
Fig. 1: FC neural network architecture (boldfaced connections indicate importance sampling).

Fig. 2: LSTM neural network architecture (boldfaced connections indicate importance sampling). Note that theFCt networks
in (Fig. 1) above are different for each time step, whereas here the same weights are shared for every time step.

in the computational graph. Similar to [24], the FBSDE system
is solved by integration of both the SDEs forward in time as
follows,
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and
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~y(0) = V (~x(0);0;�):
(19)

III. STOCHASTIC CONTROL PROBLEMS WITH CONTROL

CONSTRAINTS

The framework we have considered so far can be suitably
modi�ed to accommodate a certain type of control constraints,
namely upper and lower bounds(−umax; umax). Speci�cally,
each control dimension component satis�es|uj (~x(t); t)| ≤
umax

j for all j = {1; · · · ;m}. Such control constraints are
common in mechanical systems, where control forces and/or
torques are bounded, and may be readily introduced in our
framework via the addition of a “soft” constraint, integrated
within the cost functional. In recent work, Exarchos et al.
[26] showed how box-type control constraints forL1-optimal
control problems (also calledminimum fuelproblems), can be
incorporated into an FBSDE scheme. These are in contrast
to the more frequently used quadratic control cost (L2 or

minimum energy) SOC problems. Indeed, one can replace the
cost functional given by (2) with .
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Sj (uj )
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(20)
where

Sj (uj ) = cj

Z uj

0
sig�1 � v

umax
j

�
dv; j = {1; : : : ;m};

(21)

cj are constant weights,sig(·) denotes the sigmoid (tanh-like)
function that saturates at in�nity, i.e.,sig(±∞) = ±1, while v
is a dummy variable of integration. A suitable example along
with its inverse is

sig(v) =
2

1 + e�v − 1; v ∈ R (22)

sig�1(�) = log
�

1 + �
1− �

�
; � ∈ (−1;1): (23)

Following the same procedure as in Section II, we set the
derivative of the Hamiltonian equal to zero and obtain

−
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775 −G
T(~x(t); t)v~x (~x(t); t) = 0 : (24)

By introducing the notation

G(~x(t); t) = [g 1(~x(t); t) g2(~x(t); t) · · · gm (~x(t); t)]








