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Abstract—Small uninhabited aerial vehicles (sUAVs) commonly
rely on active propulsion to stay airborne, which limits flight
time and range. To address this, autonomous soaring seeks
to utilize free atmospheric energy in the form of updrafts
(thermals). However, their irregular nature at low altitudes
makes them hard to exploit for existing methods. We model
autonomous thermalling as a POMDP and present a receding-
horizon controller based on it. We implement it as part of
ArduPlane, a popular open-source autopilot, and compare it to
an existing alternative in a series of live flight tests involving
two sUAVs thermalling simultaneously, with our POMDP-based
controller showing a significant advantage.

I. INTRODUCTION

Small uninhabited aerial vehicles (sUAVs) commonly rely
on active propulsion stay in the air. They use motors either
directly to generate lift, as in copter-type sUAVs, or to propel
the aircraft forward and thereby help produce lift with airflow
over the drone’s wings. Unfortunately, motors’ power demand
significantly limits sUAVs’ time in the air and range.

In the meantime, the atmosphere has abundant energy
sources that go unused by most aircraft. Non-uniform heating
and cooling of the Earth’s surface creates thermals — areas
of rising air that vary from several meters to several hundreds
of meters in diameter (see Figure 1). Near the center of
a thermal air travels upwards at several meters per second.
Indeed, thermals are used by human sailplane pilots and
many bird species to gain hundreds of meters of altitude
[3]. A simulation-based theoretical study estimated that under
the exceptionally favorable thermalling conditions of Nevada,
USA and in the absence of altitude restrictions, an aircraft’s
2-hour endurance could potentially be extended to 14 hours
by exploiting these atmospheric updrafts [5, 4].

Researchers have proposed several approaches to enable
autonomous thermalling for fixed-wing sUAVs [41, 42, 6, 16,
24, 34, 29]. Generally, they rely on various parameterized
thermal models characterizing vertical air velocity distribution
within a thermal. In order to successfully gain altitude in
a thermal, a sUAV’s autopilot has to discover it, determine
its parameters such as shape and lift distribution inside it,
construct a trajectory that would exploit this lift, and exit at the
right time. In this paper, we focus on autonomously identifying
thermal parameters and using them to gain altitude. These
processes are interdependent: thermal identification influences

1The author did most of the work for this paper while at Microsoft Research.

Fig. 1: Thermals and their bell-shaped lift model (in red).

the choice of trajectory, which, in turn, determines what
information will be collected about the thermal; both of these
affect the decision to exit the thermal or stay in it.

Reinforcement learning (RL) [38], a family of techniques
for resolving such exploration-exploitation tradeoffs, has been
considered in the context of autonomous thermalling, but
only in simulation studies [41, 42, 34, 29]. Its main practical
drawback for this scenario is the episodic nature of classic
RL algorithms. RL agents learn by executing sequences of
actions (episodes) that are occasionally “reset”, teleporting the
agent to its initial state. If the agent has access to an accurate
resettable simulator of the environment, this is not an issue,
and there have been attempts to build sufficiently detailed
thermal models [34] for learning thermalling policies offline.
However, to our knowledge, policies learned in this way have
been never tested on real sUAVs. Lacking a highly detailed
simulator, in order to learn a policy for a specific thermal,
a sUAV would need to make many attempts at entering the
same thermal repeatedly in the real world, a luxury it doesn’t
have. On the other hand, thermalling controllers tested live
[5, 16] rely on simple, fixed strategies that, unlike RL-based
ones, don’t take exploratory steps to gather information about
a thermal. They were tested at high altitudes, where thermals
are quite stable. However, below 200 meters, near the ground,
thermals’ irregular shape makes the lack of exploration a
notable drawback, as we show in this paper.

The main contribution of our work is framing and solving
autonomous thermalling as partially observable Markov deci-
sion process (POMDP). A POMDP agent maintains a belief
about possible world models (in our case — thermal models)
and can explicitly predict how new information could affect



its beliefs. This effectively allows the autopilot to build a
simulator for a specific thermal in real time “on the fly”, and
trade off information gathering to refine it versus exploiting
the already available knowledge to gain height. We propose a
fast approximate algorithm tailored to this scenario that runs in
real time on Pixhawk, a common autopilot hardware that has
a 32-bit ARM processor with only 168MHz clock speed and
256KB RAM. On sUAVs with a more powerful companion
computer such as Raspberry Pi 3 onboard, our approach allows
for thermalling policy generation with a full-fledged POMDP
solver. Alternatively, our setup can be viewed and solved as a
model-based Bayesian reinforcement learning problem [21].

For evaluation, we added the proposed algorithm to Ardu-
Plane [1], an open-source drone autopilot, and conducted
a live comparison against ArduSoar, ArduPlane’s existing
soaring controller. This experiment comprised 14 missions, in
which two RC sailplanes running each of the two thermalling
algorithms onboard flew simultaneously in weak turbulent
windy thermals at altitudes below 200 meters. Our controller
significantly outperformed ArduSoar in flight duration in 11
flights out of 14, showing that its unconventional thermalling
trajectories let it take advantage of the slightest updrafts even
when running on very low-power hardware.

II. BACKGROUND

Thermals and sailplanes. Thermals are rising plumes of air
that originate above areas of the ground that give up previously
accumulated heat during certain parts of the day (Figure 1).
They tend to occur in at least partly sunny weather several
hours after sunrise above darker-colored terrain such as fields
or roads and above buildings, but occasionally also appear
where there are no obvious features on the Earth’s surface.
As the warm air rises, it coalesces into a “column”, cools off
with altitude and eventually starts sinking around the column’s
fringes. As any conceptual model, this representation of a
thermal is idealized. In reality, thermals can be turbulent and
irregularly shaped, especially at altitudes up to 300m.

Fig. 2: A full-size DG1000 sailplane (left, photo credit: Paul
Hailday) and Radian Pro remote-controllable model sailplane
that serves as our sUAV platform (right).

Thermal updrafts are used by birds [3] and by human pilots
flying sailplanes. Sailplanes (Figure 2, left), colloquially also
called gliders, are a type of fixed-winged aircraft optimized for
unpowered flight, although some do have a limited-run motor.
To test our algorithms, we use a Radian Pro sailplane sUAV
(Figure 2, right) controllable by a human from the ground.

Thermalling strategies depend on the distribution of lift
within a thermal. Much of autonomous thermalling literature,

as well as human pilots’ intuition, relies on the bell-shaped
model of lift in the horizontal cross-section of a thermal at a
given altitude [42]. It assumes thermals to be approximately
round, with vertical air velocity w(x, y) being largest near the
center and monotonically getting smaller towards the fringes:

w(x, y) = W0e
− (x−xth)2+(y−yth)2

R2
0 (1)

Here, (xth, yth) is the position of the thermal center at a given
altitude, W0 is vertical air velocity, in m/s, at the center, and
R0 can be interpreted as the thermal’s radius (Figure 1, in
red). Note that a thermal’s lift doesn’t disappear entirely more
that R0 meters from its center. In spite of its simplicity, we
use this model in our controller for its low computational cost.

MDPs and POMDPs. Settings where an agent has to optimize
its course of action are modeled as Markov Decision Processes
(MDP). An MDP is a tuple 〈S,A, T ,R, s0〉 where S is the
set of possible joint agent/environment states, A is the set of
actions available to the agent, T : S × A × S → [0, 1] is
a transition function specifying the probability that executing
action a in state s will change the state to s′, R : S×A×S →
R is a reward function specifying the agent’s reward for such a
transition, and s0 is the start state. An MDP agent is assumed
to know the current state exactly. An optimal MDP solution is
a mapping π : S → A called policy that dominates all other
policies under the expected reward value starting at s0:

V π(s0) = ET π

[ ∞∑
i=0

γiR(Si, A
π
i , Si+1)

∣∣∣∣S0 = s0

]
(2)

Here, Si and Aπi are random variables for the agent’s state i
steps into the future and the action chosen by π in that state,
under trajectory distribution T π induced by π from s0.

If the agent doesn’t have full state knowledge but has access
to noisy state observations (as in this paper’s setting), it is in
a partially observable MDP (POMDP) setting [8]. A POMDP
is a tuple 〈S,A, T ,R,O,Z, b0〉, where S,A, T , and R are as
in the MDP definition, O is the observation space of possible
clues about the true state, and Z : A×S×O → [0, 1] describes
the probabilities of these observations for different states s′

where the agent may end up after executing action a. Since
a POMDP agent doesn’t know the world state, it maintains a
belief — a state probability distribution given the observations
received so far. Initially, this distribution is a just a prior b0 :
S → [0, 1]; the agent updates it using the Bayes rule. POMDP
policies are belief-based and have the form π : B → A, where
B is the belief space. The optimization criterion amounts to
finding a policy that maximizes

V π(b0) =
∑
s

b0(s)V π(s) (3)

where V π(s) comes from Equation 2. For a known initial
belief state b0, general POMDPs can be solved with different
degrees of optimality using methods from the point-based
family [33] or variants of the POMCP algorithm [36].

Extended Kalman filter. Since a POMDP agent’s action
choice depends on its belief, efficient belief updates are



crucial. For Gaussian beliefs, the Bayesian update can be per-
formed very fast using various Kalman filters. In the POMDP
notation, under stationary transition and observation functions,
the original Kalman filter (KF) [26] assumes T (s, a, s′) =
N (s′|f(s, a), Q) and Z(a, s′, o) = N (o|h(a, s′), R), where
N denotes a Gaussian, Q and R are process and observation
noise covariance matrices, and transition and observation
transformations f(s, a) and h(a, s′) are linear in state and
action features. If beliefs are Gaussian butf(s, a) and h(s′, a)
are non-linear, as in our scenario, they can be linearized
locally, giving rise to the extended Kalman filter (EKF).

Concretely, suppose that for belief b = N (.|~µ,Σ), the agent
takes action a, gets observation o, and wants to compute its
new belief b′ = N (.|~µ′,Σ′). First, we linearize the transition
f(s, a) about the current belief by computing the Jacobian

F =
∂f

∂~µ

∣∣∣∣
~µ

(4)

and a new belief estimate not yet adjusted for observation o:

~µ′ = f(~µ, a) Σ′ = FΣF ᵀ +Q (5)

Next, we linearize h(a, s′) around this uncorrected belief by
producing the Jacobian

H =
∂h

∂~µ

∣∣∣∣
a,~µ′

(6)

and compute the approximate Kalman gain

K = Σ′Hᵀ(HΣ′Hᵀ +R)−1 (7)

Finally, we correct our intermediate belief for observations:

~µ′ = ~µ′ +K(~o− h(a, ~µ′)) Σ′ = (I −KH)Σ′ (8)

There are other filters for belief tracking in systems with non-
linear dynamics, including unscented Kalman filter (UKF) [25]
and particle filter (PF) [30]. We choose EKF for its balance of
approximation quality and low computational requirements.

III. AUTONOMOUS THERMALLING AS A POMDP
Our formalization of autonomous thermalling is based on

the fact that within a thermal, a sUAV’s probability of gaining
altitude and altitude gain itself depend on the lift distribution
(in our case, given by Equation 1). Thus, in the MDP/POMDP
terminology, the lift distribution model determines the transi-
tion and reward functions T and R. Since Equation 1’s param-
eters are initially unknown, neither are T and R. However, the
autopilot can keep track of a belief b over model parameters
xth, yth,W0, and R0 as it is receiving a stream of variometer
data, making a POMDP a natural choice for this scenario.

The belief b characterizes the autopilot’s uncertainty about
the thermal’s position, size, and strength. Based on its current
belief, at any time the autopilot can simulate observations it
might get from measuring lift strength at different locations,
and estimate how this knowledge is expected to reduce its
thermal model uncertainty. This simulation can also help
assess the expected net altitude gain from following various

trajectories. Thus, the autopilot can deliberately select trajecto-
ries that reduce its model uncertainty in addition to providing
lift. The ability to explicitly plan environment exploration is
missing both from all thermalling controllers proposed so far,
including those that use RL (see the Related Work section). As
hypothesized by Allen and Lin [6], Edwards [16], and Tabor
et al. [39], and as demonstrated in our experiments, this ability
is important, especially for thermalling in difficult conditions.

The POMDP we formulate models the decision-making
process once the sailplane is in a thermal. Note that gaining
altitude with the help of an updraft also involves thermal
detection and timely exit. These are beyond the paper’s scope;
we rely on Tabor et al. [39]’s mechanisms to implement them.

Practicalities, assumptions, and mode of operation

First we identify our scenario’s aspects that may violate
POMDPs’ assumptions, and adapt POMDPs to them.

Thermalling as model predictive control. POMDPs assume
the environment to be stationary, i.e., governed by unchanging
T and R. Viewing thermalling in this way would require
modeling thermal evolution, which is computationally expen-
sive, error-prone, and itself involves assumptions. Instead,
as is common for such scenarios, we view it as a model
predictive control (MPC) problem [20]. Our controller gets
invoked with a fixed frequency of ≈ 1Hz, solves the POMDP
below approximately to choose an action for the current belief,
and the process repeats at the next time step.

Modelling assumptions. The policy quality of our controller
depends on the validity of the following assumptions:

• Assumption 1. The thermal changes with time no faster
than on the order of tens of seconds, and is approximately
the same within a few meters of vertical distance. This
ensures that the world model used by the controller to
choose the next action isn’t too different from the world
where this action will be executed. Recall that Equation
1 applies to a given altitude, and as the sUAV thermals,
its altitude changes. The assumption is that, locally, the
thermal doesn’t change with altitude too much.

• Assumption 2. The thermal doesn’t move w.r.t. the sur-
rounding air. The air mass containing both the thermal
and the sUAV may move w.r.t. the ground due to wind.
We effectively assume that the thermal moves at the wind
velocity. While this assumption isn’t strictly true for ther-
mals [40], it is common in the autonomous thermalling
literature, and its violation doesn’t seriously affect our
controller, which recomputes the policy frequently.

• Assumption 3. The sUAV is flying at a constant airspeed,
and the thermalling controller can’t change the sUAV’s
pitch angle at will. During thermalling, pitch angle
control is necessary only for maintaining airspeed and
executing coordinated turns, which can be done by the
lower levels of the autopilot. If the thermalling controller
could change pitch directly, it might attempt to “cheat”
by using it to convert kinetic energy into potential to gain
altitude, instead of exploiting thermal lift to do so.

• Assumption 4. The thermal has no effect on the sUAV’s



horizontal displacement. This holds for the model in
Equation 1 because that model disregards turbulence.

A note on reference frames. Wind complicates some com-
putations related to sUAV’s real-world state, because the
locations of important observations such as lift strength are
given in Earth’s reference frame, in terms of GPS coordi-
nates, whereas the sUAV drifts with the wind. The autopilot
maintains a wind vector estimate and uses it to translate GPS
locations to the air mass’s reference frame [24, 39].

To make wind correction unnecessary, our POMDP model
reasons entirely in the reference frame of the air mass. Due to
Assumption 2 above, in this frame sUAV’s air velocity fully
accounts for the thermal’s displacement w.r.t. the sUAV. When
solving the POMDP involves simulating observations, their
locations are generated directly in this reference frame too.

POMDP Formulation
The components of the thermalling POMDP are as follows:

State space S consists of vectors (su, sth) describing the joint
state of the sUAV (su) and the thermal (sth). In particular,
su = (~pu, v, ψ, φ, φ̇, h) and sth = (~pth,W0, R0), where ~pu

gives the 2-D location, in meters, of the sUAV w.r.t. an
arbitrary but fixed origin of the air mass coordinate system,
v is sUAV’s airspeed in m/s, ψ is its heading – the angle
between north and the direction in which it is flying, φ is its
bank angle, φ̇ is its rate of roll, and h is its altitude w.r.t. the
mean sea level (MSL). The thermal state vector consists of ~pth

= (xth, yth) – the 2-D position of the thermal model center
relative to the sUAV position, W0 – the vertical lift in m/s at
the thermal center and R0 – the thermal radius (Figure 1).

Wind vector ~w and pitch angle are notably missing from
the state space definition due to Assumptions 2 and 3.

Action space A is a set of arc-like sUAV trajectory segments
originating at the sUAV’s current position, parametrized by
duration TA common to all actions and indexed by a set of
bank angles {φ1, . . . , φn}. Each trajectory corresponds to a
coordinated turn at bank angle φi for TA seconds. It is not
exactly an arc, because attaining bank angle φi takes time
dependent on sUAV’s roll rate φ̇ and current bank angle φ.

Transition function T gives the probability of the joint
system state s′ after executing action a in state (su, sth). Under
Assumptions 2 and 4, T is described by the sUAV’s dynamics
and Gaussian process noise:

T (s, a, s′) = N (s′|fTA(s, a), Q) (9)

Here, fTA captures the sUAV’s dynamics, Q is the process
noise covariance matrix, and T satisfies a crucial property:
T does not modify thermal parameters W0, R0, and thermal
center ~pth w.r.t. sUAV’s position ~pu in s. Intuitively, thermal
doesn’t change just because the sUAV moves. The change in
the thermal center position is purely due to sUAV’s motion
and the fact that the thermal’s position is relative to sUAV’s.

Reward function R for states s and s′ is (hs − hs′), the
resulting change in altitude. This definition relies on Assump-
tion 3. Without it, thermalling controller could gain altitude

by manipulating pitch, not by exploiting thermal lift.

Observation set O consists of the possible sets of sensor
readings of airspeed sensor, GPS, and barometer readings that
the sUAV might receive while executing an action a.

Observation function Z assigning probabilies Z(a, s′, o) to
various observation sets o is governed by action a’s trajectory
and Gaussian process noise covariance matrix R. Each of
sUAV’s sensors operates at some frequency ξ. During a’s exe-
cution, this sensor generates a sequence of datapoints of length
ξTA, each sampled from a 0-mean Gaussian noise around
the corresponding intermediate point on a’s trajectory. The
probability of a set of sensor data sequences produced during
a’s execution is the product of corresponding Gaussians.

Initial belief b0 is given by a product of two Gaussians:

b0(s) = b0(su)b0(sth) = N (su|su0 ,Σu0 )N (sth|sth0 ,Σth0 ),

where su0 has ~pu0 = (0, 0) for mathematical simplicity, because
sUAV’s position is w.r.t. the air mass and for POMDP’s
purposes isn’t tied to any absolute location, and su0 ’s other
components are sUAV’s current airspeed, roll, etc. sth0 is
initialized with estimates of thermals generally encountered
in the area of operations. Σu0 and Σth0 are diagonal matrices.

Keeping the belief components for sUAV and thermal state
separate is convenient for computational reasons. The sUAV
state observations are heavily filtered sensor signals, so in
practice sUAV’s state can be treated as known. At the same
time, thermal state belief, especially the initial belief bth0 , has
a lot of uncertainty and will benefit from a full belief update.

Belief updates are a central factor determining the computa-
tional cost of solving a POMDP. Our primary motivation for
defining the initial belief b0 to be Gaussian, in spite of possible
inaccuracies, is that we can repeatedly use the EKF defined
in Equations 4-8 to update b0 with new observations and get
a Gaussian posterior b′ at every step:

b′ = EKF update(b0, a, ~o) (10)

The EKF update routine implicitly uses transition and obser-
vation functions T and Z from the POMDP’s definition.

IV. THE ALGORITHM

Although using EKF-based belief updates reduces the com-
putational cost of solving a POMDP, solving an EKF-based
POMDP near-optimally on common low-power flight con-
trollers such as APM and Pixhawk is still much too expensive.
The algorithm we present, POMDSoar (Algorithm 1), makes
several fairly drastic approximations in order to be solve the
POMDP model. While they undoubtedly lead to sacrifices in
solution quality, POMDSoar still retains a controller’s ability
to explore in a (myopically) guided way, which, we claim,
gives it advantage in messy thermals at low altitudes. This
section presents a high-level description of POMDSoar, while
further details about its tradeoffs and implementation are
contained in the Appendix [23].

To further reduce belief update cost, POMDSoar always
uses the belief mean as the estimate of the sUAV state; see,
e.g., line 12 of Algorithm 1. For the thermal part of the state,



Algorithm 1: POMDSoar
1 Input: POMDP 〈S,A, T ,R,O,Z, b0〉, N – number of

thermal state belief samples, T exploit
A – planning

horizon for exploitation mode, T explore
A – planning

horizon for exploration mode, ∆t – action trajectory
time resolution, THERMAL CONFIDENCE THRES –
thermal state confidence threshold

2 b0 = N (su0 ,Σ
u
0 )N (sth0 ,Σ

th
0 )← current belief

3

4 if tr(Σth0 ) < THERMAL CONFIDENCE THRES then
5 Go to EXPLOIT
6 else
7 Go to EXPLORE
8 end
9

10 EXPLORE begin
11 foreach a ∈ A do
12 Traja ← SimActionTraj(su0 , φa,∆t, T

explore
A )

13 foreach i = 1 . . . N do
14 sthi ← SampleThermalState(b0)
15 foreach t = 1 . . . Traja.Length do
16 ~oa,i,t ← SimObservation(Traja[t], sthi )
17 ba,i,t ←

EKF update(ba,i,t−1, a[t−1,t], ~oa,i,t)
18 end
19 Σtha,i ← covariance of ba,i,Traja.Length
20 end
21 Uncertaintya ←

∑N
i=1 tr(Σ

th
a,i)

N
22 end
23 a∗ ← argmina∈AUncertaintya
24 Return a∗

25 end
26

27 EXPLOIT begin
28 foreach a ∈ A do
29 Traja ← SimActionTraj(su0 , φa,∆t, T

exploit
A )

30 foreach i = 1 . . . N do
31 sthi ← SampleThermalState(b0)
32 foreach t = 1 . . . Traja.Length do
33 wa,i,t ← SimLift(Traja[t], sthi )
34 end

35 AltGaina,i ←
∑Traj

a
.Length

t=1 wa,i,t∆t
36 end
37 ExpAltGaina ←

∑N
i=1 AltGaina,i

N
38 end
39 a∗ ← argmaxa∈AExpAltGaina
40 Return a∗

41 end

however, it uses the full belief over that part. For a Gaussian, it
is natural to take covariance trace as a measure of uncertainty,
and this is what POMDSoar does (lines 4, 21).

Conceptually, POMDSoar is split into two parts: exploration
and exploitation. Whenever it is invoked, it first analyzes the

covariance of the controller’s current belief about the thermal
state (line 4). If its trace is below a given threshold — an
input parameter — POMDSoar chooses an action aimed at
exploiting the current belief. Otherwise, it tries to reduce
belief uncertainty by doing exploration. In effect, POMDSoar
switches between two approximations of the POMDP reward
function R, an exploration- and a lift-oriented one.

In either mode, POMDSoar performs similar calculations.
Its action set is a set of arcs parametrized by discrete roll
angles, e.g. -45, -30, -15, 0, 15, 30, and 45 degrees. For each of
them it computes the sequence of points that would result from
executing a coordinated turn at that roll angle for T explore

A

or T exploit
A seconds (lines 12, 29). See the Implementation

Details section for more information about this computation.
Then, POMDSoar samples N thermal states from the

current belief and for each of these “imaginary thermals”
simulates the reward of executing each of the above action
trajectories in the presence of this thermal. In explore mode,
action reward is the reduction in belief uncertainty, so at each
of the trajectory points POMDSoar generates a hypothetical
observation and uses it in a sequence of imaginary belief
updates (line 17). The trace of the last resulting belief mea-
sures thermal belief uncertainty after the action’s hypothetical
execution. For execution in the real world, POMDSoar chooses
the action that minimizes this uncertainty.

In the exploit mode, at each generated point of each action
trajectory, POMDSoar measures hypothetical lift (line 33)
instead of generating observations, and then integrates the lift
along the trajectory to estimate altitude gain (line 35). The
action with the maximum altitude gain estimate ”wins”.

POMDSoar’s performance in practice critically relies on the
match between the actual turn trajectory (a sequence of 2-D
locations) the sUAV will follow for a commanded bank angle
and the turn trajectory predicted by our controller for this
bank angle and used by POMDSoar during planning. Our con-
troller’s trajectory prediction model is in the Appendix [23].
It uses several airframe type-specific parameters that had to
be fitted to data gathered by entering the sUAV into turns at
various bank angles. The model achieves a difference of < 1m
between predicted and actual trajectories. Figure 3 shows
the match between the model-predicted and actual bank and
aileron deflection angle evolutions for several roll commands.

Our POMDSoar implementation is available at
https://github.com/Microsoft/Frigatebird. It is in C++
and is based on ArduPlane 3.8.2, an open-source autopilot for
fixed-wing drones [1] that has Tabor et al. [39]’s ArduSoar
controller built in. We reused the parts of it that were
conceptually common between ArduSoar and POMDSoar,
including the thermal tracking EKF and thermal entry/exit
logic. ArduSoar and POMDSoar implementations differ only
in how they use the EKF to choose the sUAV’s next action.
Running POMDSoar onboard a sUAV requires picking input
parameters (Algorithm 1, line 1) that result in reasonable-
quality solutions within the short (< 1s) time between
controller invocations on the flight controller hardware. All
parameters values from our experiments are available in a
.param file together with POMDSoar’s implementation.

https://github.com/Microsoft/Frigatebird
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Fig. 3: Comparison between actual flight data and its predictions by the model used in POMDSoar for the same input roll commands.

V. RELATED WORK

While our approach can be regarded as solving an POMDP,
it is also an instance of Bayesian reinforcement learning (BRL)
[18, 21]. In BRL, the agent starts with a prior distribution
over model dynamics T and R, and maintains a posterior
over them as it gets observations. Viewing T and R as part
of the augmented state space S ′ = S × T × R reveals
that BRL is equivalent to a special POMDP called Bayes-
adaptive MDP (BAMDP) [15], which POMDSoar ends up
solving. Nonetheless, due to the computational constraints
of our platform, POMDSoar is very different from existing
POMDP and BRL solvers such as POMCP [36] and BAMCP
[22]. However, BRL-induced POMDPs with belief tracking
using EKF were studied by Slade et al. [37], and the idea of
separating uncertainty reduction from knowledge exploitation
for approximate BRL is similar to Dearden et al. [13].

There is vast literature on automatically exploiting thermals
[41, 42, 6, 16, 24, 34, 29], orographic lift [27, 19], wind gusts
[28], wind fields [32], and wind gradients [31, 9], as well as
on planning flight paths to extend fixed-wing sUAV endurance
and range [17, 32, 10, 11, 29, 14]. Soaring patterns have also
been studied for birds [3]. Since our paper focuses exclusively
on thermalling, here we survey papers from this subarea.

In an early autonomous thermalling work, Wharington et
al [41, 42] used RL [38] in simulation to learn a thermalling
strategy under several simplifying assumptions. Reddy et al.
[34] also used RL but removed some of Wharington and
Herszberg [42]’s simplifications. In particular, they built a
far more detailed thermal model that reflects updrafts’ messy,
turbulent nature. However, neither of these techniques have
been deployed on real UAVs so far, and how this could be
done is conceptually non-obvious. These works’ version of RL
would require executing many trials in the real world in order
to learn a thermalling strategy for a given situation, including
the ability to restart a trajectory at will — a luxury unavailable
to real-world sUAVs. Given the wide variability in atmospheric
conditions, it is also unclear whether this method can be
successfully used to learn a policy offline for subsequent
deployment onboard a sUAV. Our POMDP model circumvents
these challenges facing classical RL in the autonomous soaring
scenario, since the former allows sampling trajectories during
flight on the flight controller’s hardware running a data-driven
simulator built on the go. However, incorporating Reddy et al.
[34]’s elaborate thermal model into a POMDP-based controller
could yield even more potent thermalling strategies.

Allen and Lin [6] were the first to conduct an extensive
live evaluation of an automatic thermalling technique. They
employed a form of Reichmann rules [6, 35] — a set of
heuristics employed for thermal centering by human pilots
— to collect data for learning thermal location and radius
in flight. Edwards [16] mitigated this approach’s potential

issue with biased thermal parameter estimates. In a live flight
test conducted primarily at altitudes over 700m, the resulting
method along with inter-thermal speed optimization kept a
sailplane airborne for 5.3 hours, the record for automatic
soaring so far, with thermal centering running on a laptop
on the ground. It is not clear whether it is possible to
implement it as part of a fully autonomous autopilot on such
a computationally constrained device as a Pixhawk, and how
such an implementation, if realistic, would perform in less
regular low-altitude thermalling conditions. Another controller
based on Reichmann rules was introduced by Andersson et al.
[7]. Daugherty and Langelaan [12] improved on it by using
a Savitzky-Golai filter to estimate total specific energy and
its derivatives, which reduced the estimation lag compared to
Andersson et al. [7] and allowed latching onto smaller thermals
in simulation. Andersson et al. [7]’s controller itself, like those
of Edwards [16] and Allen and Lin [6], was evaluated on a real
sUAV and did well at altitudes over 400m AGL, but relative
live performance of all these controllers is unknown.

Last but not least, our live study compares POMDSoar
against ArduSoar [39], the thermalling controller of a popular
open-source autopilot for fixed-wing sUAVs called ArduPlane
[1]. ArduSoar’s implementation of thermal-tracking EKF and
thermal entry/exit logic is shared with POMDSoar. When
ArduSoar detects a thermal, it starts circling at a fixed radius
around the EKF’s thermal position estimate mean. ArduSoar’s
thermal tracking was inspired by Hazard [24]’s work, which
used a UKF instead of EKF for this purpose and evaluated a
number of fixed thermalling trajectories in simulation.

Thus, several aspects distinguish our work from prior art. On
the theoretic level, we frame thermalling as a POMDP, which
allows principled analysis and practical onboard solutions.
We also conduct the first live side-by-side evaluation of two
thermalling controllers. Last but not least, this evaluation is
done in an easily replicable experimental setup.

VI. EMPIRICAL EVALUATION

Our empirical evaluation aimed at comparing POMDSoar’s
performance as part of an end-to-end sUAV autopilot to a
publicly available thermalling controller for sUAVs, ArduSoar,
in challenging real-life thermalling conditions. We did this
via side-by-side live testing of the two soaring controllers.
The choice of ArduSoar as a baseline is motivated by several
considerations. First, despite its simplicity, it performs well at
higher altitudes. Second, it incorporates central ideas from sev-
eral other strong works, including Allen and Lin [6], Edwards
[16], and Hazard [24]. Third, the availability of source code,
documentation, parameters, and hardware for it eliminates
from our experiments potential performance differences due
to hardware capabilities, implementation tricks, or mistuning.

A field study of a thermalling controller is complicated by



exogenous factors such as weather, so before presenting the
results we elaborate on the evaluation methodology.

Equipment. We used two identical off-the-shelf Radian Pro
remote-controllable sailplanes as sUAV airframes. They are
made of styrofoam, have a 2m wingspan, 1.15m length, and
carry a motor that can run for a limited duration. To enable
them to fly autonomously, we reproduced the setup from Tabor
et al. [39], installing on each a 3DR Pixhawk flight controller
(32-bit 168MHz ARM processor, 256KB RAM, 2MB flash
memory), a GPS, and other peripherals, as shown in Figure
4. A human operator could take over control at will using
an X9D+ remote controller. All onboard electronics and the
motor was powered by a single 3-cell 1300 mAh LiPo battery.

Fig. 4: Radian Pro sUAV’s electronic equipment

Software. Both Radian Pros ran the ArduPlane autopilot modi-
fied to include POMDSoar, as described in the Implementation
Details section of the Appendix [23]. During each flight,
POMDSoar was enabled on one Radian Pro, and ArduSoar
was enabled on the other. We used Mission Planner v1.3.49
[2] as ground control station (GCS) software to monitor flight
telemetry in real time. ArduPlane was tuned separately on each
airframe using a standard procedure [1]. The parameters not
affected by tuning were copied from Tabor et al. [39]’s, setup,
including the target airspeed of 9 m/s. The airspeed sensors
were recalibrated before every flight.

Location. Flights took place at two test sites denoted Valley
and Field located in the Northwestern USA around 47.6°N,
122°W approximately 16km apart, each ≈ 700m in diameter.
Figure 5 shows their layout, waypoint tracks, and geofences.

Flight conditions. All flights for this experiment took place
between October 2017 and January 2018. Regional weather
during this season is generally poor for thermalling, with low
daily temperatures and their amplitudes (a major factor for
thermal existence and strength), nearly constant cloud cover,
and frequent gusty winds and rain. All flights were carried
out in dry but at best partly cloudy weather, at temperatures
≤ 14°C and daily temperature amplitudes ≤ 9°C. All took
place in predominant winds between 2 and 9 m/s; in ≈ 25% of
the missions, the wind was around 7 m/s – 78% of our sUAVs’
9 m/s airspeed during thermalling and off-motor glides.

Flight constraints. Due to regulations, all flights were ge-

ofenced as shown in Figure 5 and restricted to low altitudes:
180m AGL at the Valley and 160m AGL at the Field site.
To avoid collision with ground obstacles, the minimum au-
tonomous flight altitude was 30m and 50m AGL, respectively.

Mission profile. Each mission consisted in two Radian Pros,
one using POMDSoar and another using ArduSoar as the
thermalling controller, taking off within seconds of each other
and repeatedly flying the same set of waypoints at a given test
site counterclockwise from the Home location as long as their
batteries lasted, deviating from this path only during thermal
encounters. Figure 6a explains the mission pattern.

Each flight was fully autonomous until either the sUAV’s
battery voltage, as reported in the telemetry, fell below
3.3V/cell for 10s during motor-off glide, or for 10s was
insufficient to continue a motor-on climb. At that point, the
mission was considered over. A human operator would put
the sUAV into the Fly-By-Wire-A mode and land it.

Eliminating random factors. Live evaluation of a component
as part of an end-to-end system is always affected by factors
exogenous to the component. The Appendix [23] details the
measures we took to eliminate many of these factors, including
the presence of non-thermal lift, potential systematic bias due
to minor airframe and battery differences, and high outcome
variance due to chance of finding thermals.

Performance measure. We compare POMDSoar and Ardu-
Soar in terms of the relative increase in flight duration they
provide. Namely, for a flight at test site S where controller
Cth ran on airframe A and used battery B, we compute

RelTimeGainA,B,S(Cth) =
FlightTimeA,B,S(Cth)

BaselineFlightTimeA,B,S
(11)

The BaselineFlightTimeA,B,S values are averages over dura-
tions of a series of separate flights in calm conditions with
thermalling controllers turned off (see the Appendix [23]).

Results
Our comparison is based on 14 two-sUAV thermalling

flights performed in the above setup. Figure 7 shows the re-
sults. Importantly, they are primarily indicative of controllers’
advantages over each other, rather than each controller’s abso-
lute potential to extend flight time, due to altitude and geofence
restrictions that often forced sUAVs out of thermals, and the
deliberate lack of a thermal finding strategy.

Qualitatively, as Figure 7 indicates, POMDSoar outpe-
formed ArduSoar in 11 out of 14 flights, and did as well in 2
of the remaining 3. Moreover, the flight time gains POMDSoar
provides are appreciably larger compared to ArduSoar’s. The
data in the “Effect of baseline correction” subsection of the
Appendix [23] adds more nuance. It shows that without
baseline correction (Equation 11), the results look somewhat
different, even though POMDSoar still wins in 11 flights.

These results agree with our hypothesis that in turbulent
low-altitude thermals, POMDP-driven exploration and action
selection are critical for taking advantage of whatever lift there
is. Likely due to active exploration, POMDSoar’s trajectories
can be much ”messier” than ArduSoar’s; see Figure 5.



(a) The Field test site and POMDSoar’s typical flight path at it. (b) The Valley test site and ArduSoar’s typical flight path at it.

Fig. 5: The Field and Valley test site layout and typical mission flight paths due to POMDSoar and ArduSoar. When not thermalling (AUTO
mode), the sUAVs follow a fixed sequence of waypoints, resulting in a pentagon-shaped path at the Field site and a triangle-shaped one at
the Valley. During thermalling, the sUAVs are allowed to deviate from this path anywhere within the geofenced region shown in grey. In
the thermalling mode (FBWB for POMDSoar, LOITER for ArduSoar, green sections of the paths), POMDSoar does a lot of exloration,
yielding irregularly-shaped meandering trajectories. ArduSoar, due to a more rigid thermalling policy, yields spiral-shaped paths that result
in little exploration. Both controllers are forced to give up thermalling and switch to AUTO mode if the sUAV breaches the geofence.
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(a) Altitude plot for a typical thermalling flight.
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(b) Altitude plot for a typical baseline measurement flight.

Fig. 6: Altitude vs. time plots for thermalling and baseline flights illustrating the mission profile. After being hand-tossed into the air in
AUTO mode, each Radian automatically started its motor and climbed to the altitude given by SOAR ALT CUTOFF. At that altitude, it
would shut down the motor and glide down, still in AUTO mode, until it either reached SOAR ALT MIN or detected a thermal. In the latter
case, it would abandon waypoint following and enter a thermalling mode (FBWB for POMDSoar, LOITER for ArduSoar) until it gained
altitude up to SOAR ALT MAX, descended to SOAR ALT MIN if the thermalling attempt was unsuccessful, or hit the geofence. In all these
cases, the AUTO mode would engage automatically, forcing the sUAV to give up thermalling, guiding it to the next waypoint, and turning
on the motor if necessary to climb from SOAR ALT MIN to SOAR ALT CUTOFF. For Field and Valley test sites, SOAR ALT MIN is
50m and 30m, SOAR ALT CUTOFF is 110m and 130m, and SOAR ALT MAX is 160m and 180m, respectively.
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Fig. 7: Relative gains in flight time over the baseline (Equation 11) for POMDSoar and ArduSoar across 14 flights at the Valley(V) and
Field(F) test sites. POMDSoar outpeformed ArduSoar overall, yielding higher gains in 11 flights, losing in 1, and ending 2 in a draw.

VII. CONCLUSION

This paper has presented a POMDP-based approach to
autonomous thermalling. Viewing this scenario as a POMDP
has allowed us to analyze it in a principled way, to iden-
tify the assumptions that make our approach feasible, and
to show that this approach naturally makes deliberate en-
vironment exploration part of the thermalling strategy. This
part is missing from prior work but is very important for
successful thermalling in turbulent low-altitude conditions,
as our experiment have demonstrated. We have presented a
light-weight thermalling algorithm, POMDSoar, deployed it
onboard a sUAV equipped with a computationally constrained
Pixhawk flight controller, and conducted an extensive field
study of its behavior. Our experimental setup is easily repli-
cable and minimizes the effect of external factors on soaring
controller evaluation. The study has shown that in challenging

low-altitude thermals, POMDSoar outperforms the soaring
controller included in ArduPlane, a popular open-source sUAV
autopilot. Despite encouraging exploration, due to Pixhawk’s
computational constraints POMDSoar makes many approx-
imations. However, companion computers on larger sUAVs
may be able to run a full-fledged POMDP solver in real time.
Design and evaluation of a controller based on solving the
thermalling POMDP near-optimally, e.g., using an approach
similar to Slade et al. [37]’s, is a direction for future work.
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