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Abstract—The combination of deep neural network models
and reinforcement learning algorithms can make it possible to
learn policies for robotic behaviors that directly read in raw
sensory inputs, such as camera images, effectively subsuming
both estimation and control into one model. However, real-
world applications of reinforcement learning must specify the
goal of the task by means of a manually programmed reward
function, which in practice requires either designing the very
same perception pipeline that end-to-end reinforcement learning
promises to avoid, or else instrumenting the environment with
additional sensors to determine if the task has been performed
successfully. In this paper, we propose an approach for removing
the need for manual engineering of reward specifications by
enabling a robot to learn from a modest number of examples of
successful outcomes, followed by actively solicited queries, where
the robot shows the user a state and asks for a label to determine
whether that state represents successful completion of the task.
While requesting labels for every single state would amount
to asking the user to manually provide the reward signal, our
method requires labels for only a tiny fraction of the states seen
during training, making it an efficient and practical approach for
learning skills without manually engineered rewards. We evaluate
our method on real-world robotic manipulation tasks where the
observations consist of images viewed by the robot’s camera. In
our experiments, our method effectively learns to arrange objects,
place books, and drape cloth, directly from images and without
any manually specified reward functions, and with only 1-4 hours
of interaction with the real world. Videos of learned behavior are
available at sites.google.com/view/reward-learning-rl/.

I. INTRODUCTION

Reinforcement learning holds the promise of enabling
robotic systems to improve continuously through experience.
A robot equipped with a sufficiently powerful reinforcement
learning algorithm can become more and more proficient at a
given task as it practices it directly in the real world. With end-
to-end algorithms that enable skill learning directly from raw
sensory observations, such as images, this capability can be
tremendously powerful: every aspect of the robot’s estimation
and control pipeline can improve from experience and become
better and better suited to the task at hand. However, in order
to enable such continual improvement, the robot must have
a way to evaluate whether it is succeeding at the task – it
needs a reward function. Unfortunately, in practice, the design
of reward functions for robotic skills is very challenging,
especially when learning skills from raw observations such as
images: manually defining reward functions typically requires
manually-designed perception systems or instrumentation of
the environment (e.g., by placing additional sensors) [34, 44,
21, 35]. This either precludes learning directly in open-world

Fig. 1. Illustration of our approach. We learn a reward function on high-
dimensional observations (i.e. pixels) using a neural network classifier. The
classifier receives a set of goal examples (images) from a user that specify the
desired outcome. Negative examples for classifier training are obtained from
the policy. Our method trains a policy to place a book on the bookshelf via
reinforcement learning w.r.t. the learned reward. During this process, the robot
periodically queries the user with images, and the user provides a binary label
indicating whether or not this image corresponds to a successful outcome. This
allows the robot to learn tasks with a modest number of examples and queries,
and without manually designing reward functions.

environments that are not instrumented, or makes learning
entirely contingent on the reward perception system, which
does not improve or adapt over the robot’s lifetime. In many
scenarios, the need for manual engineering of reward functions
defeats the point of end-to-end learning from pixels, if the
reward function itself requires a prior perception pipeline or
instrumentation.

Inverse reinforcement learning methods [47, 41, 11, 17, 12]
seek to automate reward definition by learning a reward
function from expert demonstrations. However, these methods
have limitations of their own: collecting expert demonstra-
tions puts a significant data collection burden on the user,
and demonstrations are usually non-intuitive for a person to
provide (often involving kinesthetically moving a robot [11]
or teleoperating it [39]). More importantly, demonstrating how



a task is done defeats a central goal of reinforcement learning:
autonomously discovering how to perform skills through trial
and error. An alternative way to specify goals is to provide
images of the goal, and then train a goal classifier on this
data [40, 42]. The success probabilities from this classifier can
then be used as a reward for training reinforcement learning
agents to achieve the specified goal. While this is appealing
in principle, a naı̈vely-trained classifier can easily be exploited
by a reinforcement learning algorithm: the RL algorithm can
visit parts of the observation space that the classifier was not
trained on, causing it to output incorrect probabilities [13].

A recent approach, variational inverse control with events
(VICE) [13], mitigates the exploitation issues of naı̈ve clas-
sifiers by adversarially mining negative examples from the
policy’s own experience, analogously to adversarial imitation
learning techniques [11, 17, 12]. However, VICE relies entirely
on the positive outcome examples provided at the beginning
of training to understand the task, which in practice means
that a large number of examples is needed. Further, because
VICE relies on on-policy RL for training the policy and
for gathering negative examples for the classifier, it requires
millions of samples, which may be impractical in the real
world. In this paper, we address both of these issues to enable
end-to-end reinforcement learning on real robots from pixel
observations, and without any task-specific engineering for
obtaining rewards. To remove the reliance on a large amount of
positive examples provided up front, we elicit a small number
of additional queries from a human user as the robot collects
additional experience. These active queries are selected based
on uncertainty estimates from the classifier that is being used
as a reward function, and allow us to learn effective rewards
from a small number of initial examples. Further, we extend
both the policy learning and the classifier training procedure in
VICE to the off-policy setting, which allows us to learn robotic
skills in the real world with only 1-4 hours of interaction time,
entirely from image observations.

The primary contribution of this paper is a framework for
learning robotic skills from high-dimensional observations,
such as images, without hand-designing reward functions. Our
method uses a small number of examples of positive outcomes
(without demonstrations), followed by a modest number of
additional binary active queries, where the robot asks the user
if a particular outcome is successful or not. Our approach
is based on efficient off-policy reinforcement learning, mak-
ing it well-suited for real-world learning. Our experiments
demonstrate that our method can learn a variety of real-
world robotic manipulation skills, directly from images, and
directly in the real world. Results include draping cloth over
an object, placing books on a bookshelf, and pushing mugs
onto a coaster. Learning requires minimal user supervision and
only 1-4 hours of interaction time, which is substantially less
than that of prior work [16, 19, 31, 25, 8].

II. RELATED WORK

Reinforcement learning has been applied to a wide variety
of robotic manipulation tasks, including grasping objects [19],

in-hand object manipulation [30, 38, 32, 23], manipulating flu-
ids [35], door opening [44, 3], and cloth folding [28]. However,
applications of RL in the real world require considerable effort
to design and evaluate the reward function. For example, using
thermal cameras for tracking fluids [35], mocap sensors [21]
or computer vision systems [34] for tracking objects, and
accelerometers for determining the state of a door [44]. Since
such instrumentation needs to be done for any new task that
we may wish to learn, it poses a significant bottleneck to
widespread adoption of reinforcement learning for robotics,
and precludes the use of these methods directly in open-world
environments that lack this instrumentation.

Data-driven approaches for reward specification [29, 1, 11,
17, 12, 48, 33, 9, 27, 4, 18] seek to overcome this issue, but
typically require demonstration data to acquire rewards. Such
data can be onerous and time-consuming for users to provide.
Recent work on active learning for inverse RL has sought to
reduce the required number of demonstrations [2, 6, 26, 5], but
still requires some number of demonstrations to be provided
manually. Our method only requires a modest number of
examples of successful outcomes, followed by binary queries
where the user indicates whether a particular outcome that
the robot achieved is successful or not. Both of these can
be provided easily, without any teleoperation or kinesthetic
teaching. Related to our method, Daniel et al. [7] propose
to learn rewards from active queries that elicit numerical
scores. In contrast to this approach, our method uses only
binary success queries, which are easier to provide, and can
be readily combined with deep networks for learning skills
from image observations. Another line of research that queries
binary feedback from humans is that of learning from human
preferences [18, 4], but these techniques have so far proven to
be quite expensive in the deep reinforcement learning setting
in terms of both the supervision needed from humans, and
the overall sample complexity. Even in simulation with low-
dimensional observations, Christiano et al. [4] make about one
thousand queries from humans (we make 50-75 such queries
in the real world), and require tens of millions of timesteps
of interaction with the environment (we require around tens
of thousands of such interactions). Furthermore, comparing
trajectories is often a harder form of feedback to elicit from
humans, especially towards the start of training where all
trajectories might be equally undesirable.

Classifier training serves as an alternative to inverse rein-
forcement learning for data-driven reward specification [40,
42, 31]. However, using classifier-based rewards for reinforce-
ment learning is prone to exploitation by RL agents, as such
agents quickly capitalize on any imperfections in the learned
classifier [13, 42]. VICE [13] overcomes this issue issue by
adversarially mining negatives form the learned policy, but
usually requires a large number of samples to learn due to
using an on-policy algorithm [36] for policy improvement
and classifier updates. Furthermore, it usually utilizes a large
number of goal examples (on the order of 50K for image
observations) for successfully learning the task. Our approach
overcomes both of these issues, and we demonstrate that it



can be used for practical real-world reinforcement learning.

III. PRELIMINARIES

Our aim is to make it possible to specify reward functions
for robotic reinforcement learning with a small number of
outcome examples (e.g., photographs of a successful task
outcome in the case of image-based RL), followed by a modest
number of active queries, where the robot asks the user if a
particular outcome is a success or not. Here, we summarize
the framework of robotic reinforcement learning and introduce
how classifiers can be used as reward functions. In RL, the
goal is to learn a policy in a Markov decision process, which
in a robotic control problem consists of a state space S and
an action space A. In our case, the state space consists of
image observations, and the action space consists of desired
end-effector motion. The policy, denoted π(at|st), chooses
actions, and the state is assumed to evolve according to the
unknown dynamics p(st+1|st,at). This generates a trajectory
of states and actions τ : (s0,a0, s1,a1, ...). The goal in
reinforcement learning is to optimize the expected total reward
of the trajectory distribution induced by the policy.

a) Maximum Entropy RL: The particular reinforcement
learning framework that we will use, called maximum entropy
RL [46, 14, 15], also maximizes the entropy of the resulting
distribution, resulting in the modified objective

J(π) =

T∑
t=0

Eτ∼π [r(st,at)− log π(at|st)] . (1)

While our framework could be combined with standard RL as
well, the maximum entropy framework offers two benefits:
first, maximum entropy RL algorithms, such as the off-
policy soft actor-critic (SAC) algorithm that we use in our
experiments [15], tend to produce stable and robust policies
for real-world reinforcement learning, and second, maximum
entropy RL makes it straightforward to integrate our method
with VICE [13], a prior approach for classifier-based rewards,
which we discuss in Section V-A. An outline of SAC is
presented in Algorithm 1. SAC uses a replay buffer R to
store past transitions, and trains both a critic and a maximum
entropy actor on batches sampled from this buffer, while at
the same time collecting experience with the current stochastic
policy, which is represented as a Gaussian with the mean given
by a neural network function of the state.

Algorithm 1 Soft actor-critic (SAC)
1: Initialize policy π, critic Q
2: Initialize replay buffer R
3: for each iteration do
4: for each environment step do
5: at ∼ πθ(at|st)
6: st+1 ∼ p(st+1|st,at)
7: R ← R∪ {(st,at, r(st,at), st+1)}
8: for each gradient step do
9: Sample from R

10: Update π and Q according to Haarnoja et al. [15]

b) Classifier-Based Rewards: Engineering reward func-
tions for RL algorithms is difficult, especially when using
image observations, because it requires identifying the state
of the objects in the world and formulating a reliable success
condition programmatically. Indeed, it is often easier for users
to state whether a given outcome is successful or not than
to write a program that will do so automatically. However,
current RL algorithms require so many episodes that labeling
the reward in each one manually would be impractical. A
reasonable alternative is to use a goal classifier [42, 40], where
the user provides a dataset of example states (e.g., images)
before training the policy, denoted D := {(sn, yn)}, and a
binary classifier g(s) is trained to predict whether a given
state is a success or failure. The classifier-based RL framework
is then summarised in Algorithm 2. Here, yn represents
the binary success or failure label, and L denotes a binary
classification loss (for example, the cross-entropy loss). Once
trained, the classifier can be used to provide a reward during
reinforcement learning. If the classifier provides a distribution
pg(y|s), then a particularly convenient form for the reward is
given by log pg(y|s). As discussed in prior work [13], this has
an appealing theoretical interpretation based on a connection
to control as inference [24], and in practice can provide some
degree of shaping, as log-probabilities often increase smoothly
as the agent approaches the goal.

Algorithm 2 Classifier-based rewards for RL
Require: : Di := {(sn, yn)}

1: Update the parameters of g to minimize
∑
n L(g(sn), yn)

2: Run RL or planning, using reward derived from log pg(y|s)

Prior work generally requires both successful and failed
examples to be part of D [42, 40]. When a policy is trained
with this classifier, the policy can learn to exploit the clas-
sifier, reaching states that are different from those that the
classifier was trained on and fool it into outputting a success
label erroneously [13]. The degree of exploitation is strongly
dependent on how the negative examples are provided, and
can only be avoided if a comprehensive set of negative
examples covering the entire state space is supplied. In the
next section, we will describe an approach which does not
require a comprehensive set of negative examples up front,
and instead uses a modest number of active queries from the
user to address the exploitation problem.

IV. REINFORCEMENT LEARNING WITH ACTIVE QUERIES

The goal of our method, which we call reinforcement
learning with active queries (RAQ), is to learn robotic skills
via reinforcement learning without requiring hand-engineered
reward functions, using data that can be easily obtained from
the user. More specifically, we train classifiers to distinguish
between goal and non-goal observations, and use them to
compute rewards. Instead of learning this classifier from a pre-
specified static dataset alone (as done in prior work [40, 42]),
we introduce an active learning framework that queries a user
for binary success labels for states that it would like to obtain



ground truth labels for. This addresses two major challenges
with classifier-based rewards: it removes the need for the
user to provide a comprehensive set of negative examples up
front, and it mitigates the classifier exploitation problem. Let
{sn}tn=1 denote the set of states that the agent encounters
over the learning process, where t is the total number of
environment steps that the agent has taken so far. At any
given step t, our algorithm decides which states from {sn}tn=1

(if any) it should query a label for. We first introduce and
motivate our query mechanism, and we then show how it can
be combined with a classifier-based reward learning technique
to obtain a practical algorithm for reinforcement learning in
the real world.

A. Active Queries

If the robot requests user labels for every single state it sees,
it will have a very accurate reward. However, a typical RL
run will collect tens or even hundreds of thousands of states
worth of data, as discussed in Section VII, and labeling all
of these states is impractical. Minimizing the required number
of queries depends critically on the mechanism that decides
which state should be labeled. The active learning literature
provides a few potential mechanisms based on uncertainty,
such as the maximum entropy heuristic. In practice, we
found that the maximum entropy heuristic does not actually
produce very good results, since the goal is not so much to
obtain accurate goal classification everywhere, but rather to
eliminate the “exploitation” problem, such that the classifier
does not output false positives. To that end, we found that
the most effective mechanism to select which states to label
was to select the previously-unlabeled states with the highest
probability of success according to the classifier. Recall that
our reward is provided by a binary classifier, which specifies
a distribution pg(y|s), where y is a binary variable indicating
success. Following Fu et al. [13], the reward is given by
log pg(y|s). We can select the state sk to label from the set of
observed states according to

k = argmax
t

log pg(y = 1|st) ∀ t since last query.

For most practical tasks, this query mechanism is also much
more selective than the maximum entropy rule. First, negative
examples are much easier to obtain than positive examples
for most tasks, so requesting labels for only the potential
positive examples avoids superfluous queries for high-entropy
states that are unlikely to be informative of success. Second,
because the policy is explicitly trying to visit states with high
pg(y|s), classifier exploitation is due to false positives rather
than negatives [13]. Since only states with positive predictions
can be false positives, querying for labels for these states is
an effective mechanism for mitigating classifier exploitation.

Aside from selecting which states to label, we must also
choose how often to request labels. We adopt a simple scheme
where labels are queried at fixed intervals. We found that
simply choosing a query frequency based on the expected
training length and a query budget was sufficient. For the real-
world robot experiments presented this paper, we adjust the

frequency so that we make between 25 to 75 active queries
for a single run of a reinforcement learning experiment. Details
on this can be found in Section VII.

B. Classifier-Based RL with Active Queries

We now explain how we combine our active query frame-
work with classifier-based rewards for reinforcement learning.
Our approach is summarized in Algorithm 3. Similar to
standard classifier reward-based RL, we first train a classifier g
on an initial dataset D. The RL algorithm then uses log pg(y|s)
as the reward, and runs for a predefined number of time steps,
at which point we select a new state to query by selecting the
state with the largest value for log pg(y|s). This labeled state
is added to the dataset D, and the classifier is then fine-tuned.
We then continue training with RL, and repeat the process.
This procedure is repeated until convergence or until a fixed
budget of samples or queries is exceeded.

Algorithm 3 Reinforcement learning with active queries
(RAQ)
Require: initial D := {(sn, yn)}

1: Initialize policy π, critic Q
2: Initialize replay buffer R
3: for each iteration do
4: for each environment step do
5: at ∼ πθ(at|st)
6: st+1 ∼ p(st+1|st,at)
7: R← R∪ {(st,at, st+1)}
8: for each gradient step do
9: Sample from R

10: Compute rewards: r(st)← log pg(yt|st)
11: Update π and Q according to Haarnoja et al. [15]
12: if active query then
13: k → argmax log pg(yt|st) for all t since the last query
14: if sk is a successful outcome then
15: D ← D ∪ {(sk, 1)}
16: else
17: D ← D ∪ {(sk, 0)}
18: Update g to minimize

∑
n L(g(sn), yn)

V. OFF-POLICY VICE WITH ACTIVE QUERIES

While standard RAQ, as described in Section IV, is effective
in mitigating the classifier exploitation problem and can enable
reinforcement learning with classifier-based rewards, it only
utilizes a very small fraction of the data that is collected when
running RL. RL algorithms typically collect tens or hundreds
of thousands of transitions when learning to solve a robotic
task in the real world, but RAQ only makes tens of queries,
barely using 0.1% of the data collected. Ideally, we would
like to make use of all the data collected during RL. In this
section, we first review the basic VICE algorithm, which was
proposed by Fu et al. [13]. VICE is classifier-based reward
specification framework that uses on-policy RL with policy
gradients, and generally requires a large number of positive
outcome examples. However, VICE can effectively overcome
the classifier exploitation problem, and does so by using all
of the data collected during RL without making any active
queries. We first show how VICE can be extended into the
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Fig. 2. A graphical model framework for VICE. The node yt is a
binary random variable that denotes whether an event happens at a
given time step or not.

off-policy setting, providing a practical method for robotic RL.
We then discuss how RAQ can be combined with VICE. The
resulting method, which we call VICE-RAQ, combines the
best properties of both techniques.

A. VICE

VICE [13] is based on a formulation of reinforcement
learning as inference in a graphical model, which is shown in
Figure 2. In addition to the states and actions, this graphical
model also includes binary event variables, yt. Intuitively,
these variables denote whether a particular event has taken
place at time t, which in our case corresponds to success-
ful completion of the task. We can formulate the problem
of learning a policy that succeeds at the task as inference
in this graphical model, where the policy corresponds to
p(at|st, y1:T = 1). This follows from the framework of
maximum entropy reinforcement learning [47, 24, 13], and
corresponds exactly to the maximum entropy objective in
Equation 1 with the reward given by log p(yt = 1|st,at),
which is also the reward used by RAQ.

Learning the event probabilities in VICE corresponds to
an optimization that is similar to maximum entropy inverse
reinforcement learning [46]. In the case of high-dimensional
and continuous state spaces, as is the case for robotic rein-
forcement learning, a scalable way to implement maximum
entropy inverse RL is to utilize adversarial inverse reinforce-
ment learning (AIRL) [12]. AIRL alternates between training
a discriminator to discriminate between the positive examples
and the current policy’s rollouts, and optimizing the policy
with respect to the maximum entropy objective in Equation 1,
using log p(yt = 1|st,at) as the reward. The discriminator
in AIRL is parameterized by ψ and given by the following
equation:

Dψ(s,a) =
exp(fψ(s,a))

exp(fψ(s,a)) + π(a|s)
. (2)

As shown by Fu et al. [13], fψ(s,a) recovers log p(e = 1|s,a)
at convergence of this adversarial learning procedure. The
basic VICE algorithm is implemented as an on-policy rein-
forcement learning procedure, typically using policy gradient
methods such as TRPO [36]. This makes it difficult to use
for real-world robotic learning. Furthermore, VICE requires
the success examples to include both the state s and action
a, which is unnatural for a user to provide. We defer further

details about the basic VICE algorithm to prior work due to
space constraints [13]. In the following sections, we describe
our novel extension of VICE that lifts both of these limitations,
and then present our complete VICE-RAQ algorithm, which
combines VICE with active queries.

B. Off-Policy VICE

In order to make VICE practical to use for real-world
robotic learning, we must extend it so as to make it compatible
with efficient off-policy deep reinforcement learning methods,
and remove the need to obtain ground truth action labels for
the positive examples, so that the user can readily specify
examples simply by showing the robot example images of
successful outcomes. Extending VICE to the off-policy setting
first requires an off-policy reinforcement learning algorithm
that can optimize the maximum entropy objective in Equa-
tion 1. The soft actor-critic algorithm [15] provides one such
method. Next, we need a way to train the discriminator. While
in principle this would require importance sampling if using
off-policy data from the replay buffer R, prior work has
observed that adversarial IRL can drop the importance weights
both in theory [10] and in practice [22]. We adopt the same
approach, and sample negative examples for the discriminator
directly from R without importance weighting.

The standard VICE algorithm also requires the user-
specified success examples to consist of state-action tuples
(s,a), since both s and a are required to update the discrim-
inator Dθ(s,a) when it has the form in Equation 2. Even
when fψ(s) does not depend on the action, the term π(a|s)
in the denominator does. Providing the actions is unnatural
to the user, since the examples consist of isolated individual
states showing successful outcomes (e.g., images of successful
outcomes). Therefore, we remove the need for the user to
specify actions by integrating out the actions for the positive
examples in the VICE discriminator update, by using the
current policy π(a|s). This amounts to sampling the actions for
the positives, denoted aEi , from π(a|sEi ) as shown on line 11
in Algorithm 4. At convergence, since π(a|s) approaches the
expert’s policy, this simplification produces the same action
distribution, and therefore this update has the same fixed point
as when the user supplies ground truth actions.

C. Off-Policy VICE-RAQ

Since the set of positives in VICE is fixed at the start
of the algorithm, it typically requires a large set of positive
examples provided by the user to begin with in order to prevent
overfitting, sometimes as many as several thousand [13].
By integrating VICE with our active query framework, we
can substantially decrease the number of examples that are
required, at the cost of several tens of binary queries, as
in standard RAQ. To integrate RAQ with VICE, we simply
add the active queries, as in Algorithm 3, and append the
labeled state to the example set if the label is positive. If the
label is negative, there is no need to append the state, since
VICE already uses all sampled states as negatives. The full
VICE-RAQ algorithm is summarized in Algorithm 4. We start



Fig. 3. Our convolutional neural network architecture. The same architecture
is used for the policy, critic, and the learned reward function.

out with a dataset D consisting of positive examples. Every
iteration, we collect data from the environment and use it to
update fψ , the policy, and the Q-function. At fixed intervals,
we query the user using our active query mechanism discussed
in Section IV-A, and update our dataset D if the queried state is
labeled as a successful outcome. We continue running RL and
updating the event probabilities fψ , utilizing both our initial
dataset and any positives that we obtained from successful
queries. This procedure continues until the policy converges,
or after a specific period of time.

Algorithm 4 Off-Policy VICE-RAQ with soft actor-critic
Require: : Di := {(sn, 1)}

1: Initialize fψ (described in Equation 2)
2: Initialize policy π, critic Q
3: Initialize replay buffer R
4: for each iteration do
5: for each environment step do
6: at ∼ πθ(at|st)
7: st+1 ∼ p(st+1|st,at)
8: R ← R∪ {(st,at, st+1)}
9: for each gradient step for fψ do

10: Sample positives from D
11: Sample action labels aEi ∼ π(a|sEi )
12: Sample negatives from R
13: Update fψ using Equation 2 as discriminator
14: for each gradient step for the policy π do
15: Sample from R
16: Compute rewards: r(st)← fψ(st)
17: Update π and Q according to Haarnoja et al. [15]
18: if active query then
19: k → argmax fψ(st) for all t since the last query
20: if sk is a successful outcome then
21: D ← D ∪ {(sk, 1)}

VI. VICE-RAQ FOR IMAGE-BASED MANIPULATION

We implemented our methods on top of a standard open-
source implementation of the soft actor-critic algorithm [16].
The policy and the critic for each task are represented using
convolutional neural networks, shown in Figure 3. It consists
of two convolutional layers, each of which is followed by a
max-pooling layer, with 8 filters in each of the convolutional
layers for simulated tasks, and 32 filters per layer for real
world tasks. The flattened output of the convolutional layers
is followed by two fully-connected hidden layers with 256
units each. The ReLU non-linearity is applied after each of the
convolutional and fully-connected layers. The reward function

fψ(s) is also represented using a convolutional neural network
with the same architecture.

We use log-probabilities from a neural network-based clas-
sifier as reward for reinforcement learning. However, neural
networks are known to drastically change their outputs even
with small changes to the input [37]. Thus, they provide a
hard decision boundary between different classes, which in
our case is similar to running RL with sparse rewards. On
the other hand, if the output probabilities of the classifier
smoothly transition between positive and negative labels, this
would provide a more shaped reward, increasing both the
stability and efficiency of the reinforcement learning process.
To this end, we found mixup regularization to be particularly
well-suited for smoothing the classifier predictions [45]. We
briefly summarize this technique here. Let si, sj be any two
inputs to the classifier—either from the replay buffer, or from
the set of human-provided goal examples—and let yi, yj be
the corresponding labels. Mixup regularization takes these
input/output pairs, and generates the following virtual training
distribution:

s̃ = λsi + (1− λ)sj
ỹ = λyi + (1− λ)yj ,

(3)

where λ ∼ Beta(α, α). The mixup hyperparameter α controls
the extent of mixup, and higher α corresponds to a higher
level of mixup (i.e., the sampled λ are closer to 0.5 than to
0). Zhang et al. [45] showed that mixup enables smoother
transitions between different classes by encouraging linear
behavior, and our experiments indicate that it indeed makes
the learned reward function smoother and more amenable to
reinforcement learning.

VII. EXPERIMENTS

We perform experiments both in simulation and in the real
world. Videos of learned behavior and simulation results can
be found on our project website1.

Our real world experiments aim to study end-to-end rein-
forcement learning from pixels without manually engineered
rewards nor instrumentation of the environment to measure
rewards. We evaluate all of our methods, RAQ, off-policy
VICE, and VICE-RAQ, on three complex tasks from vision:
pushing a mug onto a coaster, draping a cloth over a box,
and a task that requires the robot to insert a book onto a
shelf between other books. We also provide a naı̈ve classifier-
based baseline (summarised in Algorithm 2) as a comparison
for all of the tasks. The goal of these experiments is to
verify that VICE-RAQ can successfully learn complex tasks,
including non-prehensile manipulation (pushing), tasks with
multiple success conditions (where the book can be placed in
one of several locations), and tasks with deformable objects
(cloth draping). For all our experiments, we use end-effector
position control on a 7 DoF Sawyer robotic manipulator, and
our observations consist of an RGB image of size 84 × 84.
We do not make use of robot joint angles or end effector-
positions. The final success rates of the trained policies for

1https://sites.google.com/view/reward-learning-rl/home



Fig. 4. Real-world tasks. The left column depicts possible starting states
of the task, while the right column depicts possible goal states. The top row
shows the Visual Pusher task, in which the goal is to push a mug onto a
coaster, and the initial position of the mug is randomized. The middle row
presents the Visual Draping task, where the goal is to drape a cloth over an
object. The bottom row depicts the Visual Bookshelf task, where the goal is
to inset a book in one of the multiple empty slots in the bookshelf.

VICE-RAQ RAQ VICE Naı̈ve
(ours) (ours) (ours) Classifier

visual pushing 100% 60% 0% 0%
visual draping 100% 100% 100% 0%
visual bookshelf 100% 0% 60% 0%
Fig. 5. Results on the real world robot experiments. For all tasks, the
reported numbers are success rates, indicating whether or not the object was
successfully pushed to the goal, whether the cloth was successfully draped
over the able, and whether the book was placed correctly on the shelf, averaged
across 10 trials. In all cases, VICE-RAQ succeeds at learning the task, while
VICE and RAQ succeed at some tasks while failing at others.

each of these tasks are shown in Figure 5. We first discuss the
individual tasks, and then the experimental results.

a) Visual Pushing: This non-prehensile manipulation
task (depicted in Figure 4) requires the robot to push a mug
onto a coaster. The position of the mug and coaster must be
inferred from the images, and the initial position of the mug
varies between different trials. In order to succeed, the robot
should push the mug such that is gets placed completely within
the coaster. Here, the robot must make use of the images to
determine whether it has achieved the goal successfully, and
the increased challenge of non-prehensile manipulation allows
to better differentiate the performance of the different methods.

Fig. 6. In this figure, we demonstrate how classifiers are more expressive
than goal images for describing a task. The goal for this task is place a book
in any empty slot in a bookshelf, and the initial position of the robot arm
holding the book is randomized. The top row shows a rollout when the book
starts on the right, while the bottom row shows a rollout when the book starts
on the left. Here, we see that our method learns a policy to insert the book
in different slots in the bookshelf depending on where the book is at the
start of a trajectory. The robot usually prefers to put the book in the nearest
slot, since this maximizes the reward that it can obtain from the classifier. On
the other hand, if we were using goal images to specify the task, the robot
would always place the book in one of the two slots, regardless of the starting
position of the book.

b) Visual Draping: This task requires draping a cloth
over a box – essentially a miniaturized version of a tablecloth
draping task. This task is depicted in Figures 4 and 7. The
robot starts with holding the cloth in its gripper over the box.
In order to succeed, it must drape the cloth smoothly, without
crumpling it and without creating any wrinkles. In order to
demonstrate the challenges associated with this task, we ran
a baseline that only used the robot’s end effector position
as observation and a hand-defined a reward function on this
observation (Euclidean distance to goal). We observed that
this baseline failed to achieve the objective of this task, as it
simply moved the end effector in a straight line motion to the
goal, while this task cannot be solved using any straight line
trajectory. See Figure 7 for more details.

c) Visual Bookshelf: In this task, the goal is to insert a
book into an empty slot on a bookshelf. The task is depicted
in Figures 4 and 6. The initial position of the arm holding
the book is randomized, requiring the robot to succeed from
any starting position. Crucially, the bookshelf has several open
slots, which means that, from different starting positions, dif-
ferent slots may be preferred. We chose this task to emphasize
that a goal classifier is fundamentally different from a goal
state: there is not a single “goal image” that represents success
at the task, but rather a condition on the position of the
book that can be fulfilled in different ways (see Figure 6).
The successful outcome examples correspondingly illustrate
successful placements in both positions.

We provide 80 success examples each for the pushing, drap-
ing and book placing tasks. We query once every 250 timesteps
for the pushing and book placing task, while querying once
every 500 timesteps for the draping task. The Visual Pusher
experiments are run for 6.2K timesteps (about 90 minutes
of real world time), the Visual Draping experiments are run
for 25K timesteps (about 4 hours), and the Visual Bookshelf
experiment is run for 19K timesteps (about 3 hours). We
therefore make 25 queries for the pushing experiment, 50
queries for the draping experiment, and 75 queries for the book
placing experiment. Note that all of these tasks are learned



Fig. 7. In this figure, we demonstrate why learning a reward function on
pixels is necessary for solving complex tasks in the real world. The task here is
to drape a cloth over a box. The top row shows a rollout from the final policy
trained by our method, while the bottom row shows a rollout from a policy
trained on a hand-defined reward on robot state alone. Our policy is able to
successfully drape the cloth over the box, while the policy trained without
vision only sees the end-effector position, which it succeeds in moving to the
right place, but fails to drape the cloth on the box.

directly from raw images, making these training times very
efficient as compared to prior methods, including methods that
use ground truth rewards [19, 16, 25, 31]. We hypothesize
that the regularized classifiers learned by our method provide
favorable reward shaping that makes image-based RL not only
more practical, by not requiring engineered rewards, but also
substantially more efficient.

The results of our experiments are provided in Figure 5. All
the tasks are evaluated in terms of success rates.

The Visual Pushing task requires the robot to interpret the
RGB camera images and deal with variability in the mug
placement. For this task, VICE-RAQ obtains a success rate of
100%, while RAQ only obtains a success rate of 60%. Both
off-policy VICE and naı̈ve classifier fail to solve this task. This
indicates that including active queries in the classifier training
process is helpful for obtaining good rewards, both with and
without VICE. These experiments further show that VICE-
RAQ can improve upon RAQ via leveraging the data collected
by the policy during the reinforcement learning process.

For the Visual Draping task, we observe that all of our
reward-learning methods (off-policy VICE, VICE-RAQ and
RAQ) are able to solve the task, and only the naı̈ve classifier
baseline fails. We also compare to a baseline that is based on
a reward defined on the robot state alone, in this case, the 3D
position of the end-effector (the reward being the Euclidean
distance to a goal end-effector position). We observe that this
baseline fails to solve the task (see Figure 7). This indicates
that performing this task requires the robot to actually pay
attention, visually, to the deformations in the cloth, in order to
perform the draping successfully. Manually designing reward
functions for such deformable object manipulation tasks is
generally extremely difficult, but all variants of our method
are able to handle it successfully.

For the Visual Bookshelf task, where success corresponds
to whether the book was successfully placed in an empty slot

on the bookshelf or not), we see that RAQ alone is unable to
solve this task, while off-policy VICE learns a policy that only
succeeds sporadically. The policy learned with VICE-RAQ
solves this task consistently, indicating that the combination
of query labels and negative labels from all visited states from
VICE provide improved classifier training.

VIII. DISCUSSION AND FUTURE WORK

In this paper, we proposed an approach to reinforcement
learning without hand-programmed reward functions. Our
method, which we call VICE-RAQ, constructs a reward func-
tion from a modest number of user-provided examples of
successful outcomes, which in practice might consist simply
of pictures of the scene where the task has been successfully
completed. Such examples are often substantially easier for a
user to provide than either hand-programmed reward functions
or full demonstrations. The initial reward is constructed out of
a classifier trained on these examples and adversarially mined
negatives. Beyond the initially provided success examples,
our method uses a modest number of active queries, where
the user is asked to label outcomes achieved by the robot
as either successful or not. These additional queries are also
simple to provide, and roughly correspond to the user directly
reinforcing the robot’s behavior. However, the user does not
need to label all of the robot’s experience – only about 50
queries are used in our experiments, out of tens of thousands
of transitions.

While our method improves substantially on both naı̈ve
classifier rewards and VICE in our experiments, it does have a
number of limitations. First, the requirement to obtain labels
from the user imposes additional assumptions. Second, the
number of queries required—around 50 per training run—
is still non-trivial. It is quite possible that a more intelligent
query criterion could reduce this number further, and a promis-
ing direction for future work is to incorporate techniques
for quantifying model uncertainty in the classifier, such as
Bayesian neural networks. Lastly, our method does not benefit
from any shared structure between tasks. In reality, tasks have
considerable shared structure, and a classifier that incorporates
data from multiple tasks, analogously to prior work on meta-
learning [42, 43], could in principle further reduce the number
of queries and examples that is needed.

By enabling robotic reinforcement learning without user-
programmed reward functions or demonstrations, we believe
that our approach represents a significant step towards mak-
ing reinforcement learning a practical, automated, and read-
ily usable tool for enabling versatile and capable robotic
manipulation. By making it possible for robots to improve
their skills directly in real-world environments, without any
instrumentation or manual reward design, we believe that
our method also represents a step toward enabling lifelong
learning for robotic systems that learn directly “in the wild.”
This capability can make it feasible in the future for robots
to acquire broad and highly generalizable skill repertoires
directly through interaction with the real world.
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