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Abstract—We present a control strategy that applies inverse
dynamics to a learned acceleration error model for accurate mul-
tirotor control input generation. This allows us to retain accurate
trajectory and control input generation despite the presence of
exogenous disturbances and modeling errors. Although accurate
control input generation is traditionally possible when combined
with parameter learning-based techniques, we propose a method
that can do so while solving the relatively easier non-parametric
model learning problem. We show that our technique is able
to compensate for a larger class of model disturbances than
traditional techniques can and we show reduced tracking error
while following trajectories demanding accelerations of more than
7 m/s? in multirotor simulation and hardware experiments.

I. INTRODUCTION
A. Motivation

In the last several years, aerial robotics has seen a surge
in popularity, largely due to the increasing viability of appli-
cations [29, 19, 7]. Multirotors have been particularly well
represented, due to their agility and versatility, and have
additionally been a fruitful testbed for nonlinear controllers
and trajectory generation strategies [25, 21, 33, 20].

Computing precise control inputs for a dynamical system of-
ten requires accurate knowledge of its dynamics. Van Nieuw-
stadt and Murray [38] showed how the concept of differential
flatness can be used to generate control inputs that follow a
given trajectory for differentially flat systems.

For a multirotor, differential flatness can be used to compute
the exact inputs required to follow a specified trajectory in z,
y, 2, and yaw (See Mellinger and Kumar [28]). The computed
control inputs are only accurate if the fixed dynamic model and
its associated parameters, e.g. mass, inertia, etc., are correct.
Often, this fixed dynamic model assumption fails and the
estimated parameters are inaccurate. This results in suboptimal
trajectory tracking performance.

One possible approach to alleviate this problem is to es-
timate the model parameters from vehicle trajectory data.
This however, can be difficult, and is still suboptimal when
the chosen parameterization cannot realize the true vehicle
model. On the other hand, non-parametric error models are
commonly used and relatively easy to learn but are not readily
used in the differential flatness framework. In this work,
we show how a non-parametric error model can be used to
generate control inputs that follow a specified trajectory. We
additionally provide an extension to the proposed approach
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Fig. 1. Our experimental platform while executing an aggressive circle trajec-
tory (top) and an aggressive line trajectory (middle) using the proposed control
input generation strategy that is capable of compensating for dynamic and
input-dependent acceleration disturbances (FFS5). Our method substantially
reduces tracking error along the aggressive line trajectory (bottom).

that can deal with input-dependent model errors via numerical
optimization. We validate the control input generation strategy
both in simulation and through experiments on a quadrotor.

B. Related Works

Accurate and aggressive multirotor flight has been explored
in [37, 30, 10, 28] among others. As for many other robotic
platforms, accurate modeling has been shown to improve flight
performance [36, 4]. Traditional non-learning based modeling
can be achieved via hand crafted experiments, calibration pro-
cedures, and computer-aided design [27]. Since this requires
significant manual effort and engineering hours, there have
been many works exploring automatic parameter estimation
methods [6, 5] and non-parametric model learning methods



[22, 8] for multirotor control. In this work, we focus on non-
parametric model learning methods, since parameter learning
methods can be limited in their accuracy by the choice of
parameterization [31]. There has also been work on learning
control input corrections for aggressive flight without learning
a dynamical model [24]. These methods are not a focus of
this paper since they can typically only be applied while
executing the trained trajectories or reference quantities. A
learned dynamical model can be applied to any trajectory or
reference.

Non-parametric model learning methods for robot control
have been employed in [13, 35, 1, 26]. Model learning
performed in real-time incrementally has been studied in
[16, 14, 3]. Florez et al. [13] use Locally Weighted Projection
Regression (LWPR [39]) while Gijsberts and Metta [14]
use Random Fourier Features [32], which was extended to
Incremental Sparse Spectrum Gaussian Process Regression
(ISSGPR), a Bayesian regression formulation, in Gijsberts and
Metta [15]. Droniou et al. [9] evaluated LWPR and ISSGPR
for the purposes of robot control and found ISSGPR to perform
better. In this work, we use linear regression, but our approach
can use any model learning strategy.

Once an accurate dynamical system model is known, a
Model Predictive Control (MPC) strategy can be used to
optimize a desired cost function, subject to the dynamics
[8, 25, 23, 2]. These approaches often make approximations to
ensure real time feasibility [8, 2]. Furthermore, Desaraju [8]
does not perform full inverse dynamics on the disturbance,
which can lead to suboptimal performance while tracking
aggressive trajectories.

The differential flatness property of multirotors has been
widely exploited for accurate trajectory tracking [11, 17, 28,
12, 34, 30]. Differential flatness of the multirotor subject to
linear drag was shown in Faessler et al. [11]. This extends
the applicability of the approach to a limited family of
disturbances. Faessler et al. [11] do not address the issue of
nonlinear disturbances as a function of state and/or control
input in the flatness computations. Issues arising from singu-
larities, commonly encountered during aggressive flight, were
discussed and mitigated in Morrell et al. [30], increasing the
robustness of the differential flatness approach.

Although control inputs computed using the differential flat-
ness framework will automatically take into account dynamical
model parameter changes, such as mass, inertia, etc., it is not
clear how to incorporate non-parametric model corrections. In
this work, we build on the differential flatness formulation
by extending it to compensate for learned non-parametric
dynamic model disturbances. Our approach can compensate
for arbitrary disturbances that are a function of vehicle position
and velocity, as well as control input dependent disturbances
that are a function of vehicle orientation and thrust. This
increases the applicability of the approach to a much wider
range of realistic flight conditions.

C. Notation

Lowercase letters such as v and z are scalars in R. Boldface
lowercase letters such as w and z are vectors. I, is the n by
n identity matrix. & denotes the total time derivative of z.
m is mass, g is the gravitational constant and [/ is inertia. All
functions in this paper are assumed to have continuous second
derivatives everywhere and thus all second partial derivatives
are symmetric, i.e. 3%3, = 8%x' Unless otherwise indicated,
all vector quantities are expressed in a fixed reference frame.

II. METHOD

In this section, we first introduce the problem statement
in Part A. Part B details our approach for compensating for
dynamic disturbances that can be a function of vehicle posi-
tion, vehicle velocity, or other quantities that are independent
of the applied control inputs. Part C extends the approach to
compensate for disturbances that are input-dependent and can
be a function of e.g. the applied vehicle thrust or vehicle orien-
tation. Finally, Part D describes the model learning approach.

A. Problem Statement

Assume we are given a desired position over time, x4(t) €
R3, along with its first four time derivatives, the velocity,
acceleration, jerk, and snap: vq(t), aq(t), ja(t), sa(t).

Equation (1) shows a typical acceleration model of a mul-
tirotor, where the commanded acceleration is aligned with the
body z-axis.

a=uz+g+ fe(n,u) (1)

Here u € R is the commanded body acceleration, z € R3 is
the body z-axis (||z[| = 1), g=[0 0 —g]T is the gravity
vector, and f. € R? is an additive acceleration error model
that can, in general, be a function of both vehicle state  and
control input w.

The objective is to compute the body acceleration u, body
z-axis z, angular velocity w, and angular acceleration w
such that integrating w forwards in time twice results in
an orientation with z as the z-axis and that the vehicle
acceleration, which is a function of uz, equals the desired
vehicle acceleration a4(t). This will ensure that the vehicle
follows the specified trajectory x4(t). Note that while z and
w are not true control inputs to the system, they are necessary
as feedforward references to the attitude feedback controller.
Once the body acceleration u and angular acceleration w are
computed, they are multiplied by mass and inertia and used as
the feedforward force and torque in the position and attitude
feedback controllers respectively.

For simplicity, we will assume that the yaw of the vehicle
is always zero, but all of the methods presented are applicable
while following yaw trajectories as well.

B. Input-independent error compensation

The simplest version of our control input generation strategy
assumes that the disturbance model f. is a function of the
vehicle position and velocity only: f.(x, ). In this case, the
desired acceleration vector can be computed directly, as shown
in (2).
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Since z must be of unit length, both v and z can be com-
puted from uz by computing the magnitude and normalizing.
The angular velocity and angular acceleration are found by
first computing the first and second time derivatives of z.
Differentiating (2) in time results in
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Since z is of unit length, and it must remain so, it must be
perpendicular to 2. Thus taking a dot product of (3) with z
allows us to find .

Wz 4+ ui =jg— @ = 5o (3)
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Inserting % into (3) gives us 2.
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The body angular velocity can be extracted from 2 by first
defining the body x and body y-axes using a desired vehicle
yaw, then projecting z onto those axes. See [28] for the details.

To find Z, we differentiate (3).

Wiz + 202 + uE = 84 — fo(®, @) = s (6)

The second time derivative of the learned disturbance f. is
shown in (7). Note that the second partial derivative of the
error model with respect to its vector inputs is a 3rd order
tensor.
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and again taking a dot product with z, we can compute .
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To compute the body angular acceleration from Z, we note
that Z = w X z+w X 2 and proceed as before for the angular
velocity, by projecting 2 —w X z onto the body = and y-axes.

Note that the above equations for z and Z are similar
to those derived in [28] with the difference that here, the
first and second derivatives of the learned dynamics model
are incorporated. In this way, the control inputs generated
anticipate changes in the disturbance.

One practical issue that arises is that the vehicle accelera-
tion, &, and jerk, &, are not readily available during operation.
Computing them from odometry by taking finite-differences

will introduce noise. To alleviate this in our experiments,
we use the acceleration and jerk demanded by the trajectory,
which are good approximations of the true vehicle acceleration
and jerk when tracking error is low.

C. Input-dependent error compensation

In many cases, additive dynamics model errors are a func-
tion of the applied control input and vehicle orientation, in
addition to the vehicle position and velocity. For example, if
the mass of the vehicle is not accurately known (or alterna-
tively, the actuators are not properly modeled), the disturbance
will be a linear function of the applied acceleration. The input-
dependent acceleration model is shown in (10).

uz =aq—g— fe(n,u) (10)

Here, n = [z a'c]T
velocity and u = uz.

Without assuming a particular form for the additive error
term f,, it is not possible to solve for the required acceleration
and orientation analytically. We must resort to solving the
problem numerically. Interestingly however, once a solution
for the acceleration and orientation is found, the rest of the
control inputs can be found analytically in a method similar
to the input-independent case described above.

We first rewrite the acceleration model as the functional
equation f(u,t) = 0 that is only a function of w and time.
We compute the time derivative of u by taking a derivative of
the above equation and solving the resulting linear system.

contains the vehicle position and

Y
(12)

For our acceleration model, f(u) = u+g+ fe(n,u) —ay.
The necessary derivatives are shown in (13) and (14).
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To find u, we take a derivative of (11) and again solve the
resulting linear system.
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The necessary derivatives for our acceleration model are
shown in (17), (18), and (19).
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To compute 2z from w, we take a derivative of w = uz and
proceed as before, by projecting onto z and solving first for
.

U =10z +uz (20)

t=1'z (21)

z2=—(u—1uz) (22)
U

To compute 2z from u, and the angular velocity and angular
acceleration, we follow the same approach as for the input-
independent case.

It should be noted that this approach requires the existence
of a solution to %u = % and the analogous equation for 1.
Solutions will only fail to exist when the estimated disturbance
model is strong enough to completely negate the acceleration
imparted by u. This may be a concern when learning a model

from data, but in practice has not occurred in our experiments.

D. Model Learning

To estimate f. from vehicle trajectory data, we fit a model
to differences between the observed and the predicted accelera-
tion at every time step. The observed acceleration is computed
using finite-differences of the estimated vehicle velocity while
the predicted acceleration is uz + g.

In principle, any regressive model whose derivatives are
available can be used.

III. EXPERIMENTS

We first evaluate the proposed approach on a simulated 2D
multirotor that is subjected to a series of input-independent
and input-dependent disturbances. We then evaluate how the
approach reduces tracking error on a quadrotor executing
aggressive trajectories.

A. Simulation

The 2D planar multirotor captures many of the important
dynamics present in the 3D multirotor. Namely, orientation and
acceleration are coupled. In fact, the motion of a 3D multirotor
moving in a vertical plane, e.g. in a straight line trajectory, can
essentially be described with the 2D multirotor. As such, we
believe a planar simulation is an appropriate testbed for our
method.

The 2D multirotor force model is shown in Fig. 2. The
dynamics are shown in (23) — (25), where F' is the applied
body force and 7 is the applied body acceleration. The mass,
m, was set to 4.19 kg, gravity g to 10.18 m/s2, and inertia I
to 0.123 kg-m?.

mg

Fig. 2. Force diagram of the 2D multirotor used in the simulation experiment.
F and T are the control inputs.

mi = —F sin(0) (23)
mZ = F cos(0) — mg (24)
I6=r1 (25

We subject the simulated multirotor to disturbances selected
from Table I. Disturbance 1 is constant and emulates a fixed
force field in the x direction, e.g. due to wind. It is not input-
dependent and is not dynamic since it does not change along
with the vehicle state. Disturbance 2 is velocity dependent
and emulates drag in the x direction. Disturbance 3 depends
on the vehicle angle and is thus input-dependent. Disturbance
4 is velocity dependent and emulates drag in the z direction.
Disturbance 5 is a mass perturbation that adds a disturbance
linear in the applied acceleration, which makes it input-
dependent.

TABLE 1
DISTURBANCES USED IN THE 2D MULTIROTOR SIMULATION EXPERIMENT.

No. Effect Input-dependent? | Dynamic?
1 T -=4.1 no no
2 T -=3.1c no yes
3 Z += 1.4sin(0) yes yes
4 zZ-=3.1z2 no yes
5 m +=2 yes yes

The vehicle is given a desired trajectory that takes it from
r =0,z =0,tox = 1, 2z = 1 in one second. The
trajectories in x and z are both 7th-order polynomials that have
the velocity, acceleration, and jerk equal to zero at each of their
endpoints. This ensures that the trajectory starts and ends with
the vehicle at rest, at an angle of zero, and with an angular
velocity of zero. When Disturbance 1 is in effect, the vehicle’s
angle is initialized such that maintaining zero acceleration in
z also maintains zero acceleration in x. This ensures that the
trajectory can be perfectly followed with correct control inputs
despite the constant acceleration disturbance in x. In all other
cases, the vehicle state starts at 0.

We show x and z tracking error for the following feedfor-
ward input generation strategies with and without feedback.



FF1) No disturbance learning

FF2) Basic disturbance compensation (no disturbance dynam-
ics)

FF3) Disturbance compensation w/ numerical optimization

FF4) Dist. comp. w/ disturbance dynamics (ours)

FF5) Dist. comp. w/ num. opt. and disturbance dynamics (ours)

FF1 uses the feedforward generation strategy as presented
in [28] and does not do any regression for disturbance learning.
FF2 and FF3 do not consider the dynamics of the disturbance;
they compute the angular velocity and angular acceleration
feedforward terms as in [28] while incorporating the learned
disturbance in the acceleration model, (1). FF4 is the proposed
approach that deals with input-independent disturbances while
FF5 is the proposed approach that deals with input-dependent
disturbances.

In this experiment, FF3 and FFS solve (10) numerically
using the modified Powell method root finder in SciPy [18].
The initial guess for the optimization is the solution from the
previous timestep.

Position and angle feedback is provided by PD controllers
with gains of 10 on position and velocity errors, 300 on angle
errors, and 30 on angular velocity errors. The position PD
controller output is added to the desired acceleration and the
angle PD controller output is added to the desired angular
acceleration.

In all simulation experiments, the feature vector used for
linear regression of model errors is shown in (26). The features
were hand selected to appropriately model the disturbances in
Table I.

d(x,2,0,0,%, F) = [z, 2,0, %,sin(0), F sin(f), F cos(), 1]T
(26)
The learned model is thus

fem,u) =w'¢(n,u) 27)

w is the result of regressing the projected input data ¢ to the
observed acceleration errors and minimizing least squared er-
ror. In this experiment, w is recomputed after every trajectory
execution using data from all past executions. Results reported
are on the 3rd run, since we found that only two regression
steps were needed to converge to an accurate enough model.
This is not surprising, as in this simulation there is no noise
and the features used can appropriately reproduce the applied
disturbances.

Each control configuration is subjected to the following set
of disturbance combinations.

A) Disturbance 1

B) Disturbances 1, 2, and 4

C) Disturbances 3 and 5

D) Disturbances 1, 2, 3, 4, and 5

Error plots for each of the four disturbance sets without
feedback control are shown in Figs. 3a — 3d. Under only a
constant disturbance (Fig. 3a), all disturbance compensation
strategies work well, since the disturbance is neither input-
dependent nor dynamic. When we introduce drag, a dynamic

TABLE I
MAXIMUM ABSOLUTE POSITION ERRORS, IN METERS, FOR EACH
CONTROL STRATEGY WITHOUT FEEDBACK IN SIMULATION

Strategy
Dist. Set FF1 FF2 FF3 FF4 FF5
A 0.829 | 0.008 | 0.007 | 0.008 | 0.008
B 1.275 | 0.140 0.137 | 0.007 | 0.003
C 1.998 | 0.417 0.684 1.153 | 0.025
D 2.131 | 0.866 0.159 1.023 | 0.002
TABLE III

MAXIMUM ABSOLUTE POSITION ERRORS, IN METERS, FOR EACH
CONTROL STRATEGY WITH FEEDBACK IN SIMULATION

Strategy

. FF1 FF2 FF3 FF4 FF5
Dist. Set
A 0.256 | 0.001 | 0.001 | 0.001 | 0.001
B 0.412 | 0.041 0.042 | 0.001 | 0.000
C 0.293 | 0.069 0.064 0.076 | 0.001
D 0.722 | 0.189 0.030 0.194 | 0.000

disturbance, in disturbance set B (Fig. 3b), only the approaches
that compensate for disturbance dynamics, FF4 and FFS5,
achieve low error. Although basic disturbance compensation
as in FF2 helps considerably, accounting for disturbance
dynamics improves performance further. Since in disturbance
set B, the disturbances are still input-independent, the use of
numerical optimization to solve the acceleration model (1) has
no effect.

Under input-dependent disturbances, we see that FF5 is the
only approach that achieves low error. This is expected, as for
both disturbance sets C and D, there are dynamic and input-
dependent disturbances present.

Error plots for disturbance set D with feedback control are
shown in Fig. 4. We see that although feedback can reduce
the error, it is not enough to completely eliminate the error.
FFS5 still outperforms the other methods, achieving nearly zero
error in all trials.

The maximum absolute position errors over the trajectory
for all tested configurations are listed in Tables II and III.

B. Hardware

1) Platform & Setup: To validate the usefulness of dynamic
disturbance compensation and input-dependent disturbance
compensation, we compare the five aforementioned feedfor-
ward generation strategies, FF1 through FF5, on a 750 g
quadrotor while following aggressive trajectories. Figure 5
shows the hardware platform and Fig. 1 shows the robot while
following aggressive circle and line trajectories.

Position, velocity, and yaw feedback is provided by a
motion capture arena at 100 Hz, while pitch, roll, and angular
velocity feedback is provided by a Pixhawk PX4 at 250 Hz.
Feedback control is performed by a cascaded PD system
following [28]. The feedforward terms are as computed by
FF1 through FF5. FF3 and FF5 solve (10) numerically
using the Newton-Raphson method. All control computation is



Disturbance Set A: Errors vs. Time

Disturbance Set B: Errors vs. Time
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(a) Errors for disturbance set A, containing only a constant disturbance.
All strategies that compensate for the disturbance perform well.
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(c) Errors for disturbance set C, containing dynamic and input-
dependent disturbances. Only FF5 performs well.

Fig. 3.

Disturbance Set D w/ Feedback: Errors vs. Time
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Fig. 4. Error plots for all five feedforward strategies with feedback control

under disturbance set D. FFS outperforms all others.
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(b) Errors for disturbance set B, containing dynamic, but input-

independent disturbances. FF4 and FF5, which compensate for dy-
namic disturbances, perform the best.
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(d) Errors for disturbance set D, which contains all considered distur-
bances. FF5 performs the best.

Error plots for all five feedforward strategies without feedback control under each of the four disturbance sets.

Fig. 5. The 750 g quadrotor used for the hardware experiments. Onboard
computation is performed by an Odroid XU4 and the Pixhawk 1 Flight

Controller.



performed onboard the vehicle’s Odroid XU4 computer. The
position control loop runs at 100 Hz and the attitude control
loop runs at 200 Hz.

For the hardware experiments, we use three test trajectories:
a 1.8 s straight line trajectory, a circle trajectory, and a figure
8 trajectory. The trajectories are designed to be near the limit
of what the robot can feasibly track. Table IV lists the three
trajectories and their maximum absolute derivatives.

TABLE IV
THE AGGRESSIVE TRAJECTORIES USED TO EVALUATE THE PROPOSED
APPROACH AND THEIR MAXIMUM DERIVATIVES.

Traj. z@m) | & m/s) | & ms?) | 23 mis3) | =@ misT)
Line 2.7 3.28 6.26 24.31 216
Circle 2.0 2.75 7.56 21.43 64.35
Figure 8 | 2.0 2.75 7.15 21.43 59.25

2) Model Learning: We use linear regression as the model
learning strategy in the hardware experiment. Input data to
the regression is a 6 dimensional vector consisting of the
vehicle velocity and the commanded acceleration vector u.
The system starts with an uninitialized model and uses a few
test trajectories per trial to regress to the acceleration error. The
error model is then held fixed during the remaining trajectories
used for error evaluation. Although in principle, the model can
be updated incrementally, keeping it fixed allows for a fair
comparison between the control strategies.

3) Results: For the line trajectory, each of FF1, FF2, FF4,
and FFS is evaluated four times. The first four trajectories,
run using FF1, are used to train the acceleration error model.
An overlay of the vehicle executing the 2.7 m line trajectory
can be seen in Fig. 1. Absolute errors along the trajectory
and errors along the vertical axis for the line trajectory are
shown in Fig. 6. FF1 performs the worst, especially along the
vertical axis, indicating that the robot is underestimating the
control input required to maintain hover. FF2 eliminates much
of the error in the vertical axis, but still accumulates significant
error along the trajectory, rising above 10 cm consistently.
FF4 and FF5 provide on average a 30% reduction in the
average absolute x — y tracking error along the trajectory
when compared to FF2. This indicates that taking disturbance
dynamics into account can significantly improve tracking
performance. This trajectory does not provide sufficient clarity
to determine the impact of FF5, input-dependent disturbance
compensation.

For the circle trajectory, all of the feedforward strategies
are evaluated once, with FF3 and FF5 receiving two and
four more trajectories respectively. An overlay of the vehicle
executing the circle trajectory can be seen in Fig. 1. Fig. 7
shows the resulting error. As expected FF1, with no distur-
bance compensation, performs the worst. FF2, FF4, and FF5
all perform similarly well, with FF2 achieving slightly lower
vertical error than the others. FF3 performs slightly worse here
than FF2, suggesting that the numerical routine may be failing
to converge or that the input’s dependence on the acceleration

Line Trajectory: Position Errors vs. Time
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Fig. 6. Average absolute errors during an aggressive straight line trajectory
for four of the five control strategies. Shaded regions denote the minimum and
maximum errors per timestep over four trials. Means (m) (£ std (m)) over
the 4 trajectories of the average |x — y| error for FF1, FF2, FF4, and FF5
respectively are 0.120 £ 0.003, 0.067 £ 0.003, 0.047 + 0.009, and 0.048
=+ 0.10. Those for the average |z| error are 0.525 £ 0.023, 0.173 £ 0.034,
0.142 + 0.025, and 0.173 £ 0.030.

Circle Trajectory: Position Errors vs. Time
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Fig. 7. Average absolute errors during an aggressive circle trajectory for the
five control strategies. Shaded regions denote the minimum and maximum
errors per timestep. Avg. |« — y| errors (m) for FF1, FF2, FF3, FF4, and
FF5 are 0.118, 0.071, 0.103, 0.069, and 0.076, respectively, while avg. |z|
errors (m) are 0.41, 0.084, 0.122, 0.069, and 0.066, respectively.

error has not been properly modeled.

Fig. 8 shows the error of FF1, FF2, FF4, and FFS along
the figure 8 trajectory for one trial each. The improvement of
FF4 over FF2 here is smaller than in the other trajectories,
suggesting that dynamic disturbances have relatively less of an
impact when following the figure 8, though more experimental
trials are warranted to strengthen this claim.



03 Figure 8 Trajectory: Position Errors vs. Time
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Fig. 8. Errors during an aggressive figure 8 trajectory for four of the five
control strategies. Avg. |z — y| errors (m) for FF1, FF2, FF4, and FF5 are
0.105, 0.076, 0.063, and 0.059 respectively, while avg. |z| errors (m) are
0.473, 0.064, 0.064, and 0.088, respectively.

IV. CONCLUSION

We have presented a method that allows compensation of
dynamic disturbances through evaluation of the derivatives
of a learned model. We have shown in both simulation and
hardware experiments that our dynamic disturbance compensa-
tion method improves performance over traditional disturbance
compensation. We have also shown the usefulness of input-
dependent disturbance compensation in simulation and pre-
liminary results on hardware. The versatility of the approach
in a realistic robotics application has been verified through
evaluation on three distinct test trajectories.

Future work will evaluate nonlinear regression techniques,
such as ISSGPR, on hardware platforms, as well as consider
regression techniques that explicitly optimize model derivative
accuracy. An interesting avenue of future study is to analyze
theoretically how the error model accuracy affects the perfor-
mance of each of the feedforward generation strategies. Lastly,
we hope to apply this technique to the attitude dynamics of
multirotors, in order to fully compensate for vehicle distur-
bances and modeling errors.
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