al. [4] proposed learning
a weighting or attention scheme to selectively utilize encoder
output information during decoding. The resulting Bahdanau
attention mechanism reparameterizes the decoder as a function
of the previous token embedding and a context vector. At each
step of decoding, the context vector weights the information
of the encoder outputs

[
h1, . . . , hN

]
according to:

ci =

N∑
j=1

αijhj (8)

where αi is a weight on the information carried in hj . The
individual attention weights are computed as outputs of a
feedforward neural network, a(vi,

[
h1, . . . , hN

]
), with a final

softmax activation and where vi is the current hidden state
of the decoder RNN cell. Accordingly, decoding occurs by
greedily sampling the next token distribution:

p(yi|x,y<m, θ) = fdec(vi−1, ŷi−1, ci) (9)

Even with alternatives to Bahdanau attention, attention
weights are typically computed as a function of the current
decoder hidden state and the encoder outputs [32]. Given
the rigid structure of GLTL as a target output language, we
examine an alternative attention mechanism that computes
attention weights purely as a function of decoder parameters.
More formally, we propose an encoder-agnostic attention
mechanism where each attention weight αi is computed by
a feedforward neural network a(ŷi−1, vi) that takes the pre-
viously decoded token embedding and the current decoder
hidden state as inputs. This attention scheme captures the
idea that the previously decoded token and current state of
the target translation generated thus far offer a clearer signal
for weighting the encoder outputs than the encoder outputs
themselves. Although seemingly counterintuitive, we consider
a particular scenario where the sequence-to-sequence ground-
ing model must generalize to a language command at test time
that corresponds to a novel GLTL expression never seen during
training. Instead of being subject to the learned mechanics of
the source language that may vary dramatically at test time,
the encoder-agnostic attention scheme would maintain focus
on the GLTL target language side that exhibits significantly
less variation and follows a small, well-defined lexicon.

Unlike the architecture outlined in Bahdanau et al. [4], we
found a single, forward RNN encoder was sufficient for our



(a) Static mobile-manipulation
domain images presented to AMT
users for annotation. Positive
(green) and negative (red) labels
were applied to the images so
that AMT users could infer the
constraint reflected in the robot’s
behavior.

Example Command GLTL Expression

Go to the green room.
Go into the red room.

♦G
♦R

Enter blue room via green room.
Go through the yellow or red room,

and enter the blue room

♦(G ∧ ♦B)

♦((R ∨ Y ) ∧ ♦B)
Go to the blue room but avoid the red room.
While avoiding yellow navigate to green.

♦B ∧ ¬�R
♦G ∧ ¬�Y

Scan for blocks and insert any found into bin.
Look for and pick up any non red cubes and

put them in crate.

�((SU¬A) ∧ ♦A)
�((SU¬NR) ∧ ♦NR)

(b) Example commands and corresponding GLTL formulas. R, G, and B are propositions
in Cleanup World for testing if the agent is in the Red, Green or Blue rooms respectively.
S, A and NR are propositions for the pick-and-place domain. S tests if the table has been
scanned once; A tests if all blocks are in the bin; and NR test if all blocks expect the red
colored ones are in the bin.

Fig. 2: Image from Cleanup World shown for data collection, and sample commands collected using Amazon Mechanical Turk
(AMT) for the domains of Cleanup World and Pick and place.

task and opted not to use a bi-directional RNN encoder in favor
of reduced training time and sample complexity. All models
were implemented in PyTorch [39] and trained using the Adam
optimizer [20] with a learning rate of 0.001. Embedding and
RNN output sizes were set to 50 and 256 units respectively.
Additionally, we made use of dropout regularization [45]
before and after both the encoder and decoder GRUs with
a keep probability of 0.8. We found that reversing all input
sequences provided a small increase in grounding accuracy.
For each training sample, a random choice was made between
providing the ground truth output token, y, (teacher forcing
[49]) and providing the actual decoded symbol, ŷ, with 0.5
probability.

IV. EXPERIMENTS

We now outline the two domains used for evaluating our
approach as well as the details of our data collection procedure
for training the three presented grounding models.

A. Mobile-Manipulation Robot Domain

Cleanup World [33] consists of a single robot agent acting
within an environment characterized by distinctly colored
rooms and movable objects. We chose this domain for our
experiments as it allows us to express a wide variety of con-
strained execution tasks. For the purposes of our experiments,
these restrictions took on one of two forms: the robot would
need to reach it’s target destination by either passing through
or explicitly avoiding a particular room in the environment.

B. Pick-and-place domain

In order to showcase instances of repetitive robot execution,
we designed a pick-and-place domain where a robot is meant
to patrol the environment waiting for sudden events that trigger
some desired behavior. More concretely, the domain is defined
by distinct table and bin regions where colored blocks may
reside. These blocks have only two attributes: first for location,

table or bin; second for color where the blocks can be red or
green or blue or yellow. Initially, there may not be any blocks
present and so the robot must utilize a scan action to survey
the area until an appropriately colored block can be picked up
and moved from the table to the bin. A scan operation reveals
a new block, if it was “placed” on the table. The placement
can be assumed to be done by a human user. The pick-and-
place action picks a block and moves it to the bin. Note that
the reachable state space of this domain grows rapidly as the
number of blocks on the table increases, as each block can be
at different locations. Given an agent with only two scan and
pick-and-place actions at its disposal, we experimented with
two core task types: placing all blocks found during scanning
into the bin or placing only blocks of a certain chosen color
into the bin.

C. Data-collection Procedure
An Amazon Mechanical Turk (AMT) user study was con-

ducted in order to collect data for training our neural sequence-
to-sequence grounding models mapping natural language com-
mands to GLTL expressions in each of our domains. To
construct the parallel corpus, annotators were presented with
static images (for Cleanup World) and short video clips (for
pick-and-place) depicting a particular robot behavior as shown
in https://streamable.com/8lqab. Users were then asked to
provide a single sentence instruction that would induce the
observed behavior. For the mobile-manipulation robot domain,
sample images provided to AMT annotators can be seen in
Figure 2a. Specifically, these images were displayed to users
with positive (green arrow) and negative (red arrow) labels so
that annotators could infer the constraint being placed on the
robot’s execution.

Curiously, we found that annotators were more inclined to
specify positive over negative behavior in their instructions.
For instance, an attempt to collect data for behavior matching
the command “go to the green and avoid the yellow room”

https://streamable.com/8lqab


Domain #1 Domain #2
Original Expanded Original Expanded

Seq2Seq 93.10± 1.60% 95.25± 0.30% 86.09± 1.03% 93.42± 0.96%
Seq2Seq + Bahdanau Attention 93.45± 0.60% 95.51± 0.11% 87.15± 0.36% 93.78± 0.29%
Seq2Seq + Encoder-Agnostic Attention 93.18± 0.94% 94.98± 0.30% 86.47± 0.72% 93.92± 0.44%

Fig. 3: Accuracy and standard deviation of 5-fold cross validation for each grounding model and domain, averaged over 3
independent runs.

would often result in commands where users would instruct the
robot to navigate to the green room utilizing whichever rooms
were designated under the positively labeled images. Although
technically correct, these instructions pose an obstacle as
the intended, ground-truth GLTL expression (containing, for
example, the token for the yellow room) would never include
a symbol with semantic meaning associated with the rooms
mentioned (for example, the blue or red rooms). In order
to address this problem, a manual relabeling of data was
performed such that samples whose instruction did not align
to the intended GLTL formula were instead mapped to the
corresponding GLTL formula consistent with the instruction.
Filtering commands that reflected a clear misunderstanding of
the annotation task resulted in parallel corpora consisting of
501 and 345 commands for the mobile-manipulation and patrol
domains respectively. In aggregate, these commands reflected
a total of 15 and 2 unique GLTL expressions respectively. Ex-
amples of natural language commands and their corresponding
GLTL formulae can be seen in Figure 2b.

In order to supply additional data for the mobile-
manipulation domain, we utilized a subset of the Cleanup
World dataset collected by Arumugam et al. [2] consisting
of 356 agent navigation and block manipulation commands,
swapping their Markov reward function representation for
the GLTL equivalent. Together, the combined dataset denotes
the original dataset for the mobile manipulation domain
used throughout all of our experiments. The pick-and-place
domain original dataset received no extra commands. To
further expand on the data present for learning across both
domains, a synthetic data expansion procedure was applied to
both datasets. Excluding the minority of commands pertaining
to block manipulation behavior, all other commands were
mapped to new commands through the substitution of color
words in the natural language and the equivalent swapping of
atoms in the corresponding GLTL expressions. For example,
the command “move to the red room” and corresponding
expression ♦R would be mapped to three new language
commands (one for each of the blue, green and yellow rooms)
along with the corresponding GLTL expressions (♦B, ♦G,
♦Y ). This expansion resulted in two expanded datasets for
each of the domains consisting of 3382 and 745 commands
respectively reflecting a total of 39 and 5 unique GLTL
expressions.

D. Language Grounding

We conducted 5-fold cross validation experiments across
three grounding models and present the language grounding
accuracy means and standard deviations in Table 3. Results
were averaged over 3 independent trials with distinct ran-
dom seeds. For each instance, correctness was determined
by comparing the complete, greedily-decoded GLTL formula
to ground truth. Training was done using two independent
parallel corpora, one for each of the domains outlined in above.
Additionally, we report results on both the original datasets,
consisting of natural language commands exactly as collected
through AMT, and the expanded datasets synthetically gener-
ated via the procedure outlined in Section IV-C. Notably, we
find that all three models exhibit roughly identical performance
despite the use of two different attention mechanisms. We
suspect that the lack of an effect is due to the dramatically
smaller vocabulary size of GLTL by comparison to traditional
neural machine translation problems. However, we do find the
use of an attention mechanism to have some effect on enabling
generalization and the inference logical forms not seen during
training.

In order to establish how well each grounding model cap-
tures the semantics of natural language and GLTL expressions,
we conducted an experiment to assess the capacity for each
model to infer novel GLTL expressions. Focusing on the
mobile manipulation domain, we randomly sampled varying
percentages of the 39 unique GLTL expressions represented
across the collected within the expanded corpus of 3382
commands. All samples in the parallel corpus associated with
the random sampled commands were used as training data
while the entire remainder of the corpus was treated as a held-
out test set consisting only of GLTL expressions not seen
during training. The results of the experiment are shown in
Figure 4 with error bars denoting 95% confidence intervals
computed over 10 independent trials. On average, we find that
our encoder-agnostic attention scheme is slightly more adept
at generalizing to novel commands. The results altogether,
however, suggest that this type of generalization is still an
open challenge for these models that traditionally excel in
standard neural machine translation tasks that enjoy access
to vast quantities of parallel training data. We believe that
adapting these techniques to better operate in the extremely
low resource area of robot language learning is an important
direction for future research.



V. RESULTS

A. Language Grounding

Our results confirm that a standard neural sequence learning
model, without the use of an attention mechanism, is suf-
ficient for achieving highly accurate language grounding to
GLTL logical forms. We do, however, witness the benefits
of attention when faced with the challenge of generalizing
beyond the space of GLTL expressions seen at training time.
Although, on average, our encoder-agnostic attention scheme
does represent a fairly substantial improvement, it still leaves
much to be desired. This problem of generalization without
any training experience (or zero-shot generalization) within
neural sequence-to-sequence models is further studied by Lake
and Baroni [26] who conduct a series of experiments assessing
various dimensions on generalization within a new domain for
mapping navigation commands to action sequences. Notably,
their study finds that generalization is only reliable when novel
test time constituents are observed within a variety of contexts
during training. As these neural-based translation approaches
continue to improve, the question of how to make them more
amenable to sparse-data, robot-learning settings will become
increasingly important.

Beyond the challenge of generalization, there were a few
other sources of error across the three grounding models. In
the mobile-manipulation domain corpus, the longest language
command consisted of 27 tokens. Demonstrating another well-
known challenge of sequence learning and RNN models in
general, these longer, outlier sequences posed a challenge
and often produced invalid GLTL expressions. Despite the
use of input sequence reversal to help combat this challenge,
increasing sequence length forces the RNN cell to carry
information across a larger number of timesteps; after a point,
the degradation in the latent semantic information makes
accurate translation incredibly difficult. Additionally, we found
instances where the models produced a correct GLTL formula
type but had the atoms reversed (such as selecting to avoid the
target destination room and navigate towards the avoidance
room). These commands tended to have minor grammatical
errors or lacked certain keywords to indicate the blue room or
the yellow area.

More generally, we note that the previously discussed issues
with our approach are only a subset of a much broader space of
challenges inherited from neural machine translation. The full
space of challenges is perhaps most succinctly and carefully
explored in the work of Koehn and Knowles [21] who outline
six key deficiencies of general neural machine translation.
While these challenges are made quite apparent from the scale
of typical translation problems (mapping between millions of
vocabulary tokens) a few issues of particular importance to
the robotics community include out-of-domain words, low-
resource translation, low-frequency words, and long sentences.
Note that, in this work, we have already demonstrated and
discussed the difficulties of low-resource translation (that is,
translation with limited training data) alongside low-frequency
words. Given the high-cost of acquiring annotations, robotics

Fig. 4: Grounding accuracies of various sequence-to-sequence
models evaluated on held-out subsets of the training data
consisting entirely of novel GLTL expressions. Error bars rep-
resent 95% confidence intervals computed over 10 independent
runs.

datasets are often built within a particular context and geared
towards a specific domain. As the demand for these systems
grows and requires a single system to operate across domains
(for instance, the home and the workplace), the inability for
current translation models to handle identical words with
context-sensitive translations (or out-of-domain words) will
prove to be a bottleneck. Moreover, as commands naturally
grow in complexity and encode an increasing number of tasks,
so too will the corresponding output sequences, resulting in de-
creased translation/grounding accuracy. Given the clear mutual
interest, a rich direction of future work includes collaborating
with the natural language processing community to develop
solutions to these problems and bring them to bear on robotics
domains.

B. Pick-and-place simulation

We implemented the pick-and-place domain in simulation
and observed the behavior of the two command types. The
first command type was to move any block that is placed on
the table to the bin. This behavior was highly consistent across
repeated trials. The agent would scan, and a block might be
placed during this scan operation. The agent would detect the
placed block during the scan operation, and would choose to
place the block in one of the following time steps. Conversely,
we found that the behavior for selectively placing blocks of
a specific color in the bin experienced difficulties during the
execution of the inferred GLTL formula.

As described in Section II a GLTL expression holds true
only for certain time steps, as planning within MDPs for an
infinite time horizon compromises learnability and performing
value backups for planning. Specifically for this task the agent
placed non-red blocks into the bin and continued looking for
more blocks. We noticed that the agent initially (and correctly)
does not pick any red blocks it finds; however, as the number



of blocks revealed to the robot increases, it becomes more
likely that the robot picks up a red block, as the formula and
its corresponding behavior would only be true for a certain
number of time steps dependent on the geometric discounting.
With a discount factor of 0.99 we noticed that the agent would
pick up a red block after about 5−10 blocks were revealed to
the agent when scanning. However, the agent constantly placed
more non-red blocks in the bin, even when the number of red
blocks was more than the number of rest of the blocks. An
easy thing to increase the duration of placing non-red blocks
would be to increase the discount factor, however this would
lead to increased planning time, as the agent is planning over
a longer horizon.

This simulation domain shows that the GLTL formulation
can easily handle behaviors that include repetitive subtasks
while being able to react to certain, pre-conditioned events.
The experiment also helps us understand some of the limita-
tions of GLTL, as an approximation of LTL for a chosen time
horizon. Future work includes implementing our simulated
pick-and-place domain on a real robot.

C. Robot Demonstration

To further demonstrate the efficacy of our approach, we
translated our mobile-manipulation domain into the physical
world with a Turtlebot agent. The problem space focused on
constrained execution tasks requiring the robot the enter a
goal room while either avoiding or passing through specific
rooms. As in simulation, our physical setup consisted of four
rooms uniquely identified by color and the agent’s position in
the world was tracked by a motion capture system. Using the
Robot Operating System (ROS) [43] speech to text API, we
converted speech utterances to natural language text that could
be passed to a trained instance of our grounding model with
Bahdanau attention, producing a GLTL formula. Treating the
Cleanup World MDP as the environment MDP and identifying
the specification MDP of the GLTL formula, we combine the
two MDPs and apply a standard MDP planning algorithm to
generate robot behavior in real time. The planning is real
time as the formulae for these tasks are not very long and
GLTL allows fast planning, most of the delays observed in
the video are networking delays when using speech-to-text.
The primitive north, south, east, west actions of the Cleanup
Domain agent were converted into a series of low level ROS
Twist messages using hand-written controllers. A video of
our robot accurately responding to user commands in real
time is provided as supplementary material and uploaded at
https://streamable.com/f7jet.

VI. CONCLUSION

This paper demonstrates an approach for mapping be-
tween English commands and LTL expressions through neural
sequence-to-sequence learning models. We presented tech-
niques for data augmentation and a novel attention mecha-
nism that enables the system to map between novel English
commands and novel LTL expressions not encountered at
training time so long as the constituent LTL atoms have been

previously observed. We demonstrated this approach within
two domains for mobile-manipulation and pick-and-place tasks
as well as on a physical robot.

Directions for future work include the exploration of meth-
ods for learning compositional models of semantics that better
utilize the underlying parse structure of the target language. In
exploiting this structure the hope is to achieve greater success
at generalization without incurring an additional sample com-
plexity cost where data is so costly to acquire. An alternative
perspective is to more directly tackle the zero-shot gener-
alization problem of neural sequence-to-sequence methods,
perhaps through further exploitation of attention mechanisms
or some alternate network architecture. Furthermore, although
this work primarily focuses on the task inference side of
language grounding, opportunities certainly exist to consider
the conjunction between these sequence learning models and
task execution components. Simple steps in this direction
could include integrating hierarchical planning frameworks as
in Arumugam et al. [2] or leveraging an alternate system for
identifying the best choice of planner based on the inferred
specification type.
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