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Abstract—The problem of temporal alignment of time series
is common across many fields of study. Within the domain of
robotics, human motion trajectories are one type of time series
that is often utilized for recognition and prediction of human
intent. In these applications, online temporal alignment of partial
trajectories to a full representative trajectory is of particular
interest, as it is desirable to make accurate intent prediction
decisions early in a motion in order to enable proactive robot
behavior. This is a particularly difficult problem, however, due to
the potential for overlapping trajectory regions and temporary
stops, both of which can degrade the performance of existing
alignment techniques. Furthermore, it is desirable to not only
provide the most likely alignment but also characterize the
uncertainty around it, which current methods are unable to
accomplish. To address these difficulties and drawbacks, we
present BEST-PTA, a framework that combines optimization,
supervised learning, and unsupervised learning components in
order to build a Bayesian model that outputs distributions over
likely correspondence points based on observed partial trajectory
data. Through an evaluation incorporating multiple datasets,
we show that BEST-PTA outperforms previous alignment tech-
niques; furthermore, we demonstrate that this improvement can
significantly boost human motion prediction performance and
discuss the implications of these results on improving the quality
of human-robot interaction.

I. INTRODUCTION

Temporal alignment of time series data is a problem under
investigation across a wide variety of domains and tasks,
including phenome alignment in speech processing [7], subse-
quence matching in medical data [21], and audio alignment in
musical performance [3]. Within robotics-related applications
— specifically, the field of human-robot interaction — human
motion trajectories represent a type of time series that is of
particular interest. Temporal alignment of such trajectories
is a common problem in activity recognition [5, 20], action
and motion prediction [11, 14, 4], and gesture recognition
[1, 18]. These techniques allow robots to understand and
predict human intentions, which can be leveraged to improve
the safety and efficiency of human-robot interaction.

Within the aforementioned fields and applications, online
partial trajectory alignment represents a particularly challeng-
ing problem. Distinct from temporally aligning two complete
time series, online partial trajectory alignment involves ob-
serving streaming trajectory data and, as each new position is
collected, identifying a suitable alignment between the latest
point of the partial trajectory and a point along a reference
trajectory for that motion.
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To describe the problem more formally, let us define tra-
jectories as matrices X € RV*T, where N is the number of
tracked degrees of freedom (e.g., the spatial coordinates of a
person’s hand) and 7' is the number of time steps. Each column
of X, denoted as 7;, defines a vector of coordinates at a
particular time step ¢t € 1,..., T, and the trajectory is sampled
at some time interval 7. A subset of a trajectory matrix up to
some time ¢ is denoted as X1 ;1. A partial trajectory for some
action, denoted as X, is appended with a newly observed set
of coordinates, 33’{3 , at each consecutive time step ¢. Given a
complete representative trajectory for the same action, X %, the
objective of online partial trajectory alignment is to identify
a correspondence point in the representative trajectory, %,
that accurately maps to the currently observed position in the
partial trajectory, Z'. In other words, the goal is to find a t*
such that X maps to the subset X’it*].

Accurate online alignment of partial trajectories is particu-
larly useful for early prediction of motions, actions, or ges-
tures, as only part of a trajectory is available in these situations,
precluding the use of techniques designed for full trajectory
alignment. As we show in this work, previous methods of
online partial time series alignment can perform poorly when
applied to trajectory alignment, especially with trajectories
containing overlapping regions and temporary stops. The
presence of these qualities in many real-world trajectories
motivates the development of an online partial time series
alignment method specifically geared toward such trajectories.
Furthermore, while prior approaches only output a single
alignment estimate, it is desirable to provide a distribution
over correspondence points such that a given method using
the alignment can potentially reason on the uncertainty over
correspondence.

To address the drawbacks highlighted above, we intro-
duce BEST-PTA (Bayesian ESTimator for Partial Trajectory
Alignment), a Bayesian estimation framework composed of a
mixture of optimization, supervised learning, and unsupervised
learning components that are trained and synthesized based
on a given set of example trajectories. We specifically address
the problems of trajectory overlap and temporary stops via
segmentation and stop segment detection, and compute and
leverage correspondence point priors and distance-based likeli-
hoods to produce the correspondence distribution. We evaluate
our framework against three partial time series alignment
baselines, and show that our approach outperforms these
baselines across two human motion datasets. Furthermore, we
demonstrate the benefit of this improved alignment in the
context of human motion prediction.



II. RELATED WORK

The problem of partial trajectory alignment is closely related
to the general concept of time series alignment, wherein
two complete time series are given and the objective is
to find a time index mapping between the points in these
time series. One common method, originally developed for
speech recognition, is dynamic time warping (DTW) [15],
which uses dynamic programming to identify an optimal time
alignment that minimizes the distance between the aligned
signals. Several variants of DTW have emerged since its
introduction, including FastDTW [16], which provides an
approximate solution to DTW with linear time and space
complexity, and derivative dynamic time warping (DDTW)
[8], which aligns signals with respect to their first derivative
in order to achieve more-intuitive alignments between signals
in which a feature (e.g., a peak) is more pronounced in one
signal over the other. More recently, Zhou and De la Torre
[22] developed generalized time warping (GTW), a technique
specifically geared toward the alignment of human motion
obtained from multi-modal sources (such as video, motion
capture, and accelerometer data).

While these methods provide various ways of aligning full
trajectories, the problem of online partial trajectory alignment
is unique, and the above approaches are generally not well
suited for this task. Consequently, researchers have developed
other techniques to address temporal misalignment with partial
trajectory observations. The approach used by Hayes and Shah
[5], for example, does not search for an explicit temporal
alignment, but instead divides trajectories into overlapping
temporal segments over which to train independent Gaussian
mixture models for activity recognition, and then uses a
modified form of max pooling over a time window. Dong and
Williams [4], on the other hand, identified the best alignment
between the current state and trained probabilistic flow tubes
(PFTs) based on the distance between the current state and
the PFT, as well as the elapsed time in the partial execution.
Lasota and Shah [11] also used a metric of alignment based
on distance and time, but their method involved searching for
the nearest point in a temporal moving window.

Besides the above techniques built into prediction and
recognition frameworks, researchers have also developed tech-
niques specifically for partial time series alignment. In the
work by Dixon [3] (which Pérez-D’Arpino and Shah used
for partial trajectory alignment in later research [14]), the
authors developed an online variant of DTW (O-DTW) in
which the entries of the time warp matrix are computed
iteratively as new data is received, and the direction of the
search is guided by the location of the current best alignment
value. The number of computed values at each iteration is
bounded, resulting in constant time complexity. The path cost
calculations incorporate the standard DTW formulation but
are restricted to the previously computed values, allowing for
online computation of an optimal alignment. Building upon
this work, Macrae and Dixon [13] created windowed time
warping, which, by dividing the overall alignment problem

into sub-alignments on smaller, overlapping regions, achieves
accuracy comparable to O-DTW while improving run time.

Latecki et al. [12] presented another approach, optimal
sequence bijection (OSB), which focused on creating a one-
to-one mapping (bijection) between sequences and effectively
handling trajectories containing outliers. The resilience to
outliers is implemented by allowing for the skipping of points
in both the partial and full trajectories during alignment,
and by incorporating a jump cost that penalizes such skips
proportionally to the number of points skipped in a row.
To achieve linear time complexity, this approach includes
a warping window size parameter and limits the maximum
number of points the algorithm can skip in a row.

While the above methods achieved success in partial time
series alignment, human motion trajectories pose unique chal-
lenges that can adversely affect these methods’ performance.
Specifically, trajectory overlap and temporary stops can be
problematic, as the above methods’ distance metrics are gener-
ally described in terms of the Euclidean norm. When combined
with variability in execution speed, it becomes difficult to set
the above methods’ parameters such that they can account
for all of these qualities and still produce satisfactory results.
Furthermore, as mentioned in Section I, it is desirable to output
a distribution over possible correspondence points, but the
above techniques do not provide such a distribution.

III. METHOD

To address the drawbacks of previous partial trajectory
alignment methods, we introduce BEST-PTA, a Bayesian
estimation framework that combines optimization, supervised
learning, and unsupervised learning approaches. Given a set
of training trajectories, the first component of the system
computes a spatially accurate representative trajectory, X,
through an iterative process based on DTW. The next com-
ponent then analyzes the velocity profile of this trajectory to
discover stop segments. These segments and X 7 are then fed
into an optimization-based segmentation process that divides
the representative trajectory such that overlapping trajectory
regions are assigned to separate segments. Next, the frame-
work learns a Random Forest classifier (RF) [6] over the
computed segments, builds a library of segment-specific prior
distributions over correspondence points, and learns a distance-
based likelihood. During execution of a new trajectory, the
framework combines the current segment probabilities and
durations from a state machine, the learned prior distributions,
and the likelihood function to generate the distribution over
correspondence points. We describe the above components in
detail in the following sections.

A. Representative Trajectory Computation

The first step of the framework is to define a representative
trajectory, X %, based on the training set, DT’ In order to avoid
smoothing out trajectory features by simply averaging over
the trajectories in the set, we developed an iterative algorithm
based on DTW. In this process, the algorithm first removes
a trajectory at random from D7 and assigns it as the current



estimate of the representative trajectory, denoted as X2 Then,
at each successive iteration, the algorithm randomly selects
another trajectory from D7 without replacement, computes
an alignment to XE® with DTW, takes a weighted average
of the aligned points (and their time stamps) with weights
assigned in proportion to the number of trajectories that XR
is already composed of, and resamples the trajectory back
to the sampling rate, 7. The resulting trajectory becomes
the new X%, and the process repeats until all trajectories in
DT are incorporated. Figure 1 depicts an example of how a
representative trajectory computed using our method maintains
features that are lost when simply taking a mean over the
trajectories in the training set.
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Fig. 1: A comparison between computing X7 by taking the
mean over DT and by using our iterative DTW method. Note
how the former “smoothes out” the corner and results in a
representative trajectory that is spatially inconsistent.

B. Stop Segment Discovery

One aspect of motion trajectories that can cause alignment
complications is the presence of stops. This can be observed,
for example, in the trajectories formed by people reaching
for objects or walking to a location in order to perform a
brief task before continuing their motion. Within a trajectory,
a stop will result in a cluster of points, all within a very small
distance of each other. As Euclidean distance is often used as
an alignment metric, this can lead to errors. To address this
problem, the second component of our framework incorporates
a speed estimate in order to identify the dominant movement
modes and finds potential “stop segments,” which allows other
components of our method to include special consideration for
these unique regions.

The first step of stop segment discovery is to compute the
speed at each point in the trajectory, denoted as Z. This is
performed by finding a cubic spline fit to the trajectory, taking
a numerical derivative to determine velocities, and computing
the norm at each time step. In order to find the dominant
speed modes within X', the system utilizes a Dirichlet
process Gaussian mixture model (DPGMM) fit to the derived
speeds. This model is particularly suitable because human
motion characteristics tend to be Gaussian-distributed, and no
assumptions must be made about the number of speed modes.
Importantly, however, while movement modes will tend to be

Gaussian-distributed, the stop mode will be a half-Gaussian
with a peak near zero. In order to create a full-Gaussian stop
mode, the system utilizes an extended vector, 7F — [—Z , Z]
Figure 2 depicts a sample histogram of ZF of a trajectory
and the corresponding DPGMM fit with a stop mode and two
movement modes.
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Fig. 2: A histogram of ZE (blue) and the DPGMM fit (red).
The DPGMM shows a dominant speed mode at 0 (a “stop
mode”) and two movement modes at +0.7 m/s and +1.0 m/s.

For every mixture component ¢ € 1, ..., n. of the DPGMM,
the system identifies it as a stop mode if it is centered around
zero (|p;] < 19%) and its weight is at least 5% of what
the value would be if the modes were uniformly distributed
(my > %). Once a mixture component ¢ is determined to
be a stopc mode, it can be used to define a speed threshold,
z* = avoy; the stop segments are then defined as the portions
of the trajectory below this threshold. The parameter « is cho-
sen based on the desired confidence of speeds below z* being
generated by the half-Gaussian mode, and was set to 1.1 in our
implementation. To account for noise in the speed estimates,
the algorithm adjusts stop and motion segments shorter than a
set percentage of the trajectory length by merging them with
neighboring segments (this percentage was set to 7% in our
implementation). Furthermore, as the representative trajectory
is derived from many individual trajectories, its speed profile
can be significantly smoother than a typical trajectory for
that action. To address this, the algorithm adjusts the speed
threshold by using alignments to each of the trajectories in D7,
taking the speeds observed within the stop segment regions,
and fitting a new half-Gaussian to these speeds to derive a new
value of z*. The final stop segment bounds are denoted as a set
of start and end indices W = {[wi, wi], ..., [w}y,, wiy ]}

C. Ground Truth Alignment

As mentioned in Section II, many partial trajectory align-
ment techniques rely upon the Euclidean norm as a distance
metric between trajectories, which is problematic for trajecto-
ries that contain stop segments. This issue also arises in full
trajectory alignment, which is necessary to compute ground
truth alignments for the purpose of training and evaluating our
approach. As a result, we developed a novel algorithm for full
trajectory alignment that utilizes the stop segment detection



component in order to generate more-accurate ground truth
alignments between trajectories.

Given a representative trajectory X and a target trajectory
X7, the first step is to find the boundaries of the stop segments
within X7 using the speed threshold z* and matching each
discovered stop segment to those in X . The alignment within
these stop segments is defined as a linear temporal spacing
rounded to the nearest time step. The motion segments in X 7
and X7 are then matched and aligned with DTW. As depicted
in Figure 3, our method produces ground truth alignments that
more accurately represent the relative progress through the
trajectory at each point in time.
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Fig. 3: Part of a ground truth alignment between X7 and
a test trajectory X7 found with DTW (left) and our method
(right). Note the poor alignment within the stop region (dashed
rectangle) when using DTW.

D. Trajectory Segmentation

Trajectories often contain spatially overlapping regions,
which can also complicate partial trajectory alignment: simi-
larly to the problem of temporary stops, overlapping regions
can lead to small Euclidean distances between large portions
of the trajectory, resulting in alignment errors. The objective
of the third component of our framework is to alleviate this
problem by segmenting the representative trajectory X into
m parts that include as little within-segment spatial overlap
as possible. This is achieved by finding a vector of time
igdices, 5‘, that marks the boundaries of the segments (i.e.,
S =11,82,...,8m, T).

We frame this segmentation as an optimization problem.
A pair of points on a trajectory segment can be considered
“overlapping” if the Euclidean distance between them is small
but the difference between their respective time stamps is
large. Therefore, we define a cost function in the range [0,1]
for pairs of points at time steps ¢ and j in a trajectory segment
X as follows:

2. 22 S
C(Zaij) = [1 — tanh (M)} tanh (y) (1)
T

1D

In this equation, np and nr are normalizing factors for
the distance and time differences, respectively. The former is
set to the mean plus one standard deviation of all pairwise
distances in trajectory X, while the latter is set to % The
constant multiplications are included to shift the saturation
of the hyperbolic tangent function to the point where the
squared distance and time difference are equal to the respective

normalizing factors. We can then define the mean cost of a

segment with start and end indices ¢, and t., respectively, as
follows:
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In order to bias the optimization away from creating very
short segments, we also introduce a regularization term:

G(ts,te; X,m) =1 — tanh (Smte;ts) 3)

Similarly to Eq. 1, multiplication by a constant is performed
so that the hyperbolic tangent function saturates, and thus
brings the value of G near 0 when the length of this segment
as a percentage of the total trajectory length equals %
Combining Eqs. 2 and 3, we arrive at the overall cost function
for the segmentation:

|S|—1
R(S;X) = Z J (8K, Sk+1; X) + AG(sk, sp41; X, m) (4)
k=1

In the above, A controls the influence of the regularization
term, which we set to 0.75 in our implementation. To identify
the optimal segmentation, S*, it is necessary to identify the
segmentation time index vector, 5‘, that minimizes Eq. 4 —
subject to the constraints that the first and last elements of S
are 1 and T, respectively, that the elements of S are integers,
and that they are monotonically increasing, as follows:

§* = argmin R(S; X)
s ®)
=T, s; € U S; > Si—1

This formulation makes the segmentation problem an in-
teger nonlinear program (INLP). As the overall objective
function R(g ; X) is trajectory-dependent and potentially non-
convex, a global optimization method is necessary to calculate
S*. In our implementation, we elected to use a genetic
algorithm (GA) solver with a population size of 50, a crossover
fraction of 0.8, and a constraint tolerance of 0.001. In the
current implementation, the number of segments, m, needs to
be provided by the user.

If stop segments are identified as described in Section III-B,
the system first enforces that their bounds, W, are part of
S and not allowed to change. Next, to prevent any of the
free values of S from being placed between the start and end
indices of any W;, we incorporated a nonlinear constraint that
penalizes such placements proportional to the square of the
encroachment:

w13

ZZ [wi <= s; <= wi{min(s; — wi,wi —s;)}> <0 (6)

i=1 j=1

Figure 4 shows examples of segmentations derived by using
our optimization-based technique.
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Fig. 4: Segmentation results for a 3D reaching motion (left)
and a 2D walking motion (right). Each segment is depicted
using a different color.

E. Segment Classification

Once the segmentation of the representative trajectory is
complete, a classifier is required that would indicate which
segment the head of the partial trajectory is currently in for
each new partial trajectory observation #I. One common
classification technique suitable for this task is the Random
Forest (RF) [2], as it supports multi-class problems and its
output is a discrete distribution over classes. In our case,
the feature vector for a particular point Z; consists of a
concatenation of trajectory coordinates, estimated velocities,
and speed: f; = [T}, T, |7,]]] € R2V+HL,

To compute velocity estimates for the feature vector, the
system removes high-frequency noise using the Savitzky-
Golay differentiation filter [17]. The polynomial order and
frame size for the Savitzky-Golay filter are hyperparameters
that the system learns through the use of a validation set, D" .
After training, given a feature vector corresponding to Zl,
the RF classifier outputs a discrete distribution over segments,
denoted as 6 € R™. This distribution is then used by a segment
state machine, which we describe in the following section.

F. Segment State Machine

In order to monitor which segment the head of the current
partial trajectory occupies and how long ago each segment
transition occurred, we implement a state machine. Let us
denote the indices of the segments as £k = 1,...,m and
the vector of durations since transition to each segment as
D= [dy,...,dn]. For each new position of the current partial
trajectory, ff , the state machine takes the current distribution
over segments ¢ from the RF classifier and computes a moving
average of these probabilities, denoted as 0 € R™, over a
window of size 7,,.

The state machine also learns temporal duration priors
by fitting Gaussian Kernel distributions to the durations for
each segment observed in DT Let us denote the cumulative
distribution function (CDF) of this distribution for segment &
as F(dg). In order to prevent potential overfitting, a uniform
prior, computed by taking the product of the maximum value
of the probability density function (PDF) and a multiplier ~,,,
is added to the kernel distribution over the range of durations
where € < F(dy) <1 — e with e = 0.001.

Let us denote the CDF of the kernel distribution with the
added uniform prior as F'*(dy) and the indices of the current,

next, and previous segments as ¢, n, and p, respectively. During
execution, the system determines whether a state transition
should occur via a Bayesian formulation. Namely, the state

machine transitions forward if F™*(d.) - éajrl@ > 7, and
backwards if [1 — F*(d.)] - 5 9: 7~ > 7p- The hyperparameters
P c

L' = Y, Yn, ~p, Ju] are learned with the use of the validation
set, DV.

G. Temporal Correspondence Prior

The next component of the framework constructs the tem-
poral prior of the Bayesian formulation. To build our prior
distributions, the system iterates through all trajectories X* €
DT and computes ground truth alignments to X% for each
of them with the approach described in Section III-C. As
the system iterates through the training set, it counts, for
each segment k& and each time step in the range 1, ...,
(Sk+1 — si) within that segment, the number of times each
of these time steps corresponded to each time step of the
corresponding segment of X . This process results in a total
of T vectors of such counts. The system then fits Gaussian
kernel distributions to each of these vectors, generating smooth
probability distributions without any assumptions about the
underlying distribution structure. Each of these distributions,
denoted as Pgk(k,dy), describes the prior probability of
correspondence to the time steps of segment k for a given
duration dj, since the transition to this segment occurred. In
order to avoid poor Gaussian kernel fits to overly sparse data,
these distributions are only defined up to durations dj, for
which the count vector had at least 10 values. Let us denote
this cutoff duration for segment k as d .

Next, we use the distributions Pgx(k,d) to construct
discrete priors over the time steps of X *. First, we recognize
that for any given segment k, all probabilities before time step
s}, are zero. For the time steps of the segment, s, < t* < s;';H,
the system integrates each of the kernel distributions of seg-
ment k over intervals of length one centered around these time
steps. Keeping in mind that d, = t* — s} + 1, the discretized
kernel distributions over possible values of t* of X given a
duration of dj, since transition to segment £ and segmentation
points S* are then defined as follows:

-

PDGK(t*; k‘, dk, S*) X
(t*—s;+1)+0.5
f(t*—s;+1)—o.5 Por (k, t)dt,
0, otherwise

sp <t <sp (D

In order to account for durations longer than d(kj, the
distribution at d is taken and shifted forward in time by
the difference between d{ and dy. The final definition of
the discrete, temporal prior probability over the time steps of
X given a duration of dj, since transition to segment k and
segmentation points S* is then given as follows:

Pr(t*;k, dy,, §*)

Ppar(t*; k,di, S*) di, <d$ (3)
Ppox (t* — (d —dS); k,dS, S*)  dy, > df



Similarly to the method used in the temporal priors of the
state machine, in order to prevent potential overfitting caused
by data sparsity, the system adds a uniform prior to the non-
zero values of Pr. The magnitude of this prior is different for
stop and motion segments, and is learned with the use of the
validation set DV,

During execution of a trajectory, the system utilizes the
learned collection of Pr distributions to formulate our overall
prior. The continually incremented values of D of the segment
state machine represent competing hypotheses of the true value
of k and d;. (i.e., whether a’:’f is in segment k& with duration d,
or in some prior segment k£ — j with duration dj_;). In order
to provide robust priors, especially near segment transitions,
the system computes a weighted average over all Pr up to the
current segment proportional to 0:

c
Pr(t:D,0,5%) o< > 04 Pr(t*; k, dy, S*) )
k=1

Finally, in order to bias the prior toward high-probability
segments, we weigh the probability at each value of t*
proportionally to the probability of the segment that ¢* belongs
to. If we define the segment index of time step ¢ in X as

k(t), then the final form of our temporal prior is:

P(t*757éa§*)OCék(t*)}’ST(t*?D_’vévs;*) (10)

This final formulation, given the candidate segment dura-
tions and probability estimates from the state machine, selects
the appropriate learned priors and synthesizes them together in
order to provide a discrete prior distribution over all possible
values of t* in XF,

H. Distance-Based Likelihood

The second key probability distribution of our Bayesian
formulation that the system learns during the training process
is the likelihood of observing a specific position given the
alignment time t*. The system builds the likelihood model
by characterizing the typical distance between aligned points
within each of the m segments of X . Namely, the system
finds the ground truth alignment to each trajectory in DT and
computes an exponential distribution fit for each segment (i.e.,
learns the rate parameter A\ for ¥ = 1,...,m) based on
vectors of observed distances between pairs of aligned points
within each segment. The likelihood of the position & given a
proposed alignment point ¢* is then simply given by:

P& |t X ", §%) o f(|7 - &

(1)

In this equation, f(z;\) is the PDF of an exponential
distribution evaluated at x with rate parameter A, and k(¢)
is the segment index of time step ¢ in X T,

; Ak(t*))

L. Bayesian Correspondence Distribution

Next, we describe the process of using the temporal prior
and distance-based likelihood for computing the correspon-
dence distribution over the time steps t* of X given a partial
trajectory X©'. As each successive point Z} is received, the

system updates the segment state machine, computing new
values for § and D. Combining these values and Eqgs. 10 and
11, we define the overall correspondence distribution using
Bayes’ rule:

P |5 X5 8§ o« P(EF |t X, S P(t*; D,6,5%) (12)

This distribution allows one not only to select a high-
probability correspondence point ¢*, but also to characterize
the confidence in this alignment based on the relative prob-
abilities of other candidate alignment points. Based on this
formulation, the computational complexity of evaluating the
state machine update, likelihood, and prior for each new point
#¥ all scale linearly with the length of X . Based on this fact,
the overall complexity of BEST-PTA is O(n), which facilitates
its use in online applications such as activity recognition or
human motion prediction.

IV. EVALUATION

In order to evaluate our technique, we compared its align-
ment performance against three baseline methods on two
unique datasets. We also evaluated the benefit of our alignment
method on the accuracy of human motion prediction.

A. Datasets

We utilized two distinct datasets to evaluate our method:
reaching motions during a tabletop factory task (TF) and
walking motions during an automotive assembly task (AA).
Each consists of a set of distinct actions, each with a unique
trajectory profile — and, therefore, a representative trajectory,
X%, Consequently, we grouped the trajectories of each action
within each dataset as separate subsets during training and
evaluation. For each such subset, we split the data into a
training set, D”'; validation set, DV'; and evaluation set, DF.

The TF dataset, originally presented by Lasota and Shah
[10], consists of trajectories from a collaborative task during
which a person placed fasteners at eight distinct locations
on a table while a robot applied a sealant to the fasteners.
Human reaching motions, consisting of the three-dimensional
coordinates of the wrist, were collected using a PhaseSpace
motion capture system and resampled to a rate of 50Hz (7
= 0.02s). The set contains data collected from 20 participants
who each performed the eight different motions twice. For
each participant, we used the motion that corresponded to
the “Human-Aware” mode (see [10]). During each placement,
participants were required to twist the fastener into place,
resulting in a short pause of roughly 2-3s prior to the person
retracting his or her hand.

In the AA dataset, first presented by Unhelkar et al [19],
participants walked to four different locations on a simulated
factory floor to perform logistics tasks. The walking motion
data, consisting of the two-dimensional position of the person’s
head, were collected using a Vicon motion capture system at
a rate of 10Hz (7 = 0.1s). In this dataset, two participants
performed each of the four motions 20 times. During each
trajectory, the participants performed short tasks that resulted
in a roughly 2-4s pause during the walking motion. (Three of
the actions involved one such pause; one action included two.)



B. Baseline Methods

In order to evaluate our technique, we compare its alignment
performance to three baseline methods: O-DTW [3], OSB
[12], and the moving window (MW) approach from [11],
which were all briefly introduced in Section II. We selected
these baselines based on their capability for partial alignment
using low-dimensional time series as input (e.g., trajectories
instead of time series of images).

The first baseline method, O-DTW, has two key parameters:
the number of new warp matrix values to compute at each
iteration (denoted as ¢) and the maximum number of times
the search can move in the same direction of the warp matrix
(MazRunCount). We selected values for these parameters
using the validation set DV in the same way as the hyperpa-
rameter tuning described in Section III.

For our second baseline, OSB, we utilized the formulation
based on work by Latecki et al [12], but with modifications
introduced by Koknar-Tezel [9]. The main parameters include
the penalty for skipping elements of either trajectory (denoted
as C) the maximum number of elements that can be skipped
in a row, and a warping window size that limits how far off the
diagonal of the warp matrix the search should be limited to.
We set the first parameter, C', via our validation set DV, using
the method suggested by the authors of [12]. For the remaining
parameters, we used the authors’ guidance, and assigned the
same value to each of them. To select that value, we used the
same hyperparameter tuning method as that used for O-DTW.

When applied to our problem, as OSB attempts to align a
given partial trajectory to any part of the full trajectory, it can
sometimes identify a similar subsequence in the wrong section
of the trajectory, especially for very short partial sequences.
To avoid this problem (and make the comparison fair) we
introduced an additional constraint to OSB that forced it to
match the first elements of X? and X* to each other.

Finally, for the MW baseline, the only parameter was the
size of the window over which to conduct the search for the
nearest point in X 7. Specifically, we were looking for the
number of time steps, w, such that the search was limited to
X [If_m tw]” Once again, we trained this parameter in the same
manner used to train the other baselines.

C. Evaluation Methodology

For each of the two datasets, we performed leave-one-out
cross-validation (LOOCV) to compare the performance of our
framework to the baselines. For each iteration of the cross-
validation, we took one trajectory as D and performed a
random 70%/30% split of the remaining trajectories for use in
DT and DY, respectively. We defined our error metric as the
time difference (in seconds) between the proposed and ground
truth partial trajectory alignment times ¢* for each time step ¢
of the evaluation trajectory.

In order to assess the impact of the presence of stop seg-
ments on alignment performance, we performed the analysis
on both the original trajectories as well as modified ones with
stop segments removed for each action of each dataset. Below,

Dataset | O-DTW OSB MW BEST-PTA | Friedman
TF 0.504-0.23 | 0.3340.23 | 0.354-0.21 | 0.2840.21 | x2=108.68
TFns | 0.1040.05 | 0.064:0.04 | 0.044:0.04 | 0.02+0.02 | x?=339.06
AA 0.284-0.13 | 0.194:0.15 | 0.214-0.14 | 0.0940.09 | x2=127.06
AAns | 0.1540.07 | 0.0740.05 | 0.05+0.06 | 0.0240.01 | x2=180.7

TABLE I: Mean partial trajectory alignment errors (% standard
deviation) in seconds on the original and “No Stop” versions
of the TF and AA datasets.

we refer to these modified datasets by adding a subscript “NS”
for “No Stop”.

D. Impact of Alignment on Accuracy of Motion Prediction

The second part of the evaluation involved applying our
partial trajectory alignment framework to human motion pre-
diction with the Multiple-Predictor System (MPS) [11]. We
compared the prediction performance of the MPS when using
our technique versus each of the baseline methods in order
to investigate the impact of the quality of partial trajectory
alignment on the accuracy of human motion prediction. We
performed a LOOCV using the same data splits and trained
aligners as in the first evaluation. Specifically, for each it-
eration of the cross-validation, we set the partial trajectory
aligner of the MPS to each of the previously-trained aligners,
trained the MPS using the same training and validation sets,
and then computed the mean prediction error of the MPS on
the evaluation trajectory. As the trajectories of the TF dataset
are quite short in duration, we utilize the AA dataset instead,
and use the MPS to make predictions at time horizons from
0.1s to 6s.

V. RESULTS AND DISCUSSION

The results of the first evaluation, which compares the
average partial trajectory time alignment errors for each test
trajectory using BEST-PTA compared to that of the three
baselines, indicate that our method leads to superior alignment
for both variations of both datasets. To assess statistical
significance of our results, we applied the Friedman test to
determine the main effect of the alignment method and the
Wilcoxon signed rank test for pairwise comparisons. For the
original TF dataset, BEST-PTA reduced the mean alignment
error by 44.0%, 15.1%, and 20.4% when compared to O-
DTW, OSB, and MW, respectively. The reduction in error for
the AA dataset was even more significant, with BEST-PTA
outperforming the baselines by 69.4%, 55.6%, and 59.0%.
The results were similar for the modified datasets (where stop
segments were removed) as well. For TFyg, our approach
reduced the mean alignment error by 80.5%, 66.6%, and
46.6%, while for the AAyns dataset, the error was reduced
by 85.5%, 68.6%, and 59.2%, when compared to O-DTW,
OSB, and MW, respectively. These results were all statistically
significant (p < 0.001 for all tests), and are summarized in
Table I.

The mean alignment error results provide strong evidence
for BEST-PTA being an effective partial trajectory alignment



method for trajectories containing stop segments and overlap-
ping regions. As BEST-PTA outperformed the baselines for
both datasets, these results also indicate that our approach
is suitable for alignment of both ambulatory and manipula-
tive motion trajectories, which amplifies its usability within
human-robot interaction contexts.

While the differences in magnitudes of the errors are fairly
small, by utilizing a Bayesian formulation, a key benefit of
our method is that it reduces the occurrence of large and
persistent alignment errors. Figure 5 shows the percentage of
the evaluated trajectories from the AA dataset in which for at
least 5% of the trajectory’s duration the error was above the
given range of thresholds. From this figure, it is apparent that
BEST-PTA results in fewer instances of large errors. Note, for
example, that alignment errors of at least 1.5s occurred in only
3% of trajectories when using BEST-PTA, while they occurred
nearly 20% of the time for MW and OSB.
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Fig. 5: Percentage of trajectories in the AA dataset for which
the alignment error was above the given thresholds for at least
5% of the trajectory.

The fact that our approach leads to significantly fewer large
errors has potentially significant implications for the applica-
tion of partial trajectory alignment to human-robot interaction
applications such as activity recognition or motion prediction.
In the case of human motion prediction, for example, reducing
the number of large alignment errors is likely to result in fewer
instances of significant prediction errors.

This idea is supported by the results of the second part
of our evaluation. When using BEST-PTA for partial trajec-
tory alignment, the mean prediction errors of the MPS were
reduced by 28.0%, 17.7%, and 19.9% when compared to
the results when using O-DTW, OSB, and MW, respectively.
Once again, a Friedman test and pairwise comparisons with
the Wilcoxon signed ranks test showed these results to be
statistically significant (p < 0.001 for all tests). The mean
prediction errors when using BEST-PTA, O-DTW, OSB, and
MW were 0.24m, 0.33m, 0.29m, and 0.30m, respectively.

Due to BEST-PTA’s quality of having fewer large alignment
errors, large prediction errors were also reduced when it
was used with the MPS. This trend is displayed in Figure
6, which depicts the percentage of trajectories in the AA
dataset for which the error in human motion prediction (at
time horizons of 1.5s, 3.1s, and 4.5s) was greater than the
given thresholds for at least 5% of the trajectory. From this

figure, we can see that BEST-PTA indeed allows the MPS to
make fewer large errors. For example, at a prediction time
horizon of 3.1s, errors of at least 1.3m appeared in 8.75%
of the trajectories when using BEST-PTA, in nearly 30% of
the trajectories when using OSB, and in as much as 45%
of the trajectories for O-DTW and MW. If a robot’s planner
is using these predictions to make decisions about its own
motions in a shared human-robot workspace, large prediction
errors can cause the robot to take inefficient or unsafe actions.
Consequently, utilizing BEST-PTA as part of a prediction
framework can lead to improvements in safety and efficiency
of human-robot interaction.
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Fig. 6: Percentage of trajectories in the AA dataset for which
the MPS error was above the given thresholds for at least 5%
of the trajectory for time horizons of 1.5s, 3.1s, and 4.5s.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduce BEST-PTA, a Bayesian estimator
for partial trajectory alignment specifically designed to ac-
commodate the presence of temporary stops and overlapping
trajectory segments. Due to its linear time complexity and
the ability to provide distributions over candidate alignment
points, our method is suitable for online applications such as
activity recognition, action and motion prediction, and gesture
recognition. We evaluate our technique against state-of-the-
art baselines, and demonstrate that BEST-PTA outperforms
these baselines for both ambulatory and manipulative human
motions. Furthermore, we show the utility of our method
for human motion prediction by integrating it as part of a
previously developed prediction framework, and demonstrate
that it leads to lower prediction errors.

In the future, we plan to analyze the impact of BEST-PTA
on the quality of human-robot interaction by investigating
how the improved prediction performance of the MPS due
to using BEST-PTA translates to benefits in interaction and
co-navigation. We would also like to improve BEST-PTA
by incorporating a more robust method of tracking segment
transitions, using Hidden Semi-Markov Models, for example,
in order to handle trajectories that differ significantly from
those observed during training. Lastly, while the majority of
our framework is unsupervised, the number of segments m
must be provided by the user. We therefore plan to implement
a non-parametric approach for discovering the optimal value
of m for a given trajectory.
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