
Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

1

Teleoperator Imitation with Continuous-time Safety

Bachir El Khadir∗,1, Jake Varley2, Vikas Sindhwani2

1ORFE, Princeton University 2Google Brain Robotics

Abstract—Learning to effectively imitate human teleoperators,
with generalization to unseen and dynamic environments, is a
promising path to greater autonomy enabling robots to steadily
acquire complex skills from supervision. We propose a new
motion learning technique rooted in contraction theory and
sum-of-squares programming for estimating a control law in
the form of a polynomial vector field from a given set of
demonstrations. Notably, this vector field is provably optimal
for the problem of minimizing imitation loss while providing
continuous-time guarantees on the induced imitation behavior.
Our method generalizes to new initial and goal poses of the robot
and can adapt in real-time to dynamic obstacles during execution,
with convergence to teleoperator behavior within a well-defined
safety tube. We present an application of our framework for
pick-and-place tasks in the presence of moving obstacles on
a 7-DOF KUKA IIWA arm. The method compares favorably
to other learning-from-demonstration approaches on benchmark
handwriting imitation tasks.

I. INTRODUCTION

Teleoperation is enabling robotic systems to become per-

vasive in settings where full autonomy is currently out of

reach [18], [47], [15]. Compelling applications include mini-

mally invasive surgery [44], [45], space exploration [46], re-

mote vehicle operations [16] and disaster relief scenarios [34].

A human teleoperator can control a robot through tasks that

have complex semantics and are currently difficult to explicitly

program or to learn to solve efficiently without supervision.

A downside of teleoperation is that it requires continuous

error-free [7] operator attention even for highly repetitive

tasks. This problem can be addressed through Learning-from-

Demonstrations (LfD) or Imitation Learning techniques [41],

[9] where a control law needs to be inferred from a small

number of demonstrations. Such a law can then bootstrap data-

efficient reinforcement learning for challenging tasks [47].

The demonstrator attempts to ensure that the robot’s motions

capture the relevant semantics of the task rather than requiring

the robot to understand the semantics. The learnt control law

should take over from the teleoperator and enable the robot

to repeatedly execute the desired task even in dynamically

changing conditions. For example, the origin of a picking

task and the goal of a placing task may dynamically shift to

configurations unseen during training, and moving obstacles

may be encountered during execution. The latter is particularly

relevant in collaborative human-robot workspaces where safety

guarantees are paramount. In such situations, when faced with

an obstacle, the robot cannot follow the demonstration path

anymore and needs to recompute a new motion trajectory in

real-time to avoid collision and still attempt to accomplish the

desired task.

∗Work done during internship at Google Brain Robotics, NYC

(a) Pick and place teleoperation demonstration

(b) Pick and place via contracting vector fields with obstacle avoidance.

Fig. 1: (a) A non-technical user provides a demonstrates via tele-
operation to accomplish a pick and place task. (b) The robot now
autonomously executes the pick and place task with a contracting
vector field (CVF) allowing for continuous time guarantees while
also avoiding obstacles.

Such real-time adaptivity can be elegantly achieved by

associating demonstrations with a dynamical system [40], [43],

[25], [24], [27]: a vector field defines a closed-loop velocity

control law. From any state that the robot finds itself in, the

vector field can then steer the robot back towards the desired

imitation behavior, without the need for path replanning with

classical approaches. Furthermore, the learnt vector field can

be modulated in real-time [26], [19], [28] in order to avoid

collisions with obstacles.

At first glance, the problem of imitation learning of a

smooth dynamical system, ẋ = f(x) from samples (x, ẋ)
appears to be a straightforward regression problem: simply

minimize imitation loss
∑

i,t ‖f(x
(i)(t)) − ẋ(i)(t)‖22 over a

suitable family of vector valued maps, f ∈ F . However,

a naive supervised regression approach may be woefully

inadequate, as illustrated in the middle panel of Figure 2

where the goal is to have a KUKA arm imitate a circular

trajectory. As can be seen, estimating vector fields from a small

number of trajectories potentially leads to instability – the

estimated field easily diverges when the initial conditions are

even slightly different from those encountered during training.

Therefore, unsurprisingly, learning with stability constraints

(a) Demo trajectory x
sample(t) started at (1,1) (b) True Vector Field f real (c) Estimated vector field f∗

Fig. 2: (a) a non-technical user demonstrates a circular trajectory. (b) the “ground truth” vector field. (c) the estimated vector field. Both
vector fields produce the same trajectory when started from (1, 1)T while they exhibit radically different behavior when started from a point
arbitrarily close to (1, 1)T .

has been the technical core of existing dynamical systems

based LfD approaches, e.g. see [24], [27], [40], [43]. However,

these methods have one or more of the following limitations:

(1) they involve non-convex optimization for dynamics fitting

and constructing Lyapunov stability certificates respectively

and, hence, have no end-to-end optimality guarantees, (2) the

notion of stability is not trajectory-centric, but rather focused

on reaching a single desired equilibrium point, and (3) they

are computationally infeasible when formulated in continuous-

time. With this context, our contributions in this paper include

the following:

• We formulate a novel continuous time optimization prob-

lem over vector fields involving an imitation loss sub-

ject to a generalization-enforcing constraint that turns

the neighborhood of demonstrations into contracting re-

gions [32]. Within this region, all trajectories are guaran-

teed to coalesce towards the demonstration exponentially

fast.

• We show that our formulation leads to an instance of

time-varying semidefinite programming [3] for which

a sum-of-squares relaxation [30], [37], [6] turns out

to be exact! Hence, we can find the globally optimal

polynomial vector field that has the lowest imitation loss

among all polynomial vector fields of a given degree that

are contracting on a region around the demonstrations in

continuous time.

• On benchmark handwriting imitation tasks [1], our

method outperforms competing approaches in terms of

a variety of imitation quality metrics.

• We demonstrate our methods on a 7DOF KUKA pick-

and-place LfD task where task completeness is accom-

plished despite dynamic obstacles in the environment,

changing initial poses and moving destinations. By con-

trast, without contraction constraints, the vector field

tends to move far from the demonstrated trajectory ac-

tivating emergency breaks on the arm and failing to

complete the task.

Our “dirty laundry” includes: (1) we cannot handle high degree

polynomials due to the scalability limitations of current SDP

solvers, and (2) our notion of incremental stability is local,

even though our method generalizes well in the sense that a

wide contraction tube is setup around the demonstrations.

II. PROBLEM STATEMENT

We are interested in estimating an unknown continuous time

autonomous dynamical system

ẋ = f real(x), (1)

where f real : Rn → R
n is an unknown continuously differen-

tiable function.

We assume that we have access to one or several sample

trajectories x(i) : [0, T] 7→ R
n that satisfy ẋ(i) =

f real(x(i)) ∀t ∈ [0, T], where T > 0 and i = 1, . . . ,M .

These trajectories (x(i), for i = 1 . . . ,M) constitute our

training data, and our goal is to search for an approximation

of the vector field f real in a class of functions of interest F
that reproduces trajectories as close as possible to the ones

observed during training. In other words, we seek to solve the

following continuous time least squares optimization problem

(LSP):

f∗ ∈ argmin
f∈F

M
∑

i=1

∫ T

t=0

‖f(x(i)(t))− ẋ(i)(t)‖22 dt. (LSP)

In addition to consistency with f real, we want our learned

vector field f to generalize in conditions that were not seen

in the training data. Indeed, the LSP problem generally ad-

mits multiple solutions, as it only dictates how the vector

field should behave on the sample trajectories. This under-

specification can easily lead to overfitting, especially if the

class of function F is expressive enough. The example of

Figure 2 reinforces this phenomenon even for a simple circular

motion. Note that standard data-independent regularization

(e.g., L2 regularizer) is insufficient to resolve the divergence

illustrated here: a stronger stabilizer ensuring convergence,

not just smoothness, of trajectories is needed. The notion of

stability of interest to us in this paper is contraction which we

now briefly review.

A. Incremental Stability and Contraction Analysis

Notions of stability called incremental stability and as-

sociated contraction analysis tools [21], [32] are concerned

with the convergence of system trajectories with respect to

each other, as opposed to classical Lyapunov stability which

is with respect to a single equilibrium. Contraction analysis

derives sufficient and necessary conditions under which the

displacement between any two trajectories will go to zero. We

give in this section a brief presentation of this notion based

on [8].

Contraction analysis of a system ẋ = f(x) is best explained

by considering the dynamics of δx(t), the infinitesimal dis-

placement between two trajectories:

δẋ = Jf (x)δx where Jf (x) =
∂

∂x
f.

From this equation we can easily derive the rate of change

of the infinitesimal squared distance between two trajectories

‖δx‖22 = δxT δx as follows:

d

dt
‖δx‖22 = 2δxT δẋ = 2δxTJf (x)δx. (2)

More generally, we can consider the infinitesimal squared

distance with respect to a metric that is different from the

Euclidian metric. A metric is given by smooth, matrix-valued

function M : R+ × R
n 7→ R

n×n that is uniformly positive

definite, i.e. there exists ε > 0 such that

M(t,x) � εI ∀t ∈ R
+, ∀x ∈ R

n, (3)

where I is the identity matrix and the relation A � B
between two symmetric matrices A and B is used to denote

that the smallest eigenvalue of their difference A − B is

nonnegative. For the clarity of presentation, we only consider

metric functions M(x) that do not depend on time t.
The squared norm of an infinitesimal displacement be-

tween two trajectories with respect to this metric is given

by ‖δx‖M(x)
2 := δxTM(x)δx. The Euclidean metric cor-

responds to the case where M(x) is constant and equal to the

identity matrix.

Similarly to (2), the rate of change of the squared norm of

an infinitesimal displacement with respect to a metric M(x)
follows the following dynamics:

d

dt
‖δx‖M(x)

2
= δxT (sym[M(x)Jf (x)] + Ṁ(x))δx, (4)

where sym[M] denotes (M +MT)/2 for any square matrix

M and Ṁ(x) is the n × n matrix whose (i, j)-entry is

∇Mij(x)
T f(x). This motivates the following definition of

contraction.

Definition 1 (Contraction): For a positive constant τ and

a subset U of R
n the system ẋ = f(x) is said to be

τ -contracting on the region U with respect to a metric M(x)
if

sym[M(x)Jf (x)] + Ṁ(x) � −τM(x) ∀x ∈ U. (5)

Remark 1: When the vector field f is a linear function ẋ =
Ax, and the metric M(x) is constant M(x) = P , it is easy

to see that contraction condition (5) is in fact equivalent to

global stability condition,

P ≻ 0 and sym(PAT) � −τP. (6)

Given a τ -contracting vector field with respect to a metric

M(x), we can conclude from the dynamics in (4) that

d

dt
‖δx‖M(x)

2
≤ −τ‖δx‖M(x)

Integrating both sides yields,

‖δx‖M(x) ≤ e−
τ

2
t‖δx(0)‖M(x)

Hence, any infinitesimal length ‖δx‖M(x) (and by assump-

tion (3), ‖δx‖2) converges exponentially to zero as time goes

to infinity. This implies that in a contraction region, trajectories

will tend to converge together towards a nominal path. If the

entire state-space is contracting and a finite equilibrium exists,

then this equilibrium is unique and all trajectories converge to

this equilibrium.

In the next section, we explain how to globally solve the

following continuous-time vector field optimization problem

to fit a contracting vector field to the training data given

some fixed metric M(x). We refer to this as the least squares

problem with contraction (LSPC):

min
f∈F

M
∑

i=1

∫ T

t=0

‖f(x(i)(t))− ˙x(i)(t)‖22 dt (LSPC)

s.t. f is contracting on a region U ⊆ R
n

containing the demonstrations x(i)(t)

with respect to the metric M(x).

The search for a contraction metric itself may be interpreted

as the search for a Lyapunov function of the specific form

V (x) = f(x)TM(x)f(x). As is the case with Lyapunov anal-

ysis in general, finding such an incremental stability certificate

for a given dynamical system is a nontrivial problem; see [8]

and references therein. If one wishes to find the vector field

and a corresponding contraction metric at the same time, then

the problem becomes non-convex. A common approach to

handle this kind of problems is to optimize over one parameter

at a time and fix the other one to its latest value and then

alternate (i.e. fix a contraction metric and fit the vector field,

then fix the vector field and improve on the contraction metric.)

III. LEARNING CONTRACTING VECTOR FIELDS AS A

TIME-VARYING CONVEX PROBLEM

In this section we explain how to formulate and solve the

problem of learning a contracting vector field from demon-

strations described in (LSPC). We will first see that we

can formulate it as a time-varying semidefinite problem. We

will then describe how to use tools from sum of squares

programming to solve it.

A. Time-Varying Semidefinite Problems

We call time-varying semidefinite problems (TV-SDP) op-

timization programs of the form

min
f∈F

L(f) (TV-SDP)

s.t. Lif(t) � 0 ∀i = 1, . . . ,m ∀t ∈ [0, T],

where the variable t ∈ [0, T] stands for time, the loss function

L : F 7→ R in the objective is assumed to be convex and the

Li (i = 1, . . . ,m) are linear functionals that map an element

f ∈ F to a matrix-valued function Lif : [0, T] 7→ R
n×n.

We will restrict the space of functions F to be the space of

functions whose components are polynomials of degree d ∈ N:

F := {f : Rn 7→ R
n | fi ∈ Rd[x]}, (7)

and we make the assumption that Lif is a matrix with

polynomial entries. Our interest in this setting stems from the

fact that polynomial functions can approximate most functions

reasonably well. Moreover, polynomials are suitable for algo-

rithmic operations as we will see in the next section. See [3]

for a more in-depth treatment of time-varying semidefinite

programs with polynomial data.

Let us now show how to reformulate the problem in (LSPC)

of fitting a vector field f : Rn 7→ R
n to m sample trajectories

{(x(i)(t), ẋ(i)(t)) | t ∈ [0, T], i = 1, . . . ,m} as a (TV-SDP).

For this problem to fit within our framework, we start by

approximating each trajectory x(i)(t) with a polynomial func-

tion of time x
(i)
poly(t). Our decision variable is the polynomial

vector field f and we seek to optimize the following objective

function

L(f) :=

M
∑

i=1

∫ T

t=0

‖f(x
(i)
poly(t))− ẋ

(i)
poly(t)‖

2
2 dt (8)

which is already convex (in fact convex quadratic). In order to

impose the contraction of the vector field f over some region

around the trajectories in demonstration, we use a smoothness

argument to claim that it is sufficient to impose contraction

only on the trajectories themselves. See Proposition 1 later for

a more quantitative statement of this claim. To be concrete,

we take

Lif(·) :=− sym[M(x
(i)
poly(·))Jf (x

(i)
poly(·))]

− Ṁ(x
(i)
poly(·))− τM(x

(i)
poly(·)), (9)

where M(x) is some known contraction metric.

B. Sum-Of-Squares Programming

In this section we review the notions of sum-of-squares

(SOS) programming and its applications to polynomial op-

timization, and how we apply it for learning a contracting

polynomial vector field. SOS techniques have found several

applications in Robotics: constructing Lyapunov functions [2],

locomotion planning [39], design and verification of provably

safe controllers [33], grasping and manipulation [13], inverse

optimal control [38] and modeling 3D geometry [4].

Let Rd[x] be the ring of polynomials p(x) in real variables

x = (x1, . . . , xn) with real coefficients of degree at most

d. A polynomial p ∈ R[x] is nonnegative if p(x) ≥ 0 for

every x ∈ R
n. In many applications, including the one we

cover in this paper, we seek to find the coefficients of one

(or several) polynomials without violating some nonnegativity

constraints. While the notion of nonnegativity is conceptually

easy to understand, even testing whether a given polynomial

is nonnegative is known to be NP-hard as soon as the degree

d ≥ 4 and the number of variables n ≥ 3.

A polynomial p ∈ Rd[x], with d even, is a sum-of-squares

(SOS) if there exists polynomials q1, . . . , qm ∈ R d

2

[x] such

that

p(x) =

m
∑

i=1

qi(x)
2. (10)

An attractive feature of the set of SOS polynomials is that

optimizing over it can be cast as a semidefinite program of

tractable size, for which many solvers already exist. Indeed,

it is known [30][37] that a polynomial p(x) of degree d can

be decomposed as in (10) if and only if there exists a positive

semidefinite matrix Q such that

p(x) = z(x)TQz(x) ∀x ∈ R
n,

where z(x) is the vector of monomials of x up to degree
d
2 , and the equality between the two sides of the equation is

equivalent to a set of linear equalities in the coefficients of the

polynomial p(x) and the entries of the matrix Q.

Sum-of Squares Matrices: If a polynomial p(x) is SOS,

then it is obviously nonnegative, and the matrix Q acts as

a certificate of this fact, making it easy to check that the

polynomial at hand is nonnegative for every value of the vector

x. In order to use similar techniques to impose contraction

of a vector field, we need a slight generalization of this

concept to ensure that a matrix-valued polynomial P (x) (i.e.

a matrix whose entries are polynomial functions) is positive

semidefinite (PSD) for all values of x. We can equivalently

consider the scalar-valued polynomial p(x,u) := uTP (x)u,

where u is a n× 1 vector of new indeterminates, as positive

semidefiniteness of P (x) is equivalent to the nonnegativity

of p(x,u). If p(x,u) is SOS, then we say that P is a

sum-of-squares matrix (SOSM) [29], [17], [42]. Consequently,

optimizing over SOSM matrices is a tractable problem.

Exact Relaxation: A natural question here is how much we

lose by restricting ourselves to the set of SOSM matrices as

opposed the set of PSD matrices. In general, these two sets

are quite different [10]. In our case however, all the matrices

considered are univariate as they depend only on the variable

of time t. It turns out that, in this special case, these two

notions are equivalent!

Theorem 1 (See e.g. [11]): A matrix-valued polynomial

P (t) is PSD everywhere (i.e. P (t) � 0 ∀t ∈ R) if and only if

the associated polynomial p(t,u) := uTP (t)u is SOS.

The next theorem generalizes this result to the case where

we need to impose PSD-ness only on the interval [0, T] (as

opposed to t ∈ R.)

Theorem 2 (See Theorem 2.5 of [14]): A matrix-valued

polynomial P (t) of degree d is PSD on the interval [0, T]
(i.e. P (t) � 0 ∀t ∈ [0, T]) if and only if can be written as

{

P (t) = tV (t) + (T − t)W (t) if deg(P) odd,

P (t) = V (t) + t(T − t)W (t) if deg(P) even.

where V (t) and W (t) are SOSM. In the first case, V (t) and

W (t) have degree at most deg(P)−1, and in the second case

V (t) (resp. W (t)) has degree at most deg(P) (resp. deg(P)−
2). When that is the case, we say that P (t) is SOSM on [0, T].

C. Main Result and CVF-P

The main result of this section is summarized in the follow-

ing theorem that states that the problem of fitting a contracting

polynomial vector field to polynomial data can be cast as a

semidefinite program.

Theorem 3: The following semidefinite program

min
f∈F

M
∑

i=1

∫ T

t=0

‖f(x(i)
p (t))− ẋp

(i)(t)‖22 dt (LSPC-SOS)

s.t. Lif is SOSM on [0, T] for i = 1, . . . ,M.

with F , Li, and L defined as in (7), (9) and (8) resp. finds

the polynomial vector field that has the lowest fitting error

L(f) among all polynomial vector fields of degree d that are

contracting on a region containing the demonstrations x
(i)
p .

To reiterate, the above sum-of-squares relaxation leads to

no loss of optimality: the SDP above returns the globally

optimal solution to the problem stated in LSPC. Our numerical

implementation uses the Splitting Conic Solver (SCS) [36] for

solving large-scale convex cone problems.

Remark 2: Note that the time complexity of solving the

SDP defined in (LSPC-SOS) is bounded above by a poly-

nomial function of the number of trajectories, the dimension

n of the space where they live, and the degree d of the

candidate polynomial vector field. In practice however, only

small to moderate values for n and d can be solved for as the

exponents appearing in this polynomial are prohibitively large.

Significant progress has been made in recent years in inventing

more scalable alternatives to SDPs based on linear and second

order cone programming that can be readily applied to our

framework [5].

For the rest of this paper, our approach will be abbreviated

as CVF-P, standing for Polynomial Contracting Vector Fields.

D. Generalization Properties

The contraction property of CVF-P generalizes to a wider

region in the state space. The next proposition shows that any

sufficiently smooth vector field that is feasible for the problem

stated in LSPC-SOS is contracting on a “tube” around the

demonstrated trajectories.

Proposition 1 (A lower bound on the contraction tube):

If f : Ω ⊆ R
n 7→ R

n is a twice continuously differentiable

vector field that satisfies

− sym[M(x(t))Jf (x(t))]−Ṁ(x(t)) � τM(x) ∀t ∈ [0, T]

where Ω is a compact region of R
n, τ is a positive constant,

M(x) is a positive definite metric, and x : [0, T] 7→ R
n is

a path, then f is τ/2-contracting with respect to the metric

M(x) on the region U defined by

U := {x(t) + δ | t ∈ [0, T], ‖δ‖2 ≤ ε} ∩ Ω,

where ε is positive scalar depending only τ and on the

smoothness parameters of f(x) and M(x) and is defined

explicitly in Eqn. 11.

For the proof we will need the following simple fact about

symmetric matrices.

Lemma 1: For any n× n symmetric matrices A and B

|λmin(A)− λmin(B)| ≤ nmax
ij

|Aij −Bij |,

where λmin(·) denotes the smallest eigenvalue function.

Proof of Proposition 1: Let f , M, Ω and τ be as in the

statement of Proposition 1. Define c := minx∈Ω λmin(M(x)).
Notice that since the metric M(x) is uniformly positive

definite, then c > 0. Let us now define

ε :=
τc

2nK
> 0 (11)

where K is the scalar equal to

max
1≤i,j≤n

sup
x∈Ω

‖
∂

∂x

(

sym[M(x)Jf (x)] + Ṁ(x)−
τ

2
M(x)

)

ij
‖2.

Fix t ∈ [0, T], and let δ be a vector in R
n such that

‖δ‖2 ≤ ε. Our aim is to prove that the matrix Rδ defined by

− sym[M(x(t)+δ)Jf (x(t)+δ)]−Ṁ(x(t)+δ)−
τ

2
M(x(t)+δ)

is positive semidefinite. Notice that our choice for K guaran-

tees that the maps δ 7→ Rδ
ij are L-Lipchitz for i, j = 1, . . . , n,

therefore maxij |R
δ
ij − R0

ij | ≤ Kε. Using Lemma 1 we

conclude that the smallest eigenvalues of Rδ and R0 are within

a distance of nKε of each other. Since we assumed that

R0 � τ
2M(x(t)), then λmin(R

0) is at least c τ2 , and therefore

λmin(R
δ) is at least c τ2 − nKε. We conclude that our choice

of ε in (11) guarantees that Rδ is positive semidefinite.

We note that the estimate obtained in this proposition is

quite conservative. In practice the contraction tube is much

larger than what is predicted here.

IV. EMPIRICAL COMPARISONS: HANDWRITING IMITATION

We evaluate our methods on the LASA library of two-

dimensional human handwriting motions commonly used for

benchmarking dynamical systems based movement generation

techniques in imitation learning settings [27][31][40]. This

dataset contains 30 handwriting motions recorded with a pen

input on a Tablet PC. For each motion, the user was asked to

draw 7 demonstrations of a desired pattern, by starting from

different initial positions and ending at the same final point.

Each demonstration trajectory comprises of 1000 position (x)

and velocity (ẋ) measurements. We use 4 demonstrations for

training and 3 demonstrations for testing as shown in Figure 3.

We report in Table I comparisons on the Angle shape

against state of the art methods for estimating stable dy-

namical systems, the Stable Estimator of Dynamical Sys-

tems (SEDS) [24], Control Lyapunov Function-based Dynamic

Movements (CLFDM) [25] and Dynamic Movement Prim-

itives (DMP) [20]. The training process in these methods

involves non-convex optimization with no global optimality

guarantees. Additionally, DMPs can only be trained from

one demonstration one degree-of-freedom at a time. For all

experiments, we learn degree 5 CVF-Ps with τ = 1.0 and

M(x) = I. We report the following imitation quality metrics.

Fig. 3: The figure on the left shows demonstration trajectories
(dotted) and the polynomial fit of the demonstrations (solid line)
for the Angle shape. The figure on the right visualizes both the
polynomial fit (red), the learnt vector field (blue), and the contraction
region (orange) for the incrementally stable vector field learned using
our method.

Metric DMP SEDS CLFDM CVF-P

Reproduction Accuracy

TrainingTrajectoryError 4.1 7.2 4.9 6.5

TrainingVelocityError 7.4 14.6 11.0 13.9

TestTrajectoryError 5.5 4.6 12.2 3.8

TestVelocityError 8.7 11.3 15.5 11.4

Stability

DistanceToGoal 3.6 3.2 6.7 2.5

DurationToGoal - 3.9 4.3 3.3

NumberReachedGoal 0/7 7/7 7/7 7/7

GridDuration (sec) 5.9 3.7 9.7 1.9

GridFractionReachedGoal 6% 100% 100% 100%

GridDistanceToGoal 3.3 1.0 1.0 1.0

GridDTWD (×104) 2.4 1.4 1.4 2.0

Training and Integration Speed (in seconds)

TrainingTime 0.05 2.1 2.8 0.2

IntegrationSpeed 0.21 0.06 0.15 0.01

TABLE I: LASA Angle shape benchmarks. Our approach is CVF-P.

Reproduction Accuracy: How well does the vector field

reproduce positions and velocities in training and test demon-

strations, when started from same initial conditions and inte-

grated for the same amount of time as the human movement

duration (T). Specifically, we measure reproduction error with

respect to m demonstration trajectories as,

TrajectoryError =
1

m

m
∑

i=1

1

Ti

Ti
∑

t=0

‖xi(t)− x̂i(t)‖2

VelocityError =
1

m

m
∑

i=1

1

Ti

Ti
∑

t=0

‖ẋi(t)− ˆ̇xi(t)‖2.

The metrics TrainingTrajectoryError, TestTrajectoryError,

TrainingVelocityError, TestVelocityError report these measures

with respect to training and test demonstrations. At the end of

the integration duration (T), we also report DistanceToGoal:

how far the final state is from the goal (origin). Finally,

to account for the situation where the learnt dynamics is

somewhat slower than the human demonstration, we also

generate trajectories for a much longer time horizon (30T)

and report DurationToGoal : the time it took for the state to

enter a ball of radius 1mm around the goal, and how often

this happened for the 7 demonstrations (NumReachedGoal).

Stability: To measure stability properties, we evolve the

dynamical system from 16 random positions on a grid en-

Fig. 4: GridDTWD comparison on Angle, G and J shapes.

(a) Home (b) Pick (c) Place

Fig. 5: In our task, the robot must move between the (a) home to
(b) pick, (c) a place positions.

closing the demonstrations for a long integration time horizon

(30T). We report the fraction of trajectories that reach the

goal (GridFraction); the mean duration to reach the goal

when that happens (GridDuration); the mean distance to the

Goal (GridDistanceToGoal) and the closest proximity of the

generated trajectories to a human demonstration, as measured

using Dynamic Time Warping Distance (GridDTWD) [23]

(since in this case trajectories are likely of lengths different

from demonstrations).

Training and Integration Speed: We measure both training

time as well as time to evaluate the dynamical system which

translates to integration speed.

It can be seen that our approach is highly competitive on

most metrics: reproduction quality, stability, and training and

inference speed. In particular, it returns the best mean dynamic

time warping distance to the demonstrations when initialized

from points on a grid. A comparison of GridDTWD on a few

other shapes is shown in Figure. 4.

V. PICK-AND-PLACE WITH OBSTACLES

We consider a kitting task shown in Figure 5 where objects

are picked from a known location and placed into a box. A

teleoperator quickly demonstrates a few trajectories guiding a

7DOF KUKA IIWA arm to grasp objects and place them in a

box. After learning from demonstrations, the robot is expected

to continually fill boxes to be verified and moved by a human

working in close proximity freely moving obstacles in and out

of the workspace. The arm is velocity-controlled in joint space

at 50 Hz.

(a) Demonstration Trajectory (b) CVF-P (c) CVF-P, 0.05 Noise (d) CVF-P, 0.05 Noise

(e) CVF-P, 0.1 Noise (f) CVF-P and Obstacle (g) VF-P, No Contraction,
No Noise, No Obstacle

(h) VF-P, No Contraction,
0.05 Noise, No Obstacle

Fig. 6: (a) A user demonstrated trajectory visualization shows the path of the end effector through cartesian space. (b) Eight trajectories
executed using a vectorfield in joint space learned from the demonstration. (c,d) Eight trajectories with uniform noise between [-0.05, 0.05]
radians was added per-joint to the initial joint state. (e) Eight trajectories with uniform noise between [-0.1, 0.1] added to the initial joint
state. (f) Eight new trajectories with an object in the way that modulates the learned vector field. Notice the motion deviates, and then
returns to the desired trajectory. (g) Eight trajectories without contraction, the arm deviates from the demonstration and cannot complete the
trajectory. (h) Eight trajectories without contraction and [-0.05, 0.05] noise, the arm cannot complete the trajectory.

A. Demonstration Trajectory

Figure 6a shows the demonstration pick and place trajectory

collected from the user. This trajectory was collected using an

HTC Vive controller operated by a user standing in front of

and watching the robot move through the demonstration as

it is produced. Different buttons on the remote were used to

open/close the gripper, send the arm to the Home position,

and indicate the start of a new trajectory. The pick and place

task was collected as two separate trajectories, one for the pick

motion and another for the place motion.

B. Learning a Composition of Pick and Place CVF-Ps

Using the demonstration trajectory, two different polynomial

contracting vector fields (CVF-Ps) were fit to the data, one

for the pick motion, one for the place. These trajectories were

fit to a degree 2 polynomial with τ = 0.1 and M(x) = I,

using an SCS solver run for 2500 iterations. For the ease

of visualization, we show the trajectories in cartesian space

in Figure 6. The CVF-P was fit to the trajectory in the 7-

dimensional joint space. The arm was then run through using

the vector field eight times starting from the home position.

Each trajectory was allowed to run until the L2-norm of the

arm joint velocities dropped below a threshold of 0.01. At that

point, the arm would begin to move using the second vector

field. The trajectories taken by the arm are shown in Figure

6b. The eight runs have very little deviation from each other.

C. Generalization to Different Initial Poses

Next, noise is added to the home position of the arm,

and again the vector field is used to move the arm through

the task. Figure 6c noise is added uniformly from the range

[-0.05, 0.05] radians to each value of each joint of the

arm’s starting home position. Figure 6d, shows these same

trajectories overlaid on the Kuka arm. In Figure 6e uniform

noise is added in the same manner from the range [−0.1, 0.1].
Due to contraction, trajectories are seen to converge from

random initial conditions.

D. What happens without contraction constraints?

In Figure 6g the arm is run eight times using a vector

field without contraction. While the arm is consistent in the

trajectory that it takes, the arm moves far from the demon-

strated trajectory, and eventually causes the emergency break

to activate at joint limits, failing to finish the task.

In Figure 6h The arm is again run eight times without

contraction with noise added uniformly from the range [-0.05,

0.05] to each the value of each joint of the arm’s starting home

position. The trajectory of the arm varies widely and had to be

cut short as it was continually causing the emergency break

to engage.

E. Whole-body Obstacle Avoidance

Here we enable a Kuka robot arm to follow demonstrated

trajectories while avoiding obstacles unseen during training. In

the system we describe below, collisions are avoided against

any part of robot body. At every timestep, a commodity depth

sensor like the Intel RealSense or PhaseSpace motion capture

acquires a point cloud representation of the obstacle. Our setup

is along the lines of [22], although we do not model occluded

regions as occupied. At this point, our demonstrations and

trajectories exist in joint space J ≈ R
7, while our obstacle

pointclouds exists in Cartesian space C ≈ R
3 with an origin

at the base of the robot.

1) Cartesian to Joint Space Map: We pre-compute a set-

valued inverse kinematic map IK that maps a position c ∈ C
to a subset of J containing all the joint configurations that

would cause any part of the arm to occupy the position c.

Fig. 7: In order to produce a cartesian to joint space mapping,
pybullet [12] was used to place the arm in over 658,945 configurations
such as the 4 in the top row. Then a voxelization of the arm was
produced in this pose using binvox.

More formally, the obstacles positions are known in Carte-

sian space C different from the control space J of the robot.

(e.g. we control the joint angles rather than end-effector pose.)

The Kuka arm simulator allows us to query the forward

kinematics map FK : J → C. To compute the inverse of this

map, the joint space of the robot was discretized into 658,945

discrete positions. These discrete positions were created by

regularly sampling each joint from a min to max angle using

a step size of 0.1 radians. As shown in Figure 7, the robot was

positioned at each point of the 658,945 discrete joint space

points within pybullet[12], and the robot was voxelized using

binvox[35]. This produced the map FK. We then compute

IK := FK−1.

Fig. 8: (a) Shows a vector field f learnt from a nominal path (red). (b)
Depicts a repulsive vector field hobstacles associated with an obstacle

(green disk). (c) Shows modulated vector field f̃ (blue) plotted with
a sample trajectory (green).

2) Modulation of Contracting Vector Fields: The obstacle

positions are then incorporated in a repulsive vector-field to

push the arm away from collision as it moves,

hobstacles(t,x) :=
∑

positions of
obstacles c
at time t

∑

j∈T−1(c)

x− j

‖x− j‖r2
, (12)

where the integer r control how fast the effect of this vector

field decays as a function of distance (a high value of r makes

the effect of hobstacles local, while a small value makes its effect

more uniform.) This vector field is added to our learnt vector-

field f to obtain a modulated vector field (depicted in Figure

8)

f̃(t,x) = f(x) + α hobstacles(t,x),

where α is positive constant that is responsible for controlling

the strength of the modulation, that is then fed to the Kuka

arm. If the modulation is local and the obstacle is well within

the joint-space contraction tube, we expect the motion to re-

converge to the demonstrated behavior.

We point out that it is possible to use alternative modulation

methods that come with different guarantees and drawbacks.

In [26], [19] for instance, the authors use a multiplicative

modulation function that preserves equilibrium points in the

case of convex or concave obstacles.

While our approach does not enjoy the same guarantees,

its additive nature allows us to handle a large number of

obstacles as every term in Eqn. 12 can be computed in a

distributed fashion, and furthermore, we do not need to impose

any restrictions on the shape of the obstacles (convex/concave).

This is particularly important as our control space J is

different from the space C where the obstacle are observed, and

the map IK that links between the two spaces can significantly

alter the shape of an obstacle in general (e.g. a sphere in

cartesian space can be mapped to a disconnected set in joint

space).

3) Real-time Obstacle Avoidance: Here, using a real-time

motion capture system, an obstacle is introduced to the robot’s

workspace as shown in Figure 1b. Eight trajectories were

executed from the home position with the obstacle in the

workspace, and the resultant trajectories are shown in Figure

6f. At each timestep, the objects position was returned by

the motion capture system. The point in Cartesian space was

used to modulate the joint space vectorfield as described in

Section V-E. The tasks are accomplished as the arm avoids

obstacles but remains within the joint-space contraction tube

re-converging to the demonstrated behavior.

VI. CONCLUSION

This work presents a novel approach to teleoperator imita-

tion using contracting vector fields that are globally optimal

with respect to loss minimization and providing continuous-

time guarantees on the behaviour of the system when started

from within a contraction tube around the demonstration. Our

approach compares favorably with other movement generation

techniques. Additionally, we build a workspace cartesian to

joint space map for the robot, and utilize it to update our

CVF on the fly to avoid dynamic obstacles. We demonstrate

how this approach enables the transfer of knowledge from

humans to robots for accomplishing a real world robotic pick

and place task. Future work includes greater scalability of

our solution, composition of CVFs for more complex tasks,

integrating with a perception module and helping bootstrap

data-hungry reinforcement learning approaches.

REFERENCES

[1] https://cs.stanford.edu/people/khansari/download.html.

[2] Amir Ali Ahmadi. Algebraic relaxations and hardness results in
polynomial optimization and lyapunov analysis. arXiv preprint

arXiv:1201.2892, 2012.

[3] Amir Ali Ahmadi and Bachir El Khadir. Time-varying semidefinite
programs. arXiv preprint arXiv:1808.03994, 2018.

[4] Amir Ali Ahmadi, Georgina Hall, Ameesh Makadia, and Vikas Sind-
hwani. Geometry of 3d environments and sum of squares polynomials.
arXiv preprint arXiv:1611.07369, 2016.

[5] Amir Ali Ahmadi and Anirudha Majumdar. Dsos and sdsos optimiza-
tion: Lp and socp-based alternatives to sum of squares optimization.
In 2014 48th annual conference on information sciences and systems

(CISS), pages 1–5. IEEE, 2014.

[6] Amir Ali Ahmadi and Pablo A Parrilo. Towards scalable algorithms with
formal guarantees for lyapunov analysis of control systems via algebraic
optimization. In 2014 IEEE 53rd Annual Conference on Decision and

Control (CDC), pages 2272–2281. IEEE, 2014.

[7] Christopher G Atkeson, BPW Babu, N Banerjee, D Berenson, CP Bove,
X Cui, M DeDonato, R Du, S Feng, P Franklin, et al. What happened
at the darpa robotics challenge, and why.

[8] Erin M Aylward, Pablo A Parrilo, and Jean-Jacques E Slotine. Stability
and robustness analysis of nonlinear systems via contraction metrics and
sos programming. Automatica, 44(8):2163–2170, 2008.

[9] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal.
Robot programming by demonstration. In Springer handbook of

robotics, pages 1371–1394. Springer, 2008.

[10] Man-Duen Choi. Positive semidefinite biquadratic forms. Linear

Algebra and its Applications, 12(2):95–100, 1975.

[11] Man-Duen Choi, Tsit-Yuen Lam, and Bruce Reznick. Real zeros of
positive semidefinite forms. I. Mathematische Zeitschrift, 171(1):1–26,
1980.

[12] Erwin Coumans and Yunfei Bai. pybullet, a python module for physics
simulation, games, robotics and machine learning. http://pybullet.org/,
2016–2017.

[13] Hongkai Dai, Anirudha Majumdar, and Russ Tedrake. Synthesis and
optimization of force closure grasps via sequential semidefinite pro-
gramming. In Robotics Research, pages 285–305. Springer, 2018.

[14] Holger Dette and William J. Studden. Matrix measures, moment spaces
and Favard’s theorem for the interval [0,1] and [0, ∞). Linear Algebra

and its Applications, 345(1-3):169–193, April 2002.

[15] Anca D Dragan and Siddhartha S Srinivasa. Formalizing assistive

teleoperation. MIT Press, 2012.

[16] Terrence Fong and Charles Thorpe. Vehicle teleoperation interfaces.
Autonomous robots, 11(1):9–18, 2001.

[17] Karin Gatermann and Pablo A Parrilo. Symmetry groups, semidefinite
programs, and sums of squares. Journal of Pure and Applied Algebra,
192(1-3):95–128, 2004.

[18] Ken Goldberg, Michael Mascha, Steve Gentner, Nick Rothenberg, Carl
Sutter, and Jeff Wiegley. Desktop teleoperation via the world wide
web. In Robotics and Automation, 1995. Proceedings., 1995 IEEE

International Conference on, volume 1, pages 654–659. IEEE, 1995.

[19] Lukas Huber, Aude Billard, and Jean-Jacques E. Slotine. Avoidance
of convex and concave obstacles with convergence ensured through
contraction. IEEE Robotics and Automation Letters, PP:1–1, 01 2019.

[20] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and
Stefan Schaal. Dynamical movement primitives: learning attractor
models for motor behaviors. Neural computation, 25(2):328–373, 2013.

[21] Jerome Jouffroy and Thor I Fossen. A tutorial on incremental stability
analysis using contraction theory. Modeling, Identification and control,
31(3):93, 2010.

[22] Daniel Kappler, Franziska Meier, Jan Issac, Jim Mainprice, Cristina Gar-
cia Cifuentes, Manuel Wüthrich, Vincent Berenz, Stefan Schaal, Nathan
Ratliff, and Jeannette Bohg. Real-time perception meets reactive motion
generation. IEEE Robotics and Automation Letters, 3(3):1864–1871,
2018.

[23] Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of
dynamic time warping. Knowledge and information systems, 7(3):358–
386, 2005.

[24] S Mohammad Khansari-Zadeh and Aude Billard. Learning stable
nonlinear dynamical systems with gaussian mixture models. IEEE

Transactions on Robotics, 27(5):943–957, 2011.

[25] S. Mohammad Khansari-Zadeh and Aude Billard. Learning control
lyapunov function to ensure stability of dynamical system-based robot
reaching motions. Robotics and Autonomous Systems, 6(62), 2014.

[26] Seyed Mohammad Khansari-Zadeh and Aude Billard. A dynamical
system approach to realtime obstacle avoidance. Autonomous Robots,
32(4):433–454, 2012.

[27] Seyed Mohammad Khansari-Zadeh and Oussama Khatib. Learning po-
tential functions from human demonstrations with encapsulated dynamic
and compliant behaviors. Autonomous Robots, 41(1):45–69, 2017.

[28] Oussama Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. The international journal of robotics research, 5(1):90–
98, 1986.

[29] Masakazu Kojima. Sums of squares relaxations of polynomial semidef-
inite programs. Research report B-397, Dept. of Mathematical and

Computing Sciences, Tokyo Institute of Technology, 2003.
[30] J. B. Lasserre. Global optimization with polynomials and the problem

of moments. SIAM Journal on Optimization, 11(3):796–817, January
2001.

[31] Andre Lemme, Yaron Meirovitch, Seyed Mohammad Khansari-Zadeh,
Tamar Flash, Aude Billard, and Jochen J Steil. Open-source benchmark-
ing for learned reaching motion generation in robotics. 2015.

[32] Winfried Lohmiller and Jean-Jacques E Slotine. On contraction analysis
for non-linear systems. Automatica, 34(6):683–696, 1998.

[33] Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control
design along trajectories with sums of squares programming. In 2013

IEEE International Conference on Robotics and Automation, pages
4054–4061. IEEE, 2013.

[34] Naresh Marturi, Alireza Rastegarpanah, Chie Takahashi, Maxime Ad-
jigble, Rustam Stolkin, Sebastian Zurek, Marek Kopicki, Mohammed
Talha, Jeffrey A Kuo, and Yasemin Bekiroglu. Towards advanced
robotic manipulation for nuclear decommissioning: a pilot study on tele-
operation and autonomy. In Robotics and Automation for Humanitarian

Applications (RAHA), 2016 International Conference on, pages 1–8.
IEEE, 2016.

[35] Patrick Min. Binvox, a 3d mesh voxelizer, 2004.
[36] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization

via operator splitting and homogeneous self-dual embedding. Journal of

Optimization Theory and Applications, 169(3):1042–1068, June 2016.
[37] Pablo A. Parrilo. Semidefinite programming relaxations for semialge-

braic problems. Mathematical Programming, 96(2):293–320, 2003.
[38] Edouard Pauwels, Didier Henrion, and Jean-Bernard Bernard Lasserre.

Inverse optimal control with polynomial optimization. arXiv preprint

arXiv:1403.5180, 2014.
[39] Michael Posa, Twan Koolen, and Russ Tedrake. Balancing and step

recovery capturability via sums-of-squares optimization. In Robotics:

Science and Systems, pages 12–16, 2017.
[40] Harish Ravichandar, Iman Salehi, and Ashwin Dani. Learning partially

contracting dynamical systems from demonstrations. In Conference on

Robot Learning (CoRL), 2017.
[41] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends

in cognitive sciences, 3(6):233–242, 1999.
[42] Carsten W Scherer and Camile WJ Hol. Matrix sum-of-squares relax-

ations for robust semi-definite programs. Mathematical programming,
107(1-2):189–211, 2006.

[43] Vikas Sindhwani, Stephen Tu, and Mohi Khansari. Learning con-
tracting vector fields for stable imitation learning. arXiv preprint

arXiv:1804.04878, 2018.
[44] Mark Talamini, Kurtis Campbell, and Cathy Stanfield. Robotic gas-

trointestinal surgery: early experience and system description. Journal

of laparoendoscopic & advanced surgical techniques, 12(4):225–232,
2002.

[45] Russell H Taylor, Arianna Menciassi, Gabor Fichtinger, Paolo Fiorini,
and Paolo Dario. Medical robotics and computer-integrated surgery. In
Springer handbook of robotics, pages 1657–1684. Springer, 2016.

[46] Richard Washington, Keith Golden, John Bresina, David E Smith, Corin
Anderson, and Trey Smith. Autonomous rovers for mars exploration. In
Aerospace Conference, 1999. Proceedings. 1999 IEEE, volume 1, pages
237–251. IEEE, 1999.

[47] Tianhao Zhang, Zoe McCarthy, Owen Jowl, Dennis Lee, Xi Chen, Ken
Goldberg, and Pieter Abbeel. Deep imitation learning for complex
manipulation tasks from virtual reality teleoperation. In 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages
1–8. IEEE, 2018.

